
Computer Science
For Rwandan Schools 

Senior Four
Student’s Book

Owoyesigyire Davis

Stephen Mburu

Geoffrey Chemwa



Published by  
                     
Longhorn Publishers (Rwanda) Ltd
166 KG 13 off KG 11 Avenue
P.O. Box 5910
Kigali Rwanda

Longhorn Publishers (Kenya) Ltd
Funzi Road, Industrial Area
P.O. Box 18033-00500
Nairobi, Kenya

Longhorn Publishers (Uganda) Ltd
Kanjokya Street, Plot 74
Kamwokya
P.O. Box 24745
Kampala, Uganda

Longhorn Publishers (Tanzania) Ltd
New Bagamoyo Road/Garden Road
Mikocheni B, Plot No. MKC/MCB/81
P.O. Box 1237
Dar es Salaam, Tanzania

© O. Davis, S. Mburu, G. Chemwa 2016

All rights reserved. No part of this publication may be reproduced, stored in a 
retrieval system or transmitted in any form or by any means, electronic,  mechanical, 
photocopying, recording or otherwise without the prior written permission of the 
Copyright owner.

First published 2016

ISBN  978 9997 74 489 0

Printed by Ramco Printing Works Ltd,
Unit 2, Ramco Industrial Complex,
Before Imara Daima Turn off, Mombasa Road, 
P. O. Box 27750 - 00506, Nairobi, Kenya.



iii

CONTENTS

Unit 1: COMPUTER FUNDAMENTALS ....................................1

Key Unit Competency ......................................................................................... 1
Unit Outline ........................................................................................................ 1
Introduction ......................................................................................................... 1
Definition of a computer and computer science ................................................. 1
Characteristics of Computers   ............................................................................ 2
Classification of Computers ................................................................................ 3
Role of Computers in Society ............................................................................. 9
History of Computers ........................................................................................ 11
Unit Test 1 ......................................................................................................... 15

Unit 2: COMPUTER ARCHITECTURE & ASSEMBLY ........16

Key Unit Competency ....................................................................................... 16
Unit Outline ...................................................................................................... 16
Introduction  ...................................................................................................... 16
Computer System .............................................................................................. 16
Computer Functions .......................................................................................... 18
Computer hardware ........................................................................................... 18
Internal Computer Components ........................................................................ 27
Assembling Desktop Computers ....................................................................... 41
Replacing laptop battery ................................................................................... 47
Upgrading Laptop Memory .............................................................................. 48
Disassembling Desktop Computer .................................................................... 48
Cleaning and Disposal of Computer Components ............................................ 51
Unit Test 2 ......................................................................................................... 53

Unit 3: SAFE & ETHICAL USE OF COMPUTERS ................54

Key Unit Competency ....................................................................................... 54
Unit Outline ...................................................................................................... 54
General Safety Guidelines ................................................................................ 54



iv

Ethical issues ..................................................................................................... 60
Unit Test 3 ......................................................................................................... 61

Unit 4: COMPUTER SOFTWARE INSTALLATION ..............62

Key Unit Competency ....................................................................................... 62
Unit Outline ...................................................................................................... 62
Introduction ....................................................................................................... 62
Classification of Computer Software ................................................................ 62
Classification according to acquisition ............................................................. 64
Software Licensing  .......................................................................................... 65
Software Installation Fundamentals .................................................................. 66
Disk Preparation ................................................................................................ 67
Disk Management ............................................................................................. 69
Installing Operating System .............................................................................. 74
Installing Device Drivers .................................................................................. 81
Installing Application Software ........................................................................ 82
Unit Test 4 ......................................................................................................... 84

Unit 5: NUMBER SYSTEMS  .....................................................85

Key Unit Competency ....................................................................................... 85
Unit Outline ...................................................................................................... 85
Introduction ....................................................................................................... 85
Fundamentals of Number Systems ................................................................... 85
Number Base Systems ...................................................................................... 87
Converting Decimal to other Base Systems ...................................................... 90
Binary to other Base System Conversion ......................................................... 94
Octal to Decimal Conversion ............................................................................ 97
Octal to Hexadecimal conversion ..................................................................... 97
Hexadecimal to Decimal Conversion ............................................................... 98
Decimal Fraction to Binary Conversion ........................................................... 99
Binary Fraction to Decimal Conversion ......................................................... 101
Negative Decimal to Binary Conversion ........................................................ 102
Arithmetic Operations on Binary Numbers .................................................... 103
Unit Test 5 ....................................................................................................... 110



v

Unit 6: BOOLEAN ALGEBRA AND LOGIC GATES ........... 111

Key Unit Competency ..................................................................................... 111
Unit Outline .................................................................................................... 111
Introduction ..................................................................................................... 111
Unit Outline .................................................................................................... 111
Circuits ............................................................................................................ 111
Logic gates ...................................................................................................... 113
Truth tables ..................................................................................................... 114
Solving problems using logic circuits ............................................................. 117
Boolean algebra .............................................................................................. 122
Unit Test 6 ....................................................................................................... 131

Unit 7: INTRODUCTION TO COMPUTER ALGORITHM 132

Key Unit Competency ..................................................................................... 132
Unit Outline .................................................................................................... 132
Introduction ..................................................................................................... 132
Algorithm Concept .......................................................................................... 132
Design of Algorithms    ................................................................................... 134
Variables .......................................................................................................... 138
Constants ......................................................................................................... 142
Operators and Expressions .............................................................................. 143
Read and Write functions ................................................................................ 145
Unit Test 7 ....................................................................................................... 147

Unit 8: CONTROL STRUCTURES AND ONE 

DIMENSION ARRAY ................................................................148

Key Unit Competency ..................................................................................... 148
Unit Outline .................................................................................................... 148
Introduction ..................................................................................................... 148
Conditional logic ............................................................................................. 148
Control Structures ........................................................................................... 150
One Dimensional Array .................................................................................. 166
Unit Test 8 ....................................................................................................... 170



vi

Unit 9: INTRODUCTION TO COMPUTER

PROGRAMMING .........................................................171

Key Unit Competency ..................................................................................... 171
Unit Outline .................................................................................................... 171
Introduction ..................................................................................................... 171
Computer Programming Concepts .................................................................. 171
History of Programming languages ................................................................ 173
High-level Programming Languages  ............................................................. 175
Computer Programming Paradigms ................................................................ 177
Features of Good Programming Language ..................................................... 180
Unit Test 9 ....................................................................................................... 181

Unit 10: INTRODUCTION TO C++ PROGRAMMING  ......182
Key Unit Competency ..................................................................................... 182
Unit Outline .................................................................................................... 182
Introduction ..................................................................................................... 182
Evolution of C++  ........................................................................................... 182
Syntax of C++ Program .................................................................................. 184
Input and Output Streams ............................................................................... 188 
Variables and Data types ................................................................................. 190
Constants ......................................................................................................... 196
Output Formatting ........................................................................................... 198
Unit Test 10 ..................................................................................................... 201

Unit 11: OPERATORS AND EXPRESSIONS IN C++ ...........202
Key Unit Competency ..................................................................................... 202
Unit Outline .................................................................................................... 202
Introduction ..................................................................................................... 202
Expressions and Operators .............................................................................. 202
Classification of C++ Operators ..................................................................... 203
Classication of  C++ Expressions ................................................................... 214
Unit Test 11 ..................................................................................................... 218



vii

Unit 12: CONTROL STATEMENTS IN C++ ..........................220
Key Unit Competency ..................................................................................... 220
Unit Outline .................................................................................................... 220
Introduction ..................................................................................................... 220
Sequence Control Structure ............................................................................ 220
Selection Control Structure ............................................................................. 221
Looping Control Statements in C++ ............................................................... 228
Jump Control Statements ................................................................................ 237
Unit Tets 12 ..................................................................................................... 241

Unit 13: FUNCTIONS IN C++ PROGRAMMING .................243
Key Unit Competency ..................................................................................... 243
Unit Outline .................................................................................................... 243
Introduction ..................................................................................................... 243
Fundamentals of C++ Functions ..................................................................... 243
Types of Functions .......................................................................................... 244
User-defined Functions ................................................................................... 249
Function declaration ........................................................................................ 252
Scope of variables and Constants ................................................................... 254
Recursive Functions ........................................................................................ 257
Unit Test 13 ..................................................................................................... 260

Unit 14: ARRAYS IN C++ PROGRAMMING ........................262
Key Unit Competency ..................................................................................... 262
Unit Outline .................................................................................................... 262
Introduction ..................................................................................................... 262
One-dimensional Array ................................................................................... 262
Creating one-dimensional array ...................................................................... 262
Accessing Array Elements .............................................................................. 266
Array of Characters ......................................................................................... 271
Unit Exercise 14 .............................................................................................. 275



viii

Unit 15: INTRODUCTION TO OPERATING SYSTEMS ....277
Key Competency ............................................................................................. 277
Unit Outline .................................................................................................... 277
Introduction ..................................................................................................... 277
Definition of Operating System ...................................................................... 277
Functions of operating systems ....................................................................... 279
Desirable characteristics of operating systems ............................................... 280
Components of operating systems .................................................................. 282
Common operating systems ............................................................................ 284
Smartphone operating systems ....................................................................... 288
History of computer operating systems .......................................................... 294
Types of operating systems ............................................................................. 296
Basic MS Dos commands and its main features ............................................. 298
Unit Test 15 ..................................................................................................... 302

Unit 16: HTML-BASED WEB DEVELOPMENT  .................303
Key Unit Competency ..................................................................................... 303
Unit Outline .................................................................................................... 303
Introduction ..................................................................................................... 303
Fundamentals of World Wide Web ................................................................. 303
HTML Syntax and Structure ........................................................................... 304
HTML Elements ............................................................................................. 308
Introduction to XHTML .................................................................................. 314
Designing HTML Pages .................................................................................. 318
Introduction to HTML5 .................................................................................. 335
Migration from HTML 4 to HTML5  .......................................................... 341
Unit Test 16 ..................................................................................................... 343

Unit 17: CASCADING STYLE SHEET ...................................344
Key Competency ............................................................................................. 344
Unit Outline .................................................................................................... 344
Introduction ..................................................................................................... 344
Definition of CSS ............................................................................................ 344



ix

HTML Styling and need for CSS .................................................................... 345
Comparison of HTML and CSS ...................................................................... 346
CSS Syntax ..................................................................................................... 346
Colours ............................................................................................................ 350
Adding CSS to web pages............................................................................... 352
CSS Styles  ...................................................................................................... 355
Positioning  ..................................................................................................... 362
Floating ........................................................................................................... 364
Creating a CSS page from Scratch .................................................................. 369
Unit Test 17 ..................................................................................................... 386

Glossary .......................................................................................387



x



Computer Fundamentals

Key Unit Competency
By the end of the unit, you should be able to explain characteristics and evolution of 
computers and appreciate impact of computers in the society.

Unit Outline
•	 Definition	of	computer	science.
•	 Characteristics	of	computer.
•	 Classification	of	computer.
•		 Role	of	computers	in	society.
•		 History	of	computers.

Introduction
In the current generation, use of computers has become a common practice in 
classrooms, business, offices, entertainment, health, broadcasting, and many 
other areas. In this section, we discuss fundamental concepts, and characteristics, 
applications and  evolution of computers.

1.1  Definition of a computer and computer science
To adapt to the ever changing technologies, there is need to understand  fundamental 
concepts, and characteristics of computers.

Activity 1.1: Definition and parts of a computer
1. In groups of three, use search engines such as Google, or Bing to search for 

standard definitions of the following terms:
•	 Computer
•	 Computer	Science

2.	 Fig.	1.1	below	shows	a	typical	type	of	a	computer.	Define	and	name	the	parts	
labelled (a) to (d). 

Fig. 1.1: Parts of a computer

b a

d c

Unit 1 COMPUTER FUNDAMENTALS

1



Computer Fundamentals
1.1.1  Definitions
Computer: A computer is an electronic device capable of receiving raw facts (data) 
and performing a sequence of operations on the data based on special computer 
instructions (processing) to produce desired output (information). Fig. 1.2 below 
illustrates this process.

Data InformationProcess
Input Output

Fig. 1.2: Data processing in a computer
Computer Science:	Computer	science	is	a	branch	of	science	that	deals	with	theory	
of computation, or design and operation of computer hardware and software, and of 
the application of computers in all sectors. 

Activity 1.2: Computer science
1.	 Do	some	research	on	the	internet	and	write	an	essay	on	areas	of	study	within	

Computer	Science.	These	may	include	artificial	intelligence,	information	systems,	
networks, security, database systems, human computer interaction, vision 
and graphics, numerical analysis, programming, software engineering, health 
informatics, bioinformatics and computational theories. 

2.	 Identify	other	fields	of	study	that	are	related	to	Computers	Science	offered	in	
most	colleges	and	universities	in	Rwanda.

1.2  Characteristics of computers  
Though humans are more intelligent than computers, much of the activities from 
business to space exploration are now carried out with the support of computers. 
Does this imply computers are better than human beings?   

Activity 1.3: Characteristics of a computer
Individually, do some research and write an essay describing why computers 
though not as intelligent as human beings, have characteristics that have made them 
preferred	tools	in	the	workplace.	Some	of	the	characteristics	that	should	appear	in	the	
essay include: reliability, speed, accuracy, diligence, versatility, memory, feelings, 
intellectual ability.

Upon completion of the essay, you should be able to appreciate that although 
computers do not have feelings and intelligence like human beings, they are:
1. Fast: A computer can perform in a few seconds the amount of work a human 

being can do in days, months or years.
2. Accurate: A computer is far much more accurate than human beings during 

data processing. The accuracy of the output obtained from a computer mainly 
depends on input provided. If the input is wrong, the computer processes wrong 

2



Computer Fundamentals
output hence the term Garbage In Garbage Out (GIGO). GIGO is a phrase used 
in computer science that implies that if invalid or erroneous data is entered into a 
computer (garbage in), the computer will process and output invalid or erroneous 
results (garbage out). 

3. Versatile:	Computers	are	versatile	i.e.	flexible	in	that	they	can	be	used	to	carry	out	
different types of activities. For example, at one point using a word processor a 
computer can be programmed to process words like a typewriter and while using 
a spreadsheet to perform calculations like a calculator.

4. Reliable:	Computers	are	more	reliable	because	they	do	not	get	tired	or	bored	in	
processing repeated work.

5. Power of remembering: Computers	can	store	and	recall	high	amount	of	information	
depending with the size of secondary storage media.

6. Diligent:	Computers	do	not	suffer	from	human	related	traits	such	as	tiredness,	
and loss of concentration after working for long hours.

1.3  Classification of computers

Activity 1.4: Classification of computer
1. In groups of three, use internet, magazines or other reference books to classify 

computers according to:
• Physical size and processing power.
• Functions they perform.
• Type of data they process.

2. Other than the above types of classifications, brainstorm on other factors that can 
be used to classify computers.

Generally,	computers	can	be	classified	using	different	criteria	but	the		most	common	
classifications	are	based	on	size,	processing	power,	function,	and	type	data	processing.

1.3.1  Types of computers according to size and power
When	 classified	by	 physical	 size	 and	processing	 power,	 computers	 can	 either	 be	
supercomputers, mainframe computers, minicomputers or microcomputers.

1.3.1.1  Supercomputers
Supercomputers	 are	 the	 fastest,	 largest,	most	 expensive	 and	 powerful	 computers	
available. They are able to perform many complex operations in a fraction of a 
second.	 Supercomputers	 are	mainly	 used	 for	 scientific	 research,	which	 requires	
enormous	calculations.	Some	of	the	applications	that	justify	use	of	supercomputers	
include aerodynamic design and simulation, petroleum research, defence and weapon 
analysis and telecommunications. Because of its weight, a supercomputer is kept in 
a special room as shown in Fig. 1.3.

3



Computer Fundamentals

Fig. 1.3: Supercomputer

Activity 1.5: Uses of supercomputers
By doing research, explain how supercomputers are used by National Aeronautics 
and	Space	Administration	(NASA)	for	aeronautics	and	aerospace	exploration.

1.3.1.2  Mainframe computers
Mainframe computers such as shown in Fig 1.4 are less powerful and cheaper 
than supercomputers. While supercomputers may be described as giant computers, 
mainframes are said to be big in size. They are used for processing data and performing 
complex mathematical calculations. They have a large storage capacity and can 
support a variety of peripherals. Mainframe computers are used as powerful data 
processors in large research institutions and organisations such as banks, hospitals 
and airports, which have large information processing needs.

(a) Old mainframe

User operating a  
mainframe

User sitted on 
mainframe terminal

(b) Modern mainframe
Fig. 1.4: Mainframe computer

Activity 1.6: Mainframe computers
In groups, discuss and write a brief report on how mainframe computers are used in 
large organizations such as banks, hospitals, and airlines.

4



Computer Fundamentals
1.3.1.3  Minicomputers  
Minicomputers shown in Fig. 1.5 are also known as small-scale mainframes 
because they were cheaper alternative to mainframes computers. Like mainframes, 
minicomputers are used in business organisations, laboratories, research institutions, 
engineering	firms	and	banks.

Fig. 1.5: Minicomputer

Activity 1.7: Distinction between mainframe and minicomputers
In groups, use reliable sources on the internet draw clear  distinctions between 
mainframe and minicomputers.

1.3.1.4  Microcomputers
A microcomputer is the smallest, cheapest and relatively least powerful type of 
computer.	It	is	called	a	microcomputer	because	its	CPU	is	called	a	microprocessor,	which	
is very small compared to that of minicomputers, mainframes and supercomputers. 
Microcomputers are commonly used in schools, business enterprises, cybercafé, 
homes and many other places. Today, the processing power of microcomputers has 
increased tremendously close that of minicomputers and mainframes. 

Types of Microcomputers
Microcomputers	may	be	classified	into	desktop	and	portable	computers.	A	desktop	
such	 as	 shown	 in	 Fig.	 1.6	 are	 common	 types	 of	microcomputer	 designed	 to	 fit	
conveniently	on	top	of	a	typical	office	desk,	hence	the	term	desktop.

Fig. 1.6: Desktop computer

5



Computer Fundamentals
Portable computers are microcomputers small enough to be held by hand (hand-
held) or placed on the laps while working (laptop). Examples of Portable computers 
include laptops (notebook), tablets,  and smartphones. Fig. 1.7 shows illustrations 
of	notebook	PC	and	a	tablet.

Notebook	PC Tablet
Fig. 1.7: Microcomputers

Activity 1.8: Types and uses of microcomputers
1. In the school environment, at home or in business organization, identify the 

following types of microcomputers:
•	 Desktop	computers	 	 • Notebooks/Laptop
• Tablets    • Palmtops

2. In discussion groups, research from reliable internet sites how the term 
microcomputer came into being. 

3. Using the illustrations given below, identify each type of microcomputer.

(a)                                                      (b)
Fig. 1.8: Microcomputers

1.3.2  Types of computers according to functions
Regardless	of	the	size	and	processing	power,	a	computer	can	be	classified	according	
to functions they perform. In this case, we have servers, workstations and embedded 
computers.	Servers	and	workstations	are	general	purpose	computers	used	to	provide	
access to resources on a network while special purpose computers are dedicated to 
a single task. 

6



Computer Fundamentals

1.3.2.1  Servers
A server is a dedicated computer that provides hardware or software resources to 
other computers on a local area network (LAN) or a over the Internet.  Unlike desktop 
computers that  have standard input and output devices attached, most servers such 
as shown in Fig. 1.9 do not require such peripheral devices because they are accessed 
remotely using remote access software. Because servers are expensive, a powerful 
desktop computer may be converted into a server by adding the appropriate hardware 
and software resources. 

Fig. 1.9: Servers

Generally,	servers	may	be	classified	according	to	the	task	they	perform.	For	example,	
a	file	server	provides	massive	storage	devices	dedicated	to	storing	files	while	a	print	
server is used to access to more printers, and a network server is a computer that 
manages	network	traffic.	

1.3.2.2  Workstation   
A workstation is a name given to a computer connected to a server or network 
intended to be used by one person at a time, they are commonly connected to a server. 
This	means	that	all	users	who	utilize	a	computer	at	their	job	or	school	are	using	a	
workstation.	Commercially,	workstations	are	used	for	business	or	professional	use	
such as graphics design, desktop publishing and software development.

1.3.2.3  Embedded computers
Embedded	 computers	 are	 computing	 devices	 designed	 for	 a	 specific	 purpose.	
Generally, an embedded computer has an operating system that only runs a single 
application. Examples of embedded computing devices include dishwashers, ATM 
machines,	MP3	players,	routers,	and	point	of	sale	POS	terminals.

7



Computer Fundamentals

Activity 1.9: Classification of computers
1. In the school environment, classify the following computers into servers, 

workstations, or embedded computers:
•	 Computer	 used	 to	 control	 access	 to	 hardware	 and	 software	 resources	 in	 a	

networked environment.
•	 Computer	 used	 to	 access	 hardware	 and	 software	 resources	 in	 a	 networked	

environment.
•	 Computer	used	in	smart	cards	such	as	those	used	on	ATMs	and	automated	parking.	

2. In your groups, discuss advantages and disadvantages of supercomputers over 
microcomputers.

1.3.3  Types of computers according to data type
Computers	 can	 be	 classified	 into	 digital	 computers,	 analog	 computers	 or	 hybrid	
computers depending on the type of data they process.  

1.3.3.1  Digital computers
Digital computers perform calculations and logical comparisons by representing data 
and instructions as binary digits. This means that digital computers must convert 
data such as text, numbers, images, video and sound into a series of zeros and ones 
as represented by the signal waveform in Fig. 1.10. The data signal is either at 0V 
or 5V. In this case +5 or -5V represent a 1. Most of the computers used today such 
as desktop computers, laptops and tablets are digital computers.

+5V

-5V

0V

Fig. 1.10: Digital signal

1.3.3.2  Analog computer 
These are computers that process data that is continuous (analog) in nature. An analog 
signal is one which has a value that varies smoothly from peak to minimum and vice-
versa. For example, the sound waves that your mouth produces when you speak are 
analogue - the waves vary in a smooth way as shown in Fig 1.11. In the early days 
of computer evolution, most of the computers were analog in nature. Today analog 
computers	 are	 specialised	devices	used	 in	 engineering	and	 scientific	 applications	
unlike those used to measure speed, temperature and pressure data.

+5V

-5V

0V

Fig. 1.11: Analog signal

8



Computer Fundamentals

Activity 1.10: Classification of computers
1.	 Research	for	details	from	the	internet,	magazines	or	other	reference	books	and	

define the following types of computers:
• Analog computers
•	 Digital	computers.
•	 Hybrid	computers.

2.	 Discuss	advantages	and	disadvantages	of	the	three	types	of	computers.

Assessment Exercise 1.1
1. Explain some of the characteristics that make a computer suitable for processing 

repetitive tasks.
2.	 Differentiate	between	the	following	terms:

(a) Mainframe and minicomputers.
(b) Analog and digital data. 
(c)	Servers	and	workstations.

3.	 Draw	a	sketch	of	a	desktop	computer	and	label	the	main	physical	parts.

1.4  Role of computers in society
Computers	 play	 very	 important	 roles	 in	 various	 socio-economic	 sectors	 such	 as	
economics,	offices,	financial	institutions,	industries,	health,	communication,	security,	
education, entertainment and libraries. In this section, we discuss common application 
areas of computers in our society. 

1.4.1  Economics
Computers	enables	governments,	businesses	and	individuals	to	plan,	budget	and	tract	
their revenues and expenditures. Increased computing power means that it has become 
possible to perform economic analysis both at macro and micro-economic level.

1.4.2  Retail stores
Most retail stores use computers to help in the management of daily activities like 
stock control. The stock control system keeps account of what is in stock, what is 
sold and what is out of stock. The management is automatically alerted whenever a 
particular item or items are running out of stock that need reordering.

1.4.3  Offices
Computers	have	increased	efficiency	in	offices	by	reducing	the	time	and	effort	needed	
to	access	and	receive	information.	Most	modern	office	functions	have	been	automated	
for	efficient	service	delivery.

9



Computer Fundamentals
1.4.4  Financial institutions
In the banking sector, computers and mobile devices such as cellphones can be used 
to	withdraw	or	 get	 any	 service	 from	different	 branches.	 Special	 cash	 dispensing	
machines called automated teller machines (ATM’s) have enabled automation of 
cash	deposits	and	withdrawal	 services.	Efficiency	has	also	been	 increased	due	 to	
better record keeping and document processing brought about by use of computers.

1.4.5  Industries
Computers	are	being	used	to	monitor	and	control	industrial	processes.
The computer age has seen wide use of remote controlled devices called robots. A 
robot is a machine that works like a human being but performs tasks that are too 
unpleasant, dangerous, or complex and tedious to assign to human beings.

1.4.6  Health
Computers	are	used	to	keep	patients’	records	in	order	to	provide	easy	access	to	a	
patient’s	treatment	and	diagnosis	history.	Computerised	medical	devices	are	now	being	
used to get a cross sectional view of the patient’s body that enables physicians to get 
proper	diagnosis	of	the	affected	body	parts	with	high	levels	of	accuracy.	Computers	
also	control	life	support	machines	in	Intensive	Care	Units	(ICU).

1.4.7  Communication
Integration of computers and telecommunication facilities has made message 
transmission	and	reception	to	be	very	fast	and	efficient.	Because	of	the	speed	with	
which information can be transmitted around the world using computers, the world 
is said to have become a global village.

1.4.8  Security 
Information	stored	in	computers	such	as	fingerprints,	images	and	other	identification	
details help law enforcers carry out criminal investigations.

1.4.9  Education
Computers	are	used	in	teaching	and	learning	in	schools,	colleges	and	universities.	
Learning	and	teaching	using	computers	is	referred	to	as	Computer	Aided	Learning	
(CAL)	and	Computer	Aided	Instruction	(CAI).	For	example,	experiments	in	subjects	
like	Chemistry	or	Physics	may	be	demonstrated	using	a	special	computer	program	
that can depict them on the screen through a process called simulation. To take care 
of learners with special needs, computers with software and assistive technologies 
such	as	microphone,	braile	keyboards	and	text	magnifiers	have	been	developed.

1.4.10  Entertainment
Computers	can	be	used	at	home	for	recreational	activities	such	as	watching	movies,	
playing music and computer games. They can also be used in storing personal 
information, calculating, keeping home budgets and research.

10



Computer Fundamentals

1.4.11  Library management
In a modern library, computers enable library personnel to easily access and keep 
updated records of books and other library materials. Library users can also use 
computers to search for titles instead of using the manual card catalogue.

Activity 1.11: Role of Computers in society
1. Match the following computer application areas numbered 1 - 8 with the role 

played	in	column	numbered	A	-	H.
1.	 Supermarket		 	 A	–	Forensic	investigations
2.	 Hospital		 	 B	–	Entertainment
3.	 Bank	 	 	 C	–	Stock	control
4.	 Hotel	 	 	 D	–	Booking	rooms
5.	 Home	 	 	 E	–	Analysing	academic	data
6.	 School	 	 	 F	–	Motor	vehicle	assembly
7.	 Industry		 	 G	–	Remote	monitoring	of	patients	
8.	 Police	station		 	 H	–	Processing	cash	transactions

2.	 Apart	 from	using	computers	and	other	ICT	devices	such	as	mobile	phones	as	
productivity tools at home and workplace, they can be used to address various 
social, environental and cultural issues. Brainstorm on  how computers can be 
used	in	Rwanda	to	promote:
• Peace and reconciliation.
• Ndi Umunyarwanda philosophy.
• Environmental management.
• Sexuality and moral values.

3. By visiting around and outside the school, discuss both positive and negative 
impact of computers in the following sectors:
• Education   • Business
•	 Health	 	 	 	 • Entertainment
•	 Communication	 	 •	 Security	control
• Financial management • Government

1.5  History of computers
The computer, as we know it today, had its beginning with a 19th century English 
mathematics	 professor	 name	Charles	Babbage.	Babbage	 designed	 the	Analytical	
Engine and that is considered as the basic architecture of modern electronic computers 
are	based	on.	It	is	not	until	1937	when	John	Atanasoff	and	Clifford	Berry	built	the	
first	electronic	digital	computer	called	Atanasoff-Berry	Computer	(ABC).		Since	then,	
there	have	been	major	computer	evolutions	classified	into	five	generations.

11



Computer Fundamentals
1.5.1  First generation (1940-1956): Vacuum tubes
The	first	generation	computers	used	electronic	components	known	as	vacuum	tubes	
or thermionic values (Fig. 1.12) for circuitry and magnetic drums for memory. 
These types of computers were enormous, expensive, consumed a lot of power, and 
emitted a lot of heat which was often the cause of malfunctions. Input was based 
on punched cards and paper tape, and output was displayed on printouts. The three 
popular	examples	of	first	generation	computers	are	Electronic	Numeric	Integrator	and	
Calculator	(ENIAC),	Electronic	Discrete	Variable	Automatic	Computer	(EDVAC)	
and	Universal	Automatic	Computer	(UNIVAC).

 

Fig. 1.12: Thermionic valves

Activity 1.12: First generation computers
In	groups	explain	why	first	generation	computers	were	large	in	size,	emitted	a	lot	of	heat,	
and consumed a lot of power.

1.5.2  Second generation (1956-1964): Transistors
The invention of transistors shown in Fig. 1.13 ushered in the second generation of 
computers	that	were	made	up	of	transistors	that	are	superior	vacuum	tubes.	However,	
these computers but did not see widespread use in computers until the late 1950s. 
Although transistors still generated a great deal of heat, they were faster and more 
reliable than those made of vacuum tubes. In terms of input, computers in second 
generation relied on punched cards while storage was on magnetic cores. Examples of 
second	generation	computers	include	IBM’s	1401	and	7070,	UNIVAC	1107,	ATLAS	
LEO	Mark	III	and	Honeywell	H200.	

Fig. 1.13: Tramsistors

12



Computer Fundamentals

Activity 1.13: Second generation computers
Identify examples of second generation computers. By researching from Internet 
or other reliable reference, identify at least three examples of second generation 
computers.

1.5.3  Third generation (1964-1970): Integrated circuits
Development	 of	 electrical	 components	 known	 as	 integrated	 circuit	 (IC)	was	 the	
hallmark	of	the	third	generation	of	computers.	Fig.	1.14	shows	illustration	of	ICs	that	
are made up of transistors embedded on silicon chips called semiconductors. Most 
third generation computers allowed users to interact a computer through keyboards 
and	monitors.	For	the	first	time,	computers	became	accessible	to	a	mass	audience	
because they were smaller and cheaper than their predecessors. Examples of third 
generation computers include smaller and less expensive minicomputers such as 
IBM	360	and	ICL	19000	series.

Fig. 1.14: Intergrated circuits (ICs)

Activity 1.14: Third generation computers
Through research identify at least three examples of third generation computers.

1.5.4  Fourth generation (1970-Present): Microprocessors
Further	technological	improvements	on	ICs	saw	very	large	intergrated	(VLI)	circuits	
which have thousands of integrated circuits built onto a silicon chip as microprocessor 
shown in Fig. 1.15. It is in the fourth generation computers that programs with 
graphical user interface (GUIs), mouse, and hand-held devices were introduced. 
Some	the	early	examples	of	fourth	generation	computers	include	IBM	370	and	4300,	
Honeywell	DPS-88	and	Burroughs	7700.

Fig. 1.15: Top and bottom view of microprocessor

13



Computer Fundamentals
1.5.5  Fifth generation (Present and beyond): Artificial intelligence
Tremendous improvement on hardware and software has given rise to what is loosely 
considered	as	the	fifth	generation	computers	that	are	based	on	artificial intelligence. 
The	term	artificial	intelligence	refers	to	capability	of	a	computer	to	mimic	human	
behaviour.	The	 goal	 of	 fifth	 generation	 computing	 is	 to	 develop	 devices	 that	 are	
capable of learning, and respond to natural language input (voice recognition). In 
future,	research	outcomes	in	the	fields	of	artificial	intelligence	and	nanotechnology	
are expected to radically change the face of modern computers.

Activity 1.15: Fifth generation computers
By researching from Internet or other reliable reference material, identify at least 
three	examples	of	fifth	generation	computers

Table	1.1	gives	a	summary	of	some	of	the	main	technological	specifications		and	
uses	of	computers	from	the	first	to	fifth	generation.

Generation Features Application

1st Generation 
computers
1940-1956

Built during the 1st world war 
using vacuum tubes

The 1st generation computers were used for very 
large	mathematical	and	scientific	computations.	For	
example,	ENIAC	developed	during	1st world war was 
used to make certain calculations for the construction 
of hydrogen bomb.

2nd Generation 
c o m p u t e r s 
1956-1964

Built	using	transistors.	Had	tape	
storage, printer and operating 
system and stored programs.

The 2nd	generation	computers	such	as	PDP-1	and	IBM	
1400 series were programmable computers that were 
used	mainly	for	scientific,		and	business	applications.

3rd Generation 
computers
1964-1970

Built using integrated circuits 
and semiconductors (a type of 
material that had the properties 
of an insulator and a conductor). 

These	computers	such	as	PDP-8	and	IBM	360	were	
the	first	computers	 to	multitask.	They	had	most	of	
the applications used today such as word processor.

4th Generation 
computers
1970-present

Built using very large integrated 
circuits  characterized by 
microcomputers.

Due	to	low	cost,	4th generation computers such as Altair 
8800	(first	microcomputer)	were	affordable	and	could	
be used for most applications.  Financial applications 
such	as	VisiCalc	and	networks	particularly	the	internet	
became common.

5th Generation 
computers -§
p r e s e n t  a n d 
beyond

Today’s computers characterized 
by massive processing power 
and	use	of	artificial	intelligence.

Most modern computers are used for a large number 
of applications, in particular expert systems used in 
decision making.

Table 1.1 Technological specifications  and uses of computers

14



Computer Fundamentals

 Activity 1.16: Computer generations
1. Match the following generations of computers with the technology used to develop 

them.
	 1.	 First	generation	 A	–	Very	large	scale	integrated	circuit
	 2.	 Second	generation		 B	–	Thermionic	valves	
	 3.	 Third	generation	 C	–	Transistors
	 4.	 Fourth	generation	 D	–	Integrated	circuits
2. The age of modern electronic computers can be traced back to 1940s. In groups, 

discuss five generations that characterize modern electronic computers.

Unit Test 1
1. What were the characteristics of first generation computers?
2.	 Draw	a	block	diagram	showing	the	evolution	of	computers	in	their	generations	

and characteristics per each.
3.	 Define	the	term	artificial	intelligence.
4. Explain how integrated circuits contributed to the development of microcomputers.
5.	 Highlight	some	of	the	achievements	of	the	fifth	generation	computers.

15



Computer Architecture  and Assembly

16

Key Unit Competency
By the end of the unit, you should be able to:
• Identify computer components and their functions (input, output, processing and 

storage.
• Assemble, disassemble computers and perform basic  maintenance services.   

Unit Outline
• Computer system.
• Computer hardware.
• Audio port and connector.
• Internal computer components.
• Assembling computers.  
• Cleaning and disposing of computer components.

Introduction 
This unit introduces us to computer components and their functionality in order 
to have a common understanding of microcomputers regardless of their physical 
configuration. Later, the unit focuses on fundamentals of computer architecture that 
aims at equipping us with practical skills on how to assemble, disassemble, and repair 
desktop computers.   

2.1  Computer System
Though there are various definitions of computer systems, in our context we define a 
computer system as the combination of hardware, software (programs), user (liveware) 
and data that forms a complete, working system. 

2.1.1  User
A computer system is not complete without people referred to as users or liveware. 
Although some types of computers can operate without much intervention from users, 
most personal computers are designed specifically for use by people.

2.1.2  Hardware
In computer science context, hardware refers to physical components that make up 
a computer system. Common examples of hardware include system unit, keyboard, 
mouse monitor, printer, speakers, and modem.

COMPUTER ARCHITECTURE 
AND ASSEMBLYUnit 2

Contents

Introduction  16

2.1  Computer System 16

2.2  Computer Functions 18

2.3  Computer hardware 18

2.5  Assembling Desktop Computers  32

2.6  Replacing laptop battery 38

2.7  Upgrading Laptop Memory 38

2.8  Disassembling Desktop Computer 39

2.9  Cleaning and Disposal of Computer Components 41



Computer Architecture  and Assembly

17

2.1.3  Software
The term software refers to a set of instructions also known as program that directs a 
computer what to do. Some programs operates computer hardware and other programs 
while others enable a computer user to perform specific tasks such as accounting.

2.1.4  Data
Data consists of raw facts which the computer can manipulate and process into 
information that is useful to the user. In digital computers, data is converted from 
forms that people can understand such as text, numerals, sounds, and images into 
binary digit i.e. zeros and ones.
The four components that make up a computer system are illustrated in Fig. 2.1. Note 
that the software component is represented by shelved software casings and programs 
running in the computer, while data is illustrated by information on the screen and 
on a piece of paper on the desk. 

user

data

hardware software

Fig.2.1: The four components of a computer system

Activity 2.1: Computer Components

Using examples, explain the function of each of the four components of a computer 
system. Compare your answers with other members of your class and the below 
following discussion.



Computer Architecture  and Assembly

18

2.2  Computer functions
Computers manipulate (process) data (input) to produce information (output) and 
hold (store) processed information for future use as shown in Fig. 2.2.

Data InformationProcess

Storage

Input Output

Fig.2.2:Input, processing, storage and output of a computer system

• Input: The first box on the illustration depicts how a computer receives input for 
processing. 

• Process: The computer then performs processing such as calculations and 
comparisons. 

• Output: The computer generates information that may be printed or displayed on 
a screen or in a specified format. 

• Storage: Data and information may be stored for future use on storage devices 
such as hard disk, CD/DVD etc.

2.3  Computer hardware
Generally the main hardware components of a typical desktop computer can be 
classified into two broad categories namely; peripheral devices as and the system unit.  

2.3.1  Peripheral Devices
Most desktop computers consist of external devices connected to a central housing 
known as the system unit. Collectively, external input devices such as keyboard and 
output devices such as the monitor are referred to as peripheral devices. Fig. 2.3 
shows common examples of peripheral devices. 

Activity 2.2: Peripheral Devices
Fig. 2.3 shows peripheral devices that may be attached to the system unit of a 
microcomputer. 



Computer Architecture  and Assembly

19

Fig.2.3: Peripheral devices
Identify each item and classify it as input, output or storage devices using descriptions 
given below:
•  Peripheral device that enables the user to enter data and instructions into the 

computer through typing. 
• To execute a command, the user moves the mouse which consequently moves 

the pointer on the screen.
• Television-like device that enables the user to display information such as text 

and videos from the computer.
• Peripheral device that looks like lever used to control a pointer on the screen 

mostly used for playing computer games.
• Devices used to display output from a computer onto a hardcopy such as plain papers.
• Peripheral device used to capture digital images and video and directly stores the 

content into computer storage. 
• Peripheral device used to produce audio sound such as music from a computer.
• Secondary storage media/device that can be plugged into USB port to read or 

store data.  
• Shiny round secondary storage media that is inserted into the system unit disk 

drive to read or store data. 

2.3.2  Computer case

The computer case, commonly referred to as the system unit, is the main 
hardware part in which internal components such as microprocessor, computer 
memory, and drives are housed. In terms of physical appearance (form factor), 
the two common types of systems units are tower type shown in Fig. 2.4(a) 
and desktop type in Fig. 2.4(b). The main difference is that, in tower system 
unit, the monitor rests on the table while in desktop types; the monitor may 
be placed on top of the system unit.



Computer Architecture  and Assembly

20

  (a) Tower type case  (b) Desktop computer case
Fig.2.4: Types of system unit cases

Activity 2.3: System Unit
1. Discuss with your partner what the system unit of a computer is.
2. Identify the types of system units.
3. State the advantage and disadvantages of each of computer cases.

2.3.3  Ports and Connectors
A port is a physical or wireless interface between the computer and peripheral devices. 
Physically, you can identify ports such as shown in Fig. 2.5 through which devices 
may be connected using interface cables. In this section, we discuss ports such as 
serial, parallel, universal serial bus (USB), Ps/2, HDMI and VGA shown in Fig. 2.5 
(a) and (b).

Activity 2.4: Ports and Connector
1. Following the guidelines from the teacher, carefully unplug peripheral devices 

connected at the back of the computer.  Depending on the physical configuration 
of a system unit, you may observe ports such as the shown in Figure 2.5 below.

E

A

B C D

F

Fig.2.5(a) Back view of a desktop computer Fig.2.5(b) Back view of motherboard

Fig.2.5: Back view of microcomputer and motherboard



Computer Architecture  and Assembly

21

3. Using Fig. 2.5, identify the ports labelled A-F and demonstrate how each port 
connect peripheral devices to the system unit. Compare your work with the  brief 
description given below:

2.3.3.1  Serial port
Serial ports also known as RS232 ports are used to connect devices that transmit 
and receive data as a series of binary digits (bits). Although RS232 ports and cable 
shown in Fig. 2.6 have become obsolete, they were used to connect devices such as 
the mouse, serial modems and printers. 

Fig.2.6: Serial connector and port

Activity 2.5: Serial Connector

In groups or individually, study the serial connector shown in Fig. 2.6 above and 
perform the following tasks:
• Identify whether the serial cable is used within the school or computer lab.
• If no serial cable is available in the school, count the number of pins shown on 

the illustration. 
• State the disadvantages of RS232C port and explain why it has become obsolete.

2.3.3.2  Parallel Port
A parallel port is an interface used to connect devices that transmit and receive 
multiple bits simultaneously (in parallel) hence it is faster than the serial interface. 
To connect devices such as printers and scanners to a parallel port, we use a 25-pin 
parallel cable also referred to as DB-25 shown in Fig. 2.7

Fig.2.7: Parallel connector and port



Computer Architecture  and Assembly

22

2.3.3.3  Universal Serial Bus 
Universal Serial Bus (USB) is an industry standard interface that defines cables, 
connectors and protocols for connections between computers and peripheral devices. 
Universal serial bus (USB) is a high-speed serial port that has become the standard 
interface hence replacing most serial and parallel ports. It is now common to find 
USB ports on most electronic devices such as tablets, radios, TVs, mobile phones, and 
set-top boxes. One of the reasons the USB interface has become popular is because 
as many as 127 devices can be daisy chained and connected to a single port using 
USB cable such as the one shown in Fig. 2.8. 

Fig.2.8: USB port and connector

Activity 2.6: USB Port and Connector
• Explain three reasons why USB interface has replaced parallel and other serial 

ports on most computers and  peripheral devices. 
• Move around the computer room and do the following:

1. Find out how many USB ports the  computers have.
2. Connect a mouse / keyboard / peripheral device to the computer’s system unit  
using a USB cable as directed by the teacher. Is the process simple or complicated? 

2.3.3.4  Personal System/2 ports 
Previously, most computers came with a pair of Personal Systems 2 (PS/2) ports also 
known as mini-DIN. However, most computer manufacturers have phased out PS/2 
ports in favour of USB interfaces and wireless connectivity. Fig. 2.9 shows a closer 
look of the PS/2 ports the one coded in pink to connect a keyboard while the green 
ports is used connects a mouse. 

Fig. 2.9: Keyboard and mouse Ps/2 ports



Computer Architecture  and Assembly

23

Activity 2.7: PS/2 Port and Connector
In groups, study PS/2 ports on the system unit or use Fig. 2.9(a) to explain the 
following:
• What colour codes are used to denote the mini-DIN ports for the keyboard and 

the mouse?
• Check behind your system unit and identify the mini-DIN ports if available. 

Sketch their appearance. 
• What happens if by mistake you connect the keyboard to the mouse port? 

2.3.3.5  Video graphics array port
A Video Graphics Array (VGA) port is a D-shaped interface used to connect display 
devices such as TVs, monitor or LCD projectors to the computer. Fig. 2.10 shows an 
illustration of a 15-pin VGA cable used to connect a monitor or projects to a computer.

Fig.2.10: VGA connector

Activity 2.8: VGA Port and Connector
Study the VGA connector shown in Fig. 2.10 or in a computer lab and perform the 
following tasks:
• Count the number of pins on the VGA cable connector. 
• Explain what happens when one of the pins on the VGA connectors happens to 

be damaged. 
• In the computer lab, demonstrate how you would connect a monitor or projector 

to a VGA port. 

2.3.3.6  Audio Ports
Most computers and mobile devices come with audio interface used to connect 
speakers, microphones (mic) and other audio devices. Fig. 2.11(a) shows three audio 
ports while Fig. 2.11(b) shows output (speaker) and input (microphone) jacks coded 
in green and pink colours.



Computer Architecture  and Assembly

24

                  Fig.2.11:(a) Audio port               Fig.2.11:(b) Speaker and microphone jacks
Fig.2.11: Audio interface

Activity 2.9: Audio Port and Connector
Study the connector (jack) shown in Fig. 2.11(b) and perform the following tasks:
• What colours are used to distiguish between the audio  and microphone ports. 
• Explain what happens if the two are interchanged by plugging in the audio 

connector to the mic port and vise versa.  
• In the computer lab, demonstrate how you would connect the speakers to audio 

and mic ports. 

2.3.3.7  Network  port
Network interface is a port that connects a device to physical or wireless transmission 
media in computer network. Most computers today come with a network interface 
known as RJ45 shown on Fig. 2.12 (b) to which a transmission media with RJ45 
connector shown in Fig. 2.12 (b) is plugged to establish a connection.   

 (a):RJ45 port                         (b):RJ45 UTP connector

Fig.2.12:RJ45 interface and UTP connector

Activity 2.10: Network Interface
Study the RJ 45 connector in Fig.2.12 above or in the computer lab and perform the 
following tasks:
• Distinguish between network interface adapter and onboard modem. 



Computer Architecture  and Assembly

25

• Apart from Communication Network Riser (CNR) adapter, describe three types 
of network interface adapters and slots. Which adapter technology is the most 
current. 

• In the computer lab, demonstrate how you would connect computer to local area 
network using RJ 45 port and connector. 

2.3.3.8  Firewire connector 
Firewire port also referred to as IEEE 1394 is almost similar to USB but has higher 
data transmission rate. Therefore, firewire is suitable for streaming video from digital 
cameras to a computer. Fig. 2.13(a) shows an illustration of Firewire port while Fig. 
2.13(b) shows the two ends of a firewire cable connectors.

     

     
Firewire port

Firewire connector
(a): Firewire port (b):Firewire cable  

Fig.2.13: Firewire port and connectors

2.3.3.9  High Definition Multimedia Interface
High Definition Multimedia Interface (HMDI) is an interface for transferring 
compressed and uncompressed digital audio or video data from HDMI-compliant 
device to a computer, projector, digital TV or audio device. HDMI is  intended to be 
a replacement for analog video standards such as the VGA. 

HDMI port

HDMI connector

 (a) HDMI cable  (b) Ports on laptop
Fig.2.14: HDMI interface cable and port

Activity 2.11: HDMI Port and Connector
Study Fig. 2.14 or HDMI interface and carryout the following tasks:
• Identify the devices within the school or at home that comes with HDMI interface. 



Computer Architecture  and Assembly

26

• Draw similarities and difference between the USB and HDMI ports and 
connectors. 

• Through the help of the teacher in the computer lab, demonstrate how you would 
stream video clips from a video camera to a computer or digital TV through HDMI 
interface. 

2.3.3.10  Small Computer Systems Interface
Small Computer Systems Interface (SCSI) is a set of parallel interface standards 
defined by ANSI for attaching peripheral devices such as printers, disk drives, tape 
drives and scanners. Although SCSI port shown in Fig. 2.15 is available on some 
devices, it has become obsolete in favour of USB, Firewire, HDMI and wireless 
standards. 

Fig.2.15: SCSI port and interface cable

Activity 2.12: Connecting Peripheral Devices
1. In groups of two or three, check whether your computer has an SCSI interface 

and perform the following tasks:
• Research on ANSI standardization body and trace the evolution of SCSI 

interface, number of devices supported,  and related viariations.  
• Identify devices within the school or at home that comes with HDMI interface. 
• Draw similarities and difference between the SCSI and parallel LPT1 ports 

and connectors. 
2. Adan intends to start computer bureau services such as printing and cyber cafe 

in Kigali. Assuming Adan has come to seek advice on specifications to consider 
before purchasing computers: 
• Use demonstration or illustration to help Adan differentiate between desktop 

and tower type system unit. 
• Take Adan through the ports at the back of the system unit explaining to him 

the purpose of each.
• Demonstrate and help Adan connect basic peripheral devices such as monitor, 

keyboard, mouse and printer to the right ports.

SCISI port
SCISI connector



Computer Architecture  and Assembly

27

3. To easily identify each of the ports and connectors, device manufacturers use 
symbolic colour codes and impressions. For example, Table 2.1 a list of symbolic 
representations of some of the ports discussed in this section. Identify and explain 
what port or connector each symbol stands for.

Port/Connector Symbol Name of Port/Connector

Table 2.1: Port symbols

2.4  Internal Computer Components
We have already learnt about various peripheral devices and how they are connected to 
the system unit through ports. In this section, we discuss the main components found 
inside the system unit such as disk drives, motherboard, processor and memory. But, 
before we open the system unit cover, it is important that you observe the following 
safety precautions:
1. Always disconnect the computer from power source before starting to work on 

them.
2. Do not work on any peripheral device without the guidance of the tutor or 

laboratory technician. 
3. Never work in isolation because you may need help in case of any emergency.
4. Always discharge static electricity that might have built up on the body by touching 

an earthed metallic object or wearing antistatic wrist member.

 Activity 2.13: Internal Computer Components
1. Through the guidance of your teacher or lab technician, work in groups of two or 

three to open the system unit cover to expose the internal components as shown 
in Fig. 2.16. 



Computer Architecture  and Assembly

28

Fig.2.16: Inside the system unit

2. Observe and identify various components inside the system unit.

2.4.1  Power supply unit and connectors
The Power Supply Unit (PSU) shown in Fig. 2.17 converts alternating current (AC) 
from mains to direct current (DC) required by internal computer components. The 
current supplied to the internal components like motherboard, hard disk, and optical 
drives depends on the rating from the device manufacturer. Note that unlike desktop 
computers that are fitted with PSU, portable computers like laptops come with power 
adapters that convert AC to DC.

Fig.2.17: Power supply unit.
Types of power supply unit connectors
The power supply unit connectors can be classified into external and internal connectors. 
The external connectors are used to connect the power supply unit to the power outlet 
while internal connectors are used to supply and distribute power to internal devices 
inside the computer found inside a computer case. In the power supply unit shown in 
Fig. 2.17 above shows an examples of internal and external power connectors.

Power connector 
from mains supply
Voltage changer 
(switch) between 
112v and 240v

On-off switch
Cooler fan

Power connector to 
internal components



Computer Architecture  and Assembly

29

2.4.2  Motherboard
A motherboard shown in (Fig. 2.18) is the main printed circuit board onto which 
all components of the computer interconnect or are mounted and communicate with 
each other. 

Fig.2.18: Motherboard

The following are the main components that are attached or mounted on the 
motherboard. They are discussed later in the section: 
1.  Central Processing Unit (CPU): it is also called the microprocessor
2. Computer memory: They are various types of read only memory chips (ROMs) 

and random access memory modules (RAM).
3.  Disk drives: hard disk drive and the optical disk drive.
4. Adapter cards: they add functionality to the computer e.g. network   

interface cards, TV/Radio cards, wireless network cards etc. 

2.4.3  Central processing unit (CPU) 
The Central Processing Unit (CPU), also known as the processor, is the most 
important component of the computer. It is actually regarded as the “brain” of the 
computer because all processing activities are carried out inside the processor. In 
microcomputers, the CPU is housed inside the system unit.
The CPU is mounted on a circuit board known as the motherboard or the system 
board.  For ease of upgrade, most motherboards have a socket into which the contact 
pins shown in Fig 2.19 (b) are aligned to and inserted.

Adaptor  card 
slot/controller Microprocessor

R A M 
Memory slots



Computer Architecture  and Assembly

30

               (a): Topside of  microprocessor

         (b): bottom connector socket

Fig.2.19: Top and bottom of a microprocessor

Activity 2.14: Central processing unit(CPU)

Using Fig. 2.21 (a) and (b), identify the type of microprocessor, and socket on the 
motherboard of your computer.

The CPU is made up of three distinct components within it:
1. The Arithmetic Logic Unit (ALU): performs all arithmetic and logical operations.
2. Control Unit: interprets instructions and controls speed of execution using a clock.
3. Registers: special memories within the CPU for holding instructions and data. 

Role of the CPU

The CPU consists of three functional elements namely the Control Unit (CU), 
Arithmetic and Logic Unit (ALU). Figure 2.20 illustrates the functional elements of 
the CPU.

Main  memory

2 
+  

3  
=  5

Data and instructions 
from memory

add 2 to 5

Control unitALU

Cache and registers

send result to  
the memory 

ALU adds 
2 & 3  

Fig. 2.20:  Functional elements of the CPU



Computer Architecture  and Assembly

31

The control unit

The control unit coordinates all processing activities in the CPU as well as input, 
storage and output operations. It determines which operation or instruction is to be 
executed next. To coordinate these activities, the control unit uses a system clock. 
When the clock ticks, a task is ashered into the CPU for processing. When it ticks 
again, the task is ashered in/out of the CPU. Different tasks require different number 
of clock ticks (time lengths) in order for them to be fully processed. 
The system clock sends electric signals as its means of communication to the CPU.  
The number of pulses per second determines the speed of a microprocessor. The faster 
the clock pulses, the faster the CPU, hence the faster the computer can process data.

Arithmetic and logic unit (ALU)

Activity 2.15: 

Group work: In groups of five, do the following:

1. Choose one of you to be the group leader. By consensus, select two lucky numbers 
for the group (any two numbers between 1 and 50). Assuming you select 9 and 
18. The group leader assigns each member at least one of the following tasks at 
the same time:

 Task A: 9 + 18 =
 Task B: 18 – 9 =
 Task C: 18 x 9 =

 Task D: 18 ÷ 9 =
2. Let each of you provide an answer to the group. Compare your answers.  What 

is the general name given to these operations?

The arithmetic and logic unit is the location within which all arithmetic and logical 
operations are carried out in the CPU. Basic arithmetic operations include; addition, 
subtraction, multiplication and division. 

Logic operations are based on the computer’s capacity to compare two or more 
values. For example, it may compare whether a piece of data is greater than or less 
than, equal to or not equal to etc.

In order for the ALU to be able to process data, it has special temporary storage 
locations called registers, which hold the data just before processing. Registers also 
hold the results after processing.
 



Computer Architecture  and Assembly

32

Activity 2.16

Activity 2.17

2.4.4  Computer memory

(a) Main/primary memory

Imagine yourself walking in a forest. You keep on seeing different types of trees as 
you proceed along. Halfway through the forest, you meet a forest guard who shakes 
your hand and asks you what you are doing in the forest. In groups of three, discuss 
the following:
(i) When you reach the edge of the forest, are you likely to remember all the trees you 

saw in the forest? Why?
(ii) Which tree are you likely to remember and why?

NB: Discuss this in reference to short term memory and long term memory in human 
beings. Present your views to the class.

Human beings have memory, both short term and long term, where they keep 
information. Daily unimportant information is usually kept in the short term memory 
then discarded after a while. Important information is usually stored in the long term 
memory. It can be remembered even after many years. Computer memory is modelled 
along the same lines.

In S1, you were introduced to computer memory.
In pairs, study the pictures in Figure 2.21. What do you think the acronym ROM 
stands for? What about RAM? 

(a)
(b)

Fig. 2.21: ROM and RAM chips

(a) Which one is temporary memory? Which one is permanent?
(b) Access the content provided by the teacher and research about the various types 

of ROM and RAM, their advantages and disadvantages. 
(c) Make a presentation in class as requested by the teacher.

Main memory also known as primary storage is a type of storage that is directly 
accessible by the processor. Computer memory can be classified into Read Only 
Memory (ROM) and Random Access Memory (RAM). Figures 2.9 (a) and (b) show 
a ROM chip and RAM module respectively.



Computer Architecture  and Assembly

33

Read Only Memory (ROM)
Read Only Memory is used to store programmed instructions and data permanently 
or semi-permanently. Data and instructions stored in ROM are those which remain 
unchanged for long periods of time e.g. POST instructions, special purpose 
computers, computerised fuel pumps instructions etc.
Depending on permanence of the instructions or data written on it, there are four 
Types of Read Only Memory namely:
(i) Mask Read Only Memory (MROM): Once the content is written on it by the 

manufacturer, it cannot be changed. Examples of computer that use MROM based 
operating systems are those that require long term sustainability e.g. computers 
that run network operating systems or server operating systems.

(ii) Programmable Read Only Memory (PROM): This allows the user to alter it only 
once after the content is written on it. Examples are the PROM compact disc and 
PROM intergrated circuit chips.

(iii) Erasable Programmable Read Only Memory (EPROM): This has a transparent 
quartz window through which its contents, can be erased by exposing it to ultra 
violet (UV) light, and then reprogrammed for another use.

(iv) Electrically Erasable Programmable Read Only Memory (EEPROM): This 
type of ROM can be erased and reprogrammed using electricity. An example of 
EEPROM is the memory that stores the basic input/output system (BIOS).

Characteristics of Read Only Memory (ROM) are:
1. One can only read its content but you cannot write on it unless it is a special type 

of ROM.
2. It is non-volatile i.e. its content is not lost when the computer is switched off.
3. Stores permanent or semipermanent instructions from the manufacturer called 

firmware. It can store semipermanent instructions because some variations of 
ROM chips can be programmed according to the user’s specification.

Random Access Memory (RAM)
Random access memory (RAM) also known as working storage is used to hold 
instructions and data needed by the currently running applications. The information 
in RAM is continually read, changed, and removed. It is referred to as random access 
because its content can be read directly regardless of the sequence in which it was stored. 
As opposed to ROM, the content in RAM is held temporarily and its content is lost 
once the computer is turned off. Therefore, before switching off the computer, it 
is important that one stores (saves) his/her work in a device that offers relatively 
permanent storage facility.
Characteristics of Random Access Memory (RAM) are:
1. Data can be read (retrieved) and written (stored) in it.
2. RAM is a temporary (volatile) storage because its content disappears when the 

computer is switched off.



Computer Architecture  and Assembly

34

Activity 2.18

3. Its content is user defined i.e. the user dictates what is to be contained in the RAM.
The two main types of RAM are:

Static RAM
Static RAM (SRAM) is a fast type of memory mostly located inside a microprocessor. 
For this reason, SRAM is used on special purpose memories such as cache memory. 
Cache memory is used to enhance the processing speed by holding data and 
instructions that are instantly required by the processor.

Dynamic RAM
Dynamic RAM (DRAM) is a relatively slower type of RAM compared to SRAM. 
The term dynamic refers to the tendency for the stored charge to leak away, even with 
constant power supply. For this reason, DRAM requires periodic recharging (refresh) 
to maintain its data storage. Fig. 2.22 shows ROM and RAM on the motherboard.

RAM modules

ROM chip

Fig. 2.22: ROM and RAM on motherboard

Special purpose memories
Some minute types of memories are included inside a microprocessor or input/output 
devices, in order to enhance its performance. These memories include buffers, registers 
and cache memory as discussed earlier.
Cache memory

Group work: 
In groups of five, take the mobile phone that has been provided by the teacher. Scroll 
through the following:
1. The Contacts lists.
2. The Recently called list.
Why do you think you need to have a recently called list? Discuss the importance of 
this list and present the finding to the class. 



Computer Architecture  and Assembly

35

Activity 2.20

Activity 2.19

Cache memory (pronounced as cash) is the fastest type of RAM. Its main aim is to 
store data that has been recently accessed by the processor. The belief is that the same 
data may most likely be required again soon. This would save the time of having 
to retrieve it from the slow secondary memory. This arrangement enhances overall 
computer performance by avoiding the slow secondary storage for recently used data. 
The only time data is retrieved from secondary storage is when no copy is in catche. 
There are three types of cache memory namely:
•  Level 1: also known as primary cache located inside the microprocessor;

•  Level 2: also known as external cache that may be inside the microprocessor or 
mounted on the motherboard, and

•  Level 3: is the latest type of cache that works with L2 cache to optimise system 
performance.

Buffers

Brainstorming: 
Study the picture of a dam provided by the teacher. Search for other pictures of dams 
on the internet. List down their names. 
As a class, brainstorm on the driving forces that motivate construction of dams along 
rivers?

Buffers are special memories that are found in input/output devices. Input data is 
held in the input buffer before being forwarded to the memory to avoid overloading 
the memory. The data can then be transferred to the memory at a reasonable pace to 
avoid flooding it.

Output buffers play a similar role when sending data to the network or output device. 
For example, printers have buffers where they can store massive documents sent by the 
CPU for printing hence freeing the CPU to perform other urgent tasks as the printer 
continues to print in the background. Buffers therefore play a controlling role between 
devices to avoid a quick device flooding a slow device with data or instructions. 

Registers

Pair Work: 
Most organisations have a waiting room where guests rest as they wait to see the 
company boss in turns.



Computer Architecture  and Assembly

36

Activity 2.21

Discuss why such an arrangement is important. What is likely to occur if there is no 
such arrangement for a busy office. 

As opposed to buffers, registers hold one piece of data at a time and are inside the 
CPU. Just like the secretary in Activity 2.16 who hosts and clears the next one person 
just before he/she sees the boss, registers hold that one data item just before or after 
processing within the CPU. 

Examples of registers are:
Accumulator: This temporarily holds the results of the last processing step of the ALU.

Instruction register: This temporarily holds an instruction just before it is interpreted 
into a form that CPU can understand.

Address register: This temporarily holds the next piece of data waiting to be processed.

Storage register: This temporarily holds a piece of data that is on its way to and from 
the CPU and the main memory.

(b)  Secondary memory

Research on the internet about secondary/tertiary memory. Is it temporary or 
permanent? Which devices are referred to as secondary/tertiary storage devices? 
Why are some of these devices referred to as mass storage devices?

Secondary storage, also referred to as auxiliary storage, are devices that provide 
alternative long-term storage for programs, data and information. Because of their 
large capacity they also referred to as mass storage devices. They are regarded as 
secondary because unlike primary storage, they are not directly accessible by the CPU. 

Secondary storage devices can be classified according to:
(a) Portability: removable and fixed
(b) Technology used to store and retrieve data: magnetic, optical, magneto-optical 

and solid state.

In this section, we discuss these devices by indicating whether a device or media is 
removable and the technology used to store data on it.

Removable storage
Removable storage media are those that are not housed inside the computer. Data is 
read and written into the media using a device known as drive. Examples of removable 



Computer Architecture  and Assembly

37

Activity 2.22

storage include optical disks (e.g. CD’s, VCD’s and DVD’s) and solid state devices 
(e.g. Flash disks). Others include the floppy diskettes, magnetic tapes and magnetic 
disks which have become virtually obsolete in the personal computing space.

Optical storage media

Study the pictures in Figure 2.23. Have you seen them before in real life? 
(a) State three areas where you have witnessed the disks being used.
(b) Using a ruler, measure the diameter of each and note down. Investigate on the 

internet about the diameters of such disks. 
(c) What advantages do you think they offer to the user?

Fig. 2.23:  Optical disks

Optical storage media are so called because data is written and read from them using 
a laser beam. A laser beam is a very strong concentrated light. Two reasons why 
optical storage media are used:
1. They store very large volumes of data.
2. Data stored in them is more stable and more permanent than the magnetic media.

Compact disks (CD)
Compact disks hold large quantities of data and information. One disk can hold as 
much as 700MB. They are mostly used to store data and information that requires a 
lot of space such as video clips, software, sounds etc. Currently compact disks are 
available in three forms namely:
Compact disk-read only memory (CD-ROM): Compact disk read only memory (CD-
ROM) as the name suggests contain data that can only be read but cannot be written 
on. To record data the recording surface is made into pits and lands (bumps). When 
a laser beam fall on the land,this is interpreted as 1, otherwise a zero is recorded.
Compact disk-recordable (CD-R): Compact disk recordable (CD-R) are coated with 
special dye which changes colour to represent data when burned using a laser beam. 
Once data is burned on a CD-R, it becomes read only.



Computer Architecture  and Assembly

38

Activity 2.23

NB: CD-ROMs and CD-Rs are referred to as Write Once Read Many (WORM.) Data 
is only recorded once but can be read as many times as possible.
Compact disk-rewritable (CD-RW): Unlike the CD-Rs, these types of compact disks 
allows the user to record, erase and rewrite new information just as one would with 
floppy disks.

Digital versatile disks
Digital Versatile Disk (DVD), also known as digital video disk resembles a compact 
disks in every aspect. The only difference is that they have a higher storage capacity 
over 17 Gigabytes of data. Figures 2.23 (seen earlier) shows various examples of 
optical disks.

Optical card

An optical card stores data and is read optically on a stripe rather than using magnetic 
ink. These types of cards are mostly used in banking and other business organisations 
to record customer details.
Figures 2.24 below shows examples of an MICR reader reading a cheque and an 
optical card in the optical card reader.

Fig. 2.24: Optical card readers  

Solid state storage media

Study the pictures in Figure 2.25. What do you think they represent? Also compare 
them with the samples provided by the teacher. Where in real life have you used 
or seen people using these components? What are the names of these components?

 (a)    (b)    (c)
Fig. 2.25: Solid state storage devices

Solid state storage is a non-volatile storage that makes use of integrated circuits 
rather than mechanical, magnetic or optical technology. They are referred to as solid 



Computer Architecture  and Assembly

39

state because they do not have movable parts. Some examples of solid state devices 
are memory sticks (Figure 2.13 (b) and (c)) and flash disk drives (Figure 2.13(a)).

Non-removable/fixed storage media
The hard disk and its structure

Activity 2.24
Access the website provided by the teacher and read about the hard disk of a computer. 
(a) Search for pictures of the hard disk on the internet in order to learn about its 

structure. 
(b) How does it store data? What are tracks, sectors and platters? 
(c) Make a brief presentation to the class concerning your findings.
The hard disk is a secondary storage device that stores data and programs installed in 
a computer for a long time (permanently) even after the computer has been switched 
off. The data includes any created documents and downloaded such as text, photos 
and music. When the computer requires to process data and instructions stored on the 
hard disk, the it has to be fetched first and placed in primary memory (RAM). When 
the data and instructions are in RAM, they can be easily fetched into the cache then 
the registers as directed by the control unit of the CPU.
Traditionally, the hard disk is mounted inside the computer. For this reason we refer 
to it as a fixed disk. However, this is not always the case because some hard disks 
are removable. 
The hard disk is made up of metallic disk platters together with a read/write head, 
housed in a protective metal case (Figure 2.26(a)). 

Casing

Read/write 
head

Disk platters 
forming a 
cylinder

Spindle

Sector

Track

(a) Inside hard disk drive                                         (b) Disk platter logical structure
Fig. 2.26: Structure of Hard disk



Computer Architecture  and Assembly

40

The one or more metallic platters, stacked on top of each other but not touching one 
another. The stack of platters is attached to a rotating pole called a spindle. If it has 
more than one platter, they are stacked on top of each other  to form a cylinder. A 
cylinder requires multiple read/write heads, one for each platter.
The read/write head floats just above the surface of the rapidly rotating disk to read or 
write data. On the surface of each disk are special read/write circular regions called 
tracks (Figure 2.26 (b)). Each track is divided into angular sections called sectors 
similar to the sector of a circle. 
Most computer hard disks are connected to the motherboard via channel called 
controllers. Some of these controllers are Integrated Drive electronic (IDE), enhanced 
IDE or AT attachment (ATA).

Disk drives 

A disk drive is hardware device in or attached to a computer that reads the data stored 
on a disk and writes data onto the disk for storage. Drives are mounted in drive bays 
in the system unit chassis. Examples of disk drivers inside the systems unit include 
optical (CD/DVD) drives, hard disk drives and tape drives. Figure 2.27(a) shows an 
illustration of hard disk drive mounted in the system unit while Fig 2.27(b)  shows 
a CD/DVD drive on a Laptop. 

         
(a) Hard disk drive                                 (b) DVD/CD drive on a laptop

Fig.2.27: Examples of disk drives

2.4.5  Adapter card
Adapter card or add-on card is a circuit board used to increase functionality of a 
computer e.g. adding a TV receiver, and wireless network etc. Fig. 2.28 shows a 
wireless network card. It enables the computer to connect to a Wi-Fi hotspot.  

Fig.2.28: Wireless network card



Computer Architecture  and Assembly

41

2.4.6  Elements attached to the motherboard
As mentioned earlier, some of the basic elements attached to the motherboard include 
CPU Socket, RAM slots, silicon chips, BIOS, expansion slots, CMOS battery, and 
controllers and electronic data buses.
• CPU Socket: The CPU or processor socket is the connector that houses the CPU 

to establish mechanical and electrical contact between the processor and the 
motherboard. Some sockets uses Pin Grid Array (PGA) that consists of holes 
where pins on the underside of the processor connects

• RAM slots: The RAM slots or sockets located near the processor are connectors 
that establish contact between memory modules and the motherboard. Depending 
on the type of motherboard, there may be 2-4 RAM slots (banks) that determine 
the amount of memory that can be installed.

• Chipset: Normally a chipset is an element that facilitates intercommunication 
between the microprocessor to the rest of the components on the motherboard. 

• Expansion slot: Alternatively referred to as bus slot or port is a connection on 
the motherboard to which an expansion card can be plugged in order to expand 
the capability of a computer.   

• CMOS battery: Complementary metal-oxide semiconductor (CMOS) is a small 
amount of memory on a computer motherboard used to store BIOS settings. To 
avoid losing the settings, CMOS is powered by a button-like cell referred to as 
CMOS battery.   

• Data buses: if you carefully observe the surface of a motherboard, you will see 
printed electronic pathways or lines between components. These pathways are 
referred to as data buses because they are used to transfer data and instructions 
between components inside the computer.

Assessment Exercise 2.1
1. Distinguish between the following:

(a) AC and DC power supply.
(b) Bluetooth and infrared connectivity.
(c) Firewire and USB ports.
(d) 5-pin DIN and PS/2 ports.

2. Explain three types of serial ports available on a typical desktop computer.
3. State two advantages of USB port over the parallel port.
4. Explain how you would connect both data projector and monitor to a single computer.

2.5  Assembling desktop computers 
With the knowledge and skill in handling internal and external components of a 
desktop computer, it’s now time to roll-up your sleeves to assemble and  disassemble 
a computer.  However, before you proceed, remember to observe safety precautions in 
order to avoid health injuries or damages to delicate computer components. Let’s start 
by having a look at tools that you may need to assemble or dis-assemble a computer. 



Computer Architecture  and Assembly

42

Activity 2.25: Assembling a computer
Looking at a toolkit in the computer lab or illustration shown in Fig. 2.29 identify 
the following tools:
1. Extended extractor: also called a part grabber are, used for retrieving dropped 

objects, such as jumpers or screws, from inside the computer.
2. Antistatic wrist member.
3. Torx screw drivers of varying sizes. 
4. Multimeters used to measure the resistance, voltage, and/or current within 

computer components.

1

4

2
3

Fig.2.29: Computer repair kit

2.5.1  Step 1: Mounting Hard disk drives 
Hard disk drives are usually mounted on the system unit case  and connected to the 
motherboard through either Enhanced Integrated Drive Electronics (EIDE), Small 
Computer System Interface (SCSI) or Serial Advanced Technology Attachment 
(SATA) cable interface. SATA is one of the latest technologies. It supports hot-
swapping i.e.  a drive can be detached or attached to the motherboard while the 
computer is ON. Fig. 2.30  illustrates how to mount a SATA hard disk drive. 

Fig. 2.30: Mounting a hard disk



Computer Architecture  and Assembly

43

Activity 2.26: Mounting a Hard Disk 
In groups or individually, follow the guidelines below to mount a hard disk drive:
1. Determine whether the motherboard has an empty SATA controller socket. 
2. Slide the hard drive into the  available bay on the system unit casing and secure it 

firmly by screwing or using the restraining mechanism provided by the manufacturer.
3. Plug in the SATA interface cable to the drive and to motherboard SATA/IDE 

controller.
4. Connect the  power cable from the power supply unit to the back of the hard 

drive as shown in Fig. 2.30.

2.5.2  Step 2: Installing optical drives 
Optical drives such as CD and DVD drives are attached and detached from the sytem 
unit in the same way as hard disk drives. 

Activity 2.27: Installing optical drives 
In groups or individually, follow the guidelines below to mount an optical drive:
1. Determine whether the motherboard has an empty SATA or EIDE controller socket. 
2. Slide the optical drive into available bay on the system unit casing and secure 

it firmly by screwing or using the restraining mechanism provided by the 
manufacturer.

3. Plug in the SATA or EIDE interface cable to the back of the drive and motherboard 
controller.

4. Connect a power cable from the power supply unit to the back of the optical drive 
similar to procedure used to insert power at the back of hard disk drive.

2.5.3  Step 3: Mounting power supply unit
To replace a damaged Power Supply Unit proceed as follows:
1. Turn off the power and remove the power cable from the socket, and then unscrew 

the faulty power supply unit.
2. Unplug power cables connected from the power supply unit to internal drives 

and P1 on the motherboard, and then remove the faulty unit.
3. Insert a new power supply unit and fasten the screws that hold the power supply 

onto the chassis. Connect P1 from the power supply unit to the motherboard. 
5. Connect power supply cables from the unit to other internal components such as 

disk drives. 

2.5.4  Step 4: Mounting motherboard
There are several types of motherboards ranging from the outdated Advanced 
Technology (AT) and Advanced Technology Extended (ATX) to the current.  
Fig. 2.31 shows an illustration on how to mount a motherboard.



Computer Architecture  and Assembly

44

motherboard

system casing unit

Fig.2.31: Mounting a motherboard

Activity 2.28: Mounting a motherboard
In groups of two or three, demonstrate how to mount a motherboard using the 
following guidelines:

• Line it up properly on the chassis, screw and fit it into place.
• Mount the processor, RAM modules and any expansion cards separately. 
• Plug in the power cable denoted with P1 connector from the power supply 

unit. 
• Connect other internal components onto the board,  and then connect the 

monitor, keyboard and mouse to the system unit.
• Test for power and ensure that internal and external components are initializing 

correctly during POST.

2.5.5  Step 5: Installing computer memory
Fig. 2.32 shows how to install a RAM module. Open the clips, align the module with 
the slot then press into position until the clips hold tight.

RAM module

Memory slot/bank

Fig.2.32: Installing RAM modules



Computer Architecture  and Assembly

45

Activity 2.29: Installing a computer memory
Before you attach or detach a memory (RAM) module, you need to make some 
considerations. In class, discuss such considerations e.g. motherboard architecture, 
number of memory banks available, type and speed of the processor, and maximum 
memory capacity.
Through the guidance of the teacher, install a RAM module using the following 
guidelines:
1. Discharge any static charges before touching the module.
2. Place the module upright in the slot so that the notches on the module are lined 

up with the tabs on the memory slot.
3. Gently press down on the module. The retention clips on the side should be raised 

to the locked position. You might need to guide them into place with your fingers.

NB: Once mounted, the new memory module is automatically detected during bootup 
and its capacity calculated. However, if not properly inserted, the computer makes 
a continuous beeping sound.

2.5.6  Step 6: Replacing CMOS battery 
Computers have a Complementary Metal-Oxide Semiconductor (CMOS) battery that 
powers the BIOS chipset to ensure basic settings such as date and time are up-to-date. 

Activity 2.30: CMOS Battery Replacement
Study the motherboard and perform the following tasks:
1. Identify the CMOS cell battery mounted on the motherboard as shown in  

Fig. 2.33.

CMOS battery

Fig.2.33: Replacing CMOS battery
2. Through the guidance of the teacher, detach and re-attach  a CMOS battery using 

the following guidelines:
• Turn off the computer and remove the cover, ensuring that you carry out proper 

procedures.
• Locate the CMOS battery clipped on the motherboard.
• Detach the battery out of the retaining clip. The clip uses slight tension to hold 

the battery in place, so there is no need to remove the clip or bend it outward.



Computer Architecture  and Assembly

46

• Install the new battery so that the bottom is in contact with the motherboard.
• Restart the computer and press the key or combination of keys to enter BIOS 

setup.
• To restore the settings, use the BIOS setup menu. Alternatively, use automatic 

configuration options. 

2.5.7  Step 7: Upgrading BIOS 
Basic Input Output System (BIOS) is a firmware that stores Power On-Self Test 
instructions that are required to boot-up a computer. BIOS can be upgraded to support 
new devices in the market. The old one is  flashed a new one installed  from a suitable 
BIO manufacturer such as Phoenix. 

Activity 2.31: BIOS upgrade
Follow the teachers guidance to update and upgrade BIOS ROM:
1. Identify the manufacturer of the BIOS chip.
2. Back up the CMOS Settings and restart the computer using a combination of 

CTRL + ALT + DELETE keys.
3. Enter the CMOS settings program using the specified key or combination of keys,  

and then write down the settings. 
4. Backup the old BIOS in case the upgrade results to system failure.
5. Insert the manufacturer’s BIOS utility disk. The disk contains a program that 

automatically flashes the BIOS. 
6. Restart the computer. If successfully done, the BIOS retains the new firmware.

2.5.8  Step 8: Mounting adapter card
There are several types of adapter cards. These include Industry Standard Architecture 
(ISA), Extended ISA (EISA),  Peripheral Component Interconnect (PCI), Accelerated 
Graphics Ports (AGP), Video Electronics Standards Association (VESA), Audio 
Modem Riser (AMR) and Communication Network Riser (CNR). 

Activity 2.32: Adapter Card
1. Using reliable internet sites or reference materials, discuss the architecture of 

each type of the adapter cards highlighted above.
2. Study the adapter card shown in Fig. 2.34 and describe its function.

Fig.2.34: Adapter card



Computer Architecture  and Assembly

47

3. Through the guidance of the teacher, mount an adapter card using the following 
guidelines:
(a)  Turn the computer off and ensure that you carry out proper ESD procedures.
(b)  Position the controller card upright over the appropriate expansion slot.
(c)  Place your thumbs along the top edge of the card and push straight down. 
(d)  Secure the card to the chassis using the existing screw holes.

2.5.9  Step 9: Mounting a microprocessor
Like other computer components that become obsolete with time, you may find it more 
cost-effective to upgrade the processor than buying a new computer. Before purchasing 
or installing a new processor, make sure it is compatible with the motherboard. For 
example, you cannot install an AMD processor in an Intel motherboard and again  
not all processors from the same manufacturer uses the same socket. 

Activity 2.33: Installing a Microprocessor
In groups or individually, mount a microprocessor onto a motherboard using the   
following guidelines:
1. Ensure that the lever is raised up perpendicularly. 
2. Gently place the processor in the socket but do not push, as shown in Fig. 2.35. 
3. Lower the lever to grip the CPU into place.
4. Connect the processor fan to the motherboard.

microprocessor chip

Fig. 2.35: Installing a microprocessor

2.6  Replacing a laptop battery
No matter how well you treat your laptop’s battery, it will eventually degrade and 
die. When the battery weakens, Microsoft Windows gives warning like “consider 
replacing your battery” or adding a red X on the battery icon. This is the time to 
replace the battery to avoid disappointments!



Computer Architecture  and Assembly

48

Activity 2.34: Laptop Battery Replacement

In groups or individually, remove and replace a worn-out laptop battery using the  
following guidelines:
1. Press the battery release button or unscrew the cover.
2. Remove the battery compartment’s cover.
3. Slide the wornout battery out, and then insert the new one.

2.7  Upgrading laptop memory
Like in desktop computers, it is possible to upgrade or replace a  RAM module of 
a notebook PC. Unlike the desktop PC RAM module, notebook PC RAM module 
such as Small Outline DIMM (SoDIMM) are small in size. 

Activity 2.35: laptop memory Upgrade

To upgrade laptop memory proceed as follows:
1. Open the computer’s case  or memory compartment cover.
2. Insert the RAM module into an available slot at an inclined angle as shown in 

Figure 2.36.

Fig. 2.36: Replacing laptop memory

2.8  Disassembling desktop computer
Disassembling a computer mean detaching external and internal components from 
the system unit. This process involves unplugging, unscrewing and sliding out 
components depending on mechanism used to connect to the system unit or mount 
it onto motherboard. To disassemble a desktop computer, proceed as follows:
1. Disconnect the computer from the source of power by unplugging the power 

cable from power supply unit.  
2. Unplug peripheral devices attached to the system unit such as monitor, keyboard, 

mouse and printer.



Computer Architecture  and Assembly

49

3. Open the outer cover on the system unit by unscrewing or sliding it out. Some 
desktop computers have large knobs you can remove by hand to open the system 
unit cover. 

4. Remove the adapter cards by first unscrewing it on the cases, and then gently 
unplug it off the motherboard as shown in Fig. 2.37.

Fig. 2.37: Adapter card
5. Remove the fixed drives such as hard disk and optical (CD/DVD) drives by 

unscrewing and disconnecting them from power supply unit. Next, disconnect 
the IDE or SATA interface cable that connects the drive to  the motherboard. 

6. Remove memory (RAM) modules by pressing the tabs located on both ends 
down away from the memory slot. The module will lift slightly. Carefully hold 
the module by the edges and to remove it from the motherboard. 

7. Remove the power supply unit starting with power connector to motherboard, 
CPU fan cabinet fan, power buttons and drives if any. Next, unscrew the unit to 
unmount it from the system casing  

8. Remove the CPU and its fan by first unscrewing the cooler fan from the 
motherboard. You unlock the processor from the socket by lifting the level as 
shown in Fig. 2.38. 

Fig. 2.38: Unlocking the processor
9. Finally, unscrew the motherboard to unplug it from the system unit casing. This 

leaves you with an empty shell of the casing.



Computer Architecture  and Assembly

50

Assessment Exercise 2.2
1. Differentiate between the following:

(a)  EIDE and SATA hard disk drive.
(b)  Baby AT and ATX motherboard.
(c)  PGA and SECC processors.
(d)  AMR and CNR expansion cards.

2. Explain why it is important to use the right tool for the right purpose when 
repairing, upgrading or assembling a desktop PC.

3. List some of the common tools available in a computer maintenance  toolkit.
4. Explain five types of expansion cards used on desktop computers.
5. Outline the procedures you would follow to install the following: 

(a)  PGA2 processor.
(b)  DDR2 RAM module.
(c)  CNR modem add-on card.

6. You have just installed a new power supply, but the computer doesn’t seem to be 
getting any power. What might be the problem?

7. You want to upgrade your BIOS by “flashing” it. Outline the procedure you 
should follow.

8. Explain how you would perform the following operations:
(a)  Replace a faulty notebook PC battery.
(b)  Upgrade laptop memory.
(c)  Add a PC card.

Activity 2.36: Assembling a desktop computer
University of Rwanda College of Science and Technology (URCST) has started a 
project aimed at assembling state of art desktop computers. As a member of the team, 
you are required to identify the components required to assemble a desktop computer.
1. Demonstrate step by step how to assemble a PC starting with the   

following internal components:
• Motherboard
• Processor
• RAM
• Harddisk drives 

2. Assuming you are using a single EIDE controller to mount two CD-ROM/DVD 
drives, explain how you would configure the two drives. 

3. One of the clients makes a call informing you that one of the computers she bought 
consistently loses its date/time settings. Outline the procedure you would follow 
to solve the problem.



Computer Architecture  and Assembly

51

2.9  Cleaning and disposal of computer components
Regular cleaning and proper disposal of computer components is a proactive 
environmental and social practice that helps in mitigating health and environmental 
problems. 

2.9.1  Cleaning using liquids 
Before using a liquid cleaner, make sure that the computer or device is off and 
completely dry. Before cleaning a computer, take note of loose components or 
connections and tighten them up. 

Activity 2.37: Cleaning computer devices
1. Highlight three benefits of cleaning a computer and peripheral devices regularly.
2. Using mild, soapy water and lint-free cloth, wipe off dusty components such as 

keyboard, mouse, system unit and monitor.  For devices that are damaged by water,  
make use of chemical or alcohol solvents. Note that some chemical solvents may be 
hazardous to humans and the environment hence they should be handled with care.

2.9.2 Blowing dust and debris
Dust can cause electrostatic discharge leading to overheating of components  inside 
the computer while debris may affect the mechanical parts. To remove debris, a blower 
shown in Fig. 2.39 uses compressed air to remove such debris dust in system unit, 
keyboard, expansion slots and ports.  

Fig. 2.39: Blower

Activity 2.38: Blowing Dust and Debris
1. To remove dust and debris in the system unit, use a blower or hand-held vacuum 

cleaner. 
2. Using a hand-held vacuum cleaner, carefully clean inside the computer making 

sure you do not damage delicate components.

2.9.3: Replacing printer cartridges 
Although there are various types of printers and associated models, we follow the 
same basic steps to replace ink or toner cartridges. In this section, we outline general 
procedure for replacing ink or toner cartridge regardless of printer type and model.



Computer Architecture  and Assembly

52

1. Turn on your printer and open the lid/flap that encloses the cartridges and then 
remove the cartridge or cartridges you want to replace as shown in Fig. 2.40.

Fig. 2.40: Removing cartridge
2. Take note of the cartridge model number and type. This is the number that you 

use to purchase new cartridge.  If you are unsure of the number, take the cartridge 
as sample to a vendor for help.

3. Once you purchase a new cartridge, remove the protective sticker covers, strap 
and sticker before installing the cartridge such as shown in Fig. 2.41.

Fig. 2.41: Removing packaging on cartridge 
4. Gently insert the cartridge into the printer. Note that most cartridges easily lock 

into place with a little pressure.
5. Once you install the cartridge(s), connect the printer to the computer, and print a 

test page to make sure that the cartridges have been installed correctly. You may 
be required to reconfigure printer heads for best quality. 

Activity 2.39: Safety Precautions
1. In the class, discuss how the government clean-up activities  in Rwanda has helped 

in dealing with disposal of computer parts, cartridges and plastic bags that come 
with some computer components. 

2. Explain health and environment dangers that may occur due to improper disposal 
of laptop or mobile phone batteries containing lithium, mercury, or nickel-
cadmium.  



Computer Architecture  and Assembly

53

Assessment Exercise 2.3
1. A customer is complaining that the power in the office sometimes surges, some 

times causes blackouts and has EMI. What single device should you recommend 
to help the most in this situation?

2. A printer in the college office has recently started experiencing paper jams. They 
seem to be occurring quite frequently. Explain the probable causes.

3. A printer is producing garbled printouts with characters that don’t make any sense. 
Identify the likely cause.

4. State two components that are most likely to be replaced in a laser printer
5. Explain why it is important to regularly blow out dust from a computer. 
6. State the cleaning solution to CD/DVD drive, keyboard and monitor

Unit Test 2
1. Write the following abbreviations in full as used in computer systems: 

(a) USB  (b) SCSI  (c) IDE
2. Explain the following features:

(a) PGA2 socket  (b) Local buses
(c) Cache memory  (d) Memory banks

3. Explain four types of ports available on a computer giving one example of a 
device connected to each.

4. Differentiate between CRT and LCD monitors giving two advantages of each. 
5. A customer is planning to buy a computer and has approached you for advice. 

The customer wants to use the computer for digital video editing. Explain six 
hardware requirements the customer should consider. 

6. You have decided to upgrade the processor and memory capacity of a computer 
from duo core 1.7 GHz with 256 MB of RAM to i7 processor and 4GB of RAM.  
Outline the steps you would follow.

7. Outline the  procedure you would follow to replace a power supply unit.                    
8. Your computer has three hard drives installed; two on the primary controller and 

one on the secondary controller. You are planning to install a fourth drive without 
changing the designations of the existing drives. Outline the procedure you would 
follow to install and configure two IDE drives such as a hard disk and a CD drive 
on a single Hard Disk Controller.

9. A customer has complained about a problem in playing audio music though the 
media player shows that the music is playing. Describe the steps you would follow 
to troubleshoot the problem.

10. Explain the importance of preventive maintenance, highlighting some routine 
maintenance practices that need to be carried out in a computer laboratory. 



Safe and Ethical use of Computers

54

Key Unit Competency
By the end of the unit, you should be able to integrate safety guideline, ergonomics 
and ethical issues in computer use to have a good working environment.

Unit Outline
•	  General safety guidelines
•	 Ethical issues

Introduction
Although computers are useful tools, they can be harmful to health and environment. 
Furthermore, some computer components are delicate hence need to be handled with 
care. In this unit, we discuss safety precautions and ethical use of computers in order 
to protect the environment, computers and users from harm.

3.1  General Safety Guidelines
To achieve productivity and healthy work or learning environment, most organizations 
put in place safety precaution guidelines to be observed when using mechanical or 
electronic devices. In this section, we discuss some of general safety guidelines that 
relate to safe use and care of computers and computer accessories. As a guide to ’best 
practice’,	the	guidelines	and	procedure	discussed	reflects	identification	precaution	
against	 common	 health	 problems,	 fire	 outbreaks,	 physical	 damage,	 climatic	 and	
environmental pollution.

3.1.1  Common health problems

Prolonged use of computers and electronic devices may expose users to health risks 
such as Repetitive Strain Injuries (RSI), eye strain, headache, dizziness and electric 
shock. Below is a brief description of common health conditions arising from use of 
computers and electronic devices:
• Repetitive strain injuries results from wrist, hand, muscle,  tendonitis and neck 

strains due to repetitive tasks such as typing. 
• Persistent use or poor display of a computer monitor may cause computer vision 

syndrome whose symptoms include eyestrain, headaches and double vision.

SAFE AND ETHICAL USE OF 
COMPUTERSUnit 3



Safe and Ethical use of Computers

55

• Dizziness is a condition caused by lack of enough oxygen due to overcrowding 
or poor ventilation of a computer lab.

• Electric shock may be caused by touching live uninsulated power cables. To 
protect users against electric shock, power cables and power sockets should be 
well insulated.

Activity 3.1: Safe Use of Computers

1. In groups, identify five factors that need to be considered in order to minimize 
health risks such as RSI and eye strain.

2. Electric power cables or surface of unearthed electronic equipment may expose  
users to health risk. Identify such health risks.

3. Explain why it is not advisable to take food substances and drinks in the computer 
lab.

4. In class, discuss effects of electromagnetic and radiowaves emitted by electronic 
devices such as monitors and mobile phones. How can the effects be minimized?

3.1.2  Ergonomic furniture and equipment
The term ergonomic refers to applied science of equipment design with the purpose 
of optimising productivity while minimizing discomfort and fatigue. Good organic 
furniture and equipment helps in preventing health related risks such as arthritis, 
backache and fatigue. For example, a chair should be adjustable or movable to 
minimize fatigue experienced when using a computer. 
Fig. 3.1 shows a sample of a table and adjustable chair that may be used in an office 
for computer laboratory. Notice that the chair has an upright backrest and high enough 
to allow user’s line of sight to be at the same level with top of the monitor.  

Fig 3.1: Ergonomic furniture and equipment



Safe and Ethical use of Computers

56

3.1.3 Correct sitting position
The correct sitting position is the posture in which you hold your sit or use ergonomic 
furniture to keep the bones and joints in the correct alignment. This helps in decreasing 
abnormal wearing of joint surfaces as well as reduce stress, backache, eye strain and 
fatigue. Good sitting position requires a table to be of the right height relative to 
the chair to provide comfortable hand positioning as shown in Figure 3.2. The seat 
should have an upright backrest and should be high enough to allow the eyes of the 
user to be level with the top of the screen.

Feet	flat	on 
the	floor

Keep shoulders relaxed

Elbows about 90°

Hip angle 90° 
or slightly more

Adjust chair to 
support lower back

Thighs parallel 
to	floor

(a) Correct sitting posture for desktop computer (b) Correct sitting posture for laptop

Keep wrists 
straight when 
typing

Source 
document at 
same height 
and distance as 
screen

Top of screen at or 
slightly below eye level

Comfortable 
viewing distance 
40 cm to 70 cm 40 cm-70 cm

Keyboard about 
elbow height

Fig 3.2: Correct sitting position

3.1.4 Fire Safety Guidelines
To	protect	computers	and	electronic	equipment	from	accidental	fire,	there	is	need	
for	schools	to	enforce	fire	safety	guidelines.	Fire	safety	guidelines	should	emphasize	
among other measures on where, how and when to use	 smoke	detectors	 and	fire	
extinguishers. 

3.1.1.1 Smoke detectors
A smoke detector shown in Fig. 3.3(a) is a device used to detect smoke as an indicator 
of	fire	outbreak.	Once	a	smoke	detector	senses	smoke,	it	may	trigger	a	fire	alarm	
systems or produce audible and visual signal.  

3.1.1.2 Fire extinguishers
A	fire	extinguisher	(Fig.	3.3(b))	is	a	fire	protection	device	used	extinguish	or	control	
fire	 on	 solids,	flammables	 and	 electrical	 devices.	The	 four	 common	 types	 of	fire	
extinguishers	are	water	fire	extinguishers,	 foam	fire	extinguisher,	dry	powder	fire	
extinguishers	and	carbon	dioxide	(CO2)	fire	extinguishers.	Although	the	water-based	
fire	extinguishers	are	the	cheapest	and	most	common,	it	is	advisable	to	install	carbon	
dioxide	(CO2)	fire	extinguishers	in	a	computer	laboratory.	This	is	because	water	may	



Safe and Ethical use of Computers

57

cause corrosion of metallic components while dry powder may increase friction and 
wear of mechanical parts.

(a) Smoke detector (b) Fire extinguisher

Fig 3.3: Fire safety devices

Activity 3.2: Fire Safety Guidelines
Visit various rooms in the school compound to identify whether the fire extinguishers 
have been installed. If installed:  
• What is the content of the extinguisher - liquid or non-liquid?
• Write down instructions provided on how use one of the extinguishers.
• Explain why liquid-based fire extinguishers are not recommended for use in a 

computer lab.

3.1.3  Physical Damage
Computers and electronic devices should be protected from physical  damage that  
may emanate from poor handling, electrostatic discharge (ESD) and unstable power 
supply. 

3.1.5.1  Electrostatic Discharge
While opening a door with a metallic door when walking on a carpet, you may 
have experienced some form of electric shock. Such an experience is referred to 
as electrostatic discharge.	 Electrostatic	 discharge	 (ESD)	 refers	 to	 flow	of	 static	
electricity when two triboelectric objects come into contact. Triboelectric objects 
are those that develop an electric charge when they rub against each other due to 
friction. ESD that is caused by build-up of electrostatic charges on your body! 
Fig. 3.4 shows an illustration of a symbol used to mark devices that are ESD sensitive. 



Safe and Ethical use of Computers

58

Fig 3.4: ESD warning symbol

Activity 3.3: Electrostatic Discharge
1. In reference to physics or electronics, explain the principle behind static electricity 

and electrostatic discharge. Identify common examples of triboelectric objects.
2. In groups, conduct practical experiments to demonstrate how static electricity 

builds up on our dielectric materials. How do you measure electrostatic voltage?
3. Discuss some of the risks posed by electrostatic discharges and  how to prevent 

such risks from damaging electronic components.

3.1.6  Power devices
Computers and electronic devices require stable and correctly rated electric power. 
To protect the computer from damage that may be caused by irregular power supply, 
two commonly used devices are surge suppressors and Uninterruptible Power Supply 
(UPS). A surge suppressor also known as surge protector such as the one shown in Fig 
3.5(a) is a device used to limit voltage supplied to electrical appliances. For example 
if the input voltage is more than 240 volts, the surge suppressor steps it down to a 
maximum of 240 volts hence protecting devices from electrical damage.

An uninterruptible power supply UPS such as shown in Fig. 3.5(b) is device that 
provides emergency power backup in case the main power source fails. 

(b) Uninterruptible power supply (UPS)(a) Surge suppressor

Fig 3.5: Power protection devices



Safe and Ethical use of Computers

59

Activity 3.4: Power Protection Devices
1. In the computer lab or school compound, demonstrate how a standard UPS can 

be connected to a computer.
2. Research from internet how UPS regulates power supply to computers in case of 

power surge, brownout or blackout. 
3. Assuming the school intends to purchase several UPS units to setup in a new 

computer lab of forty computers. Advise the management factors to consider 
before  purchasing the UPS.

3.1.7  Climatic Change 
Climatic change may affect computers and electronic equipment in a number of ways. 
For example, high temperatures affect functioning of semiconductor chips, while with 
high humidity causes corrosion of metallic components. To protect computers from 
damage during dry weather, dust covers and spread air conditioners should be used.

3.1.8  Protecting Environment from contamination
Poor disposal of e-waste such as computer parts, CRT and LCD monitors, batteries, 
toner cartridges, plastic bags, chemical solvents, and printers such as the one shown in 
Fig.3.6 poses great environment risk. For example, long-term exposure to chemicals 
and components containing lead, candium, chromium, and mercury damages the 
nervous system, kidneys, bones, and endocrine system. Therefore, disposal of such 
e-wastes is not advisable and therefore should be regulated by establishing policy 
guidelines to avoid health risks and environmental pollution.  

Fig 3.6: e-waste disposal



Safe and Ethical use of Computers

60

Activity 3.5: Computers and Environmental Protection
1. Define the term e-waste and discuss in class why it is important for Rwanda 

government to enforce e-waste disposal legislation and policy guidelines.
2. Disposable computers and electronic equipment may contain valuable components 

precious metals, glass and plastics which if recovered could provide business 
opportunities. Demonstrate your innovation and entrepreneurship skills by 
forming mock-up business entities that converts e-waste into commercial products.

3.2  Ethical issues
The term ethics refers to a set of moral principles that govern the behaviour of an 
individual or society. In this regard, computer ethic refers to a set of moral principles 
that regulate use of computers. In this era termed as information age, lack of laws 
and standards on use of connected devices such as computers and mobile phone has 
raised numerous ethical concerns. The following are ethical issues that should be 
addressed at individual, social, and political level:
•	 Flaming: Flaming refers to messages that contain offensive, obscene or immoral 

words spread via social media applications such as WhatsApp and Facebook.
•	 Forgery: Availability of computers and high resolution imaging devices has 

made it possible for criminals to forge certificates, money and identity cards.
•	 Piracy: Piracy is a form of theft on intellectual property on copyrighted software 

products without proper authorization. To avoid violation of copyright laws, you 
need to understand various software licenses. These are commercial (propriety), 
freeware, shareware and open source discussed in the next unit under software 
installations.

•	 Terrorism: High penetration of internet and mobile phones has exposed most 
countries to evil plans of terrorists across the globe. 

•	 Pornography: Availability of pornographic material in form of pictures and video 
has affected moral values of young children leading to immoral behaviour such 
as homosexuality and pre-marital sex.

•	 Fraud: Computers and mobile phones are being used to steal other people’s 
account details or money through fraudulent means such as fake websites and 
SMS messages. 

•	 Corruption: Corruption has become social evil in private and public institution 
because it is seen as the easiest means to gaining social, economic or political 
favours. In some countries, mobile and internet-based money transfer has opened 
doors to corrupt behaviour that goes unnoticed by law enforcement agents.



Safe and Ethical use of Computers

61

Activity 3.6: Ethical Issues
1. In	goups,	brainstorm	on	how	technology	use	has	influenced	our	morals	in	terms	

of communication, privacy and intellectual property rights.
2. In open class discussion, brainstorm on ethical challenges arising from the use 

of computers and mobile devices.
3. On	the	internet,	search	for	the	ten	commandments	of	computer	ethics	proposed	

by Computer Ethics Institute.
4. In group discussions, identify open source or proprietary software installed in the 

computers indicating the intellectual property or copyright owner.  

Unit Test 3
1. Identify two alternative sources of backup power in case of blackout or brownout 

of main electricity. 
2. Explain why it is important to avoid overcrowding in a computer lab.
3.	 Outline	the	procedure	you	would	follow	to	put	out	fire	in	a	computer	lab	that	

may have been caused by electrical fault.
4. Explain why it is not advisable to eat or drink in a computer lab.     
5. State two reasons that make use powder-based fire extinguishers in a computer 

lab unsuitable.
6. Differentiate between UPS and surge suppressors in terms of functionality. 
7. Identify some of the causes of health risks such as computer vision syndrome, 

back pain and failure of endocrine system.
8. Discuss the concept of ergonomics in terms of keyboard layout, office furniture, 

and adjustable computer displays.
9.	 Outline	policy	guidelines	that	regulate	acquisition		and	disposal	of	ICT	equipment	

outlined in Rwanda’s e-waste disposal policy. 
10. In reference to computer software, explain three types of end-user licenses giving 

an example of each.



Computer Software Installation

62

Key Unit Competency
By the end of the unit, you should be able to:
•	 Install Operating System and Other Application Software.
•	 Use disk management tools.

Unit Outline
•	 Types	of	computer	software.	 	 •	 Installing	operating	system.
•	 Software	license.	 	 •	 Installing	device	drivers.
•	 Software	installation	fundamentals.	 •	 Installing	application	software.
•	 Disk	management.	 	

Introduction
Having learnt about various computer hardware devices and software, it is important to 
have some basic skills on how to install computer software and manage the hardware 
and	software	resources.	In	this	unit,	we	discuss	various	types	of	software	classified	
according to purpose and acquisition. Later, we demonstrate how to install operating 
systems such as Microsoft Windows 10, device drivers and application programs.

4.1  Classification of computer Software

Generally, there are several ways of classifying computer software. In this book, 
we shall discuss two ways of classifying software i.e. according to purpose and 
acquisition.

Activity 4.1: Classification of Computer Software
1. Research as an individual from the internet and books on:

(a)		The	classification	of	computer	software.
(b)  Purpose of each category of software.

2. Present your findings in your  group discussion. 

4.1.1  Classification according to purpose
Computer software may be designed to manage hardware resources or to help the 
user	accomplish	specific	tasks.	In	this	regard,	computer	software	may	be	classified	
as system software or application software.

COMPUTER SOFTWARE 
INSTALLATIONUnit 4



Computer Software Installation

63

4.1.1.1  System software
System software performs a variety of fundamental operations that avails computer 
resources to the user. These functions include:
1. Booting the computer and making sure that all the hardware elements are working 

properly.
2. Performing operations such as retrieving, loading, executing and storing 

application programs.
3. Storing and retrieving files.
4. Performing a variety of system utility functions.
System software can further be subdivided into four sub-categories namely: 
1. Operating systems. 
2.  Firmware. 
3.  Utility software. 
4.  Networking software.

(a)  Operating systems
An operating system refers to a type of system that software manages the hardware 
and control execution of application programs installed on the computer. To avoid 
conflicts,	the	operating	system	coordinates	and	schedules	access	to	shared	resources	
such as CPU, primary memory, storage devices, input devices, and output devices. 
Common examples of operating systems used on computers and portable devices 
include Android, Microsoft Windows, Linux, and Apple Macintosh. Examples of 
common operating systems include Linux  and Macintosh (MacOS), and Microsoft 
Windows (e.g. 2000, XP, Vista, 7, 8, 10).  

(b)  Firmware
Firmware is software embedded in a computer hardware or a computer program 
in a read-only chip data that is stored on a hardware device’s read-only memory 
to provides instruction on how the device should operate. Unlike normal software, 
firmware cannot be changed or deleted by an end-user without the aid of special 
programs. For example, devices like microwaves, digital cameras, and scanners have 
firmware	used	to	control	their	basic	operations.		

(c)  Utility software
Utility software is a special program that performs commonly used services that make 
certain aspects of computing go on smoothly. Such services include sorting, copying, 
file	handling,	disk	management	etc.	The	two	basic	types	of	utility	software	are:
1. System-level utility: These helps the user to work with the operating system and 

its functions. For example, a utility software tells the user when he/she enters a 



Computer Software Installation

64

wrong command and gives suggestions how the error can be corrected. 
2. Application-level utility: These are utilities that make application programs run 

more  smoothly and efficiently. Such utility programs are commonly purchased 
separately or may be part of an operating system. 

(d)  Networking software
This type of software is mostly used to establish communication between two or more 
computers by connection them using a communication channel like cables to create 
a computer network. Networking software enables the exchange of data in a network 
as well as providing data security. Network software may come as independent 
software or integrated in an operating system. An example of networking software 
is novel netware. 

4.1.1.2  Application software

Application software, also known as application packages (apps) are  programs that 
are	designed	to	help	users	accomplish	specific	tasks.	Table	4.1	gives	examples	and	
uses of common apps. 

Software Examples
Word processors Microsoft Word, Lotus Word pro, Open 

Office,	Writer.
Spreadsheets Ms Excel, Lotus1-2-3.
Desktop publishing Microsoft Publisher, Adobe Indesign
Computer Aided Design Autocad.
Databases Ms Access, My SQL, Foxbase, Paradox.
Graphics software Coreldraw, Photoshop.

Table 4.1: Application software

4.1.2  Classification according to acquisition
Software	can	be	classified	according	to	acquisition	as	in-house	developed	or	vendor	
off-the-shelf software.

4.1.2.1  Bespoke software
Bespoke or tailor-made software is a program developed or customized for a 
specific	end-user	or	organization.	For	example,	a	bank	may	decide	to	manage	hire	
programmers to develop an application for managing user’s sms-based access 
to banking information and services  via mobile  phones. Once developed, such 
application cannot be sold or transferred to another organization or end-user. 

4.1.2.2  Off-the-shelf software
Vendor off-the-shelf software are applications that are developed and packaged for sale 
or distribution via software vendors. Due to competition, most software developers 



Computer Software Installation

65

bundles more than oneapplication into integrated  suite of programs such as Microsoft-
Office	2013,	Adobe	Master	Collection	and	Corel	Suite.	This	the	reason	why	the	word	
package is sometimes used to refer to software product that are packaged and made 
available for paid-up download or purchase from software vendors. 

Activity 4.2: Classification of Software
1. Discuss with your classmate the various ways a user (individuals and organisations) 

can acquire software for their use.
2.  Identify the advantages and disadvantages of each method of software acquisition.

4.2  Software Licensing 
Software is very crucial in accomplishing what we do with our computers and portable 
devices. To acquire, install and use software that is protected by copyright, you may 
have to download it for free or pay for license fee. Depending on conditions and 
restrictions imposed by the End-User-Licence Agreement (EULA), computer software 
may	be	classified	into	open source, proprietary, freeware, and shareware. 

4.2.1  Open source software
Open source refers to software whose source code (set of instructions) is made 
available to users. The conditions and restrictions of open source EULA encourages 
the	end-users	to	acquire	the	source	code,	modify	and	distribute	modified	versions	
of the original software. Examples of open source software include Linux operating 
system,	OpenOffice,	Mozilla	 Firefox,	Thunderbird	 e-mail	 software,	Apache	web	
server, and MySQL database management system.

4.2.2  Proprietary software
Proprietary software refers to commercial software whose source code is hidden from 
users.	Modifications	are	only	made	by	the	software	manufacturer.	Proprietary	software	
may be licenced for use at a fee or limited trial period. Examples of  proprietary software 
that a user is required to pay for licence or use include Microsoft Windows, Microsoft 
Office,	Adobe	Acrobat	Professional,	Adobe	Master	Collection	and	CorelDraw.

4.2.3  Freeware 
Freeware is a category of software whose license allows for free of charge acquitition, 
use, making copies and distribution of copyrighted software for unlimited time. Unlike 
open source software, Freeware EULA does not allow users to modify or extend the 
softeware for sale as a commercial product. Examples of Freeware software include 
Adobe Reader, Google Talk, and AVG Free Antivirus.

4.2.4  Shareware
Shareware is licensed commercial software that allow users to freely make and 
distribute copies of the software. The copyright holder for shareware may impose some 
conditions and restrictions in EULA that demand that, after testing the software, you 



Computer Software Installation

66

pay to continue using it. Therefore, providing software as shareware is a marketing 
decision that does not change requirements with respect to copyright. Examples of 
shareware software include Winzip, Adobe Acrobat Professional Edition, Internet 
Download Manager (IDM) and CloneDVD.

4.2.5  Ethical Use of Software License
The four categories of software licences discussed above impose legal, ethical and 
privacy conditions the user must agree with prior to acquisition and use. Unfortunately, 
some users engage in unethical behaviour such as piracy that violates software license 
agreement.  The following are facts about piracy on copyright protected software:
•	  Piracy is illegal: Copyright law and intellectual property rights protects software 

authors and publishers, just as patent law protects inventors. 
•	  Piracy is shameful act: Piracy can harm the image of an individual, community 

or country. If unauthorised copying proliferates in a society, the community losses 
integrity and incur legal liability. 

•	  Piracy is intellectual property theft: Unauthorised copying of software is a form 
of theft that can deprive software developers of a fair return from products of 
their intellectual work.

Caution: It is important that you carefully read the license agreement when you acquire 
software from the copyright owner. This will help you understand the conditions and 
restrictions of the license on what you can and cannot do with the software.

Activity 4.3: Software License
1. Research and then discuss with your classmate various categories of software 

installed in the computers in computer lab or school offices. 
2. Read terms and conditions in the licence agreement of Windows 10, Ubuntu 

Linux, and Office 2013.

4.3  Software Installation Fundamentals
The number of computer programs installed on a computer is only limited to hardware 
specifications	such	as	processor	type,	memory	and	storage	capacity.	Once	a	computer	
meets	 recommended	specifications,	 software	 installations	 is	mostly	an	automated	
process handled by a utility known as installer.  This section demonstrate how to 
install	Windows	10,	drivers	and	Office	2013	on	a	standard	PC.	

4.3.1  System requirements
Before installing computer software whether an operating system, device drivers or 
application	software,	there	are	minimum	or	recommended	system	specifications	that	
should be considered in terms of: 
•	 Memory (RAM) capacity.
•	 Free hard disk space. 



Computer Software Installation

67

•	 Processor type and speed.
•	 Graphics display.
For example, the following are the minimum and recommended system requirements 
for installation of Microsoft Windows 10 on standard desktop and laptop PCs:
•	 Processor	type	and	speed:	1	Gigahertz	(GHz)	of	CPU	Speed	or	faster	with	support	

for PAE, NX, and SSE2 
•	 Memory	capacity:	1	Gigabyte	(GB)	of	RAM	on	a	32-bit	or	2	GB	on	64-bit	machine
•	 Storage	space:	16	GB	free-disk	space	on	32-bit	or	20	GB	on	64-bit	machine
•	 Graphics	card:	Microsoft	DirectX	9	graphics	controller	with	WDDM	driver

Activity 4.4: Software Installation Requirements
In	groups,	 research	on	 the	 internet	minimum	and	 recommended	 specification	 for	
installing the following:
•	 Latest	version	of	Microsoft	Office	
•	 Latest	release	of	Kaspersky	Antivirus
•	 Latest	Ubuntu	Linux	

4.4  Disk Preparation
Operating systems have software utilities or tools for preparing a new storage media or 
disk for use. Two commonly used disk preparation utilities are  those for partitioning 
and formatting. Note that due to sensitivity of these operations, do not attempt these 
operations on a hard disk without the help of your computer teacher or computer lab 
assistant.   

4.4.1  Disk Partitioning
Partitioning a disk refers to the process of dividing a large physical disk into two or more 
partitions called logical drives that are treated as independent drives. Before partitioning  
a hard disk, you need to consider the type of file system	(filesystem)	to	be	created	
on	each	partition.		A	filesystem	is	the	structure	used	by	operating	system	to store, 
retrieve	and	update	data	on	storage	device.		Examples	of	Windows	filesystems	include	
File Allocation Table (FAT32), New Technology File System (NTFS) and extended 
FAT (extFAT). To partition drive on a computer with no operating system, proceed 
as follows:
1.	 Mount	the	installation	media	such	as	DVD	or	flash	drive	onto	the	computer.
2. Switch on the computer and press the key that enters BIOS setup.
3. Change boot sequence in order for the computer to boot from the installation 

media.
4. Once the windows setup that requires you to specify where to install windows, 

create a new partition. You may also delete existing partitions but this is a sensitive 
task that results to loss of data or programs.



Computer Software Installation

68

Activity 4.5: Disk management
Microsoft Windows 10 come with in-built disk management utilities used for creating, 
resizing and deleting disk partitions. If you have Windows 10 installed, perform the 
following tasks:
• Demonstrate and outline steps on how to access the disk management utility.
• Demonstrate  and outline steps on how to create, and delete or resize  an existing 

partition.

4.4.2  Disk Formatting
Disk formatting is the process of preparing a data storage media such as a hard 
disk drive, solid-state drive (SSD), or USB flash drive or memory card	 for	first	
time use. In some cases, the formatting operation may also create one or more new file 
systems. One reason for formatting a storage media is to make it compatible with the 
operating system. You may also format used media to make it blank for another use. It 
is	important	you	back-up	the	media	to	be	reformatted	to	avoid	losing	important	files.	
To	format	storage	media	such	as	a	flash	disk,	proceed	as	follows:
1. Click Start button, and then click File Explorer on the Start menu.
2. In the File Explorer window, click This PC on the left pane. The drives mounted 

on the PC are displayed on the right pane.  
3. Right click on the drive to be formatted, and then click Format.
4. Specify the Capacity, File System and Allocation unit size as shown Fig.4.1.
6. Click Start button to format the drive.

drive/partition size

file	system

drive label

  Fig.4.1: Formatting storage media



Computer Software Installation

69

4.5  Disk Management
Most operating systems come with Disk Management tools used for maintenance of 
storage media mounted on your computer. Some of the routine tasks performed by 
Disk Management include formatting, creating and deleting partitions,  drive cleanup, 
disk scanning,	system	files	checking,	compression,	defragmentation	of	drive,	backup	
and restoration. In this section, we go beyond drive formatting and partitioning 
discussed earlier to other disk management routines in Windows 10.

4.5.1  Disk Cleanup
Disk cleanup is a maintenance utility used to free up space on a hard disk by deleting 
unnecessary	files	and	Windows	components	that	are	no	longer	in	use.	This	include	
temporary	internet	files,	downloaded	program	files	and	files	in	the	recycle	bin.	To	
cleanup disk, proceed as follows:
1. Right click This PC on the desktop then click Manage to display Computer 

Management window.
2. Click Disk Management on the left pane of Computer Management window to 

display the list of drives.
3. Right click the drive you wish to cleanup, then click Properties. In the General 

tab of properties dialog box, click Disk Cleanup button.
4. In the cleanup window that appears, select the files to be deleted then click OK 

to cleanup the storage media.

Activity 4.6: Disk Cleanup
1. Demonstrate how you would start disk cleanup utility in Windows 10, Linux or 

Android operating systems.
2. In Windows 10, identify types of files and components that can be removed using 

cleanup tool in order to save on hard disk space. 
3. Demonstrate and outline procedure for removing temporary files and Windows 

components on a hard disk.

4.5.2  Scanning disks
To check storage media for errors, most operating systems comes with check disk 
utility.	In	Windows,	ScanDisk		utility	allows	the	user	 to	scan	and	repair	files	and	
physical errors on storage media. When errors are encountered, ScanDisk marks 
affected sectors to prevent the operating system from storing information on them. 
To check a disk for errors, proceed as follows:
1. Click File Explorer on the Start menu to display the explorer window.
2. Click This PC on the left pane of File Explorer to display the drives.
3. Right click on the drive you wish to  scan, and then click Properties. 
4. In the  Properties window that appear, click on the Tools tab.
5. Under Error Checking, click Check button shown in Fig.4.2.



Computer Software Installation

70

6. On the pop-up window that appears, click Scan drive.

Fig. 4.2: Scanning disk for problems

4.5.3  System File Checker
System File Checker (SFC) is a utility available in Windows 10 used to check for 
corrupted	operating	system	files.	The	SFC	utility	scans	all	system	files	and	repairs	
corrupted	ones	where	possible.	To	run	the	system	file	checker	in	command	prompt,	
proceed as follows:
1. Right-click the Start button to display the context menu as shown in Fig. 4.3. 

Fig.4.3: Start context menu



Computer Software Installation

71

2. Click Command Prompt (Admin) to display the command prompt window.
3. Type sfc /scannow then press the enter key to start the scan process shown in 

Fig. 4.4.

Fig.4.4:	Windows	system	file	checker	

4.5.4  Disk Defragmentation 
A	storage	media	may	have	files	scattered	all	over	the	surface	of	the	disk	hence	resulting	
to wastage of space and slow seek time. Defragmentation is the process of moving 
file	fragments	to	contiguous	clusters	to	optimize	on	storage	space	and	performance.	
To defragment (defrag) a storage media, proceed as follows:
1. Click the Start button, and then click on File Explorer on the Start menu.  
2. In the File Explorer window, click on This PC to display installed drives.
3. Right click on the drive you wish to defrag, then click Properties.
4. Click Tools in properties dialog box, then click the Optimize button  
5. In the Optimize window, select the drive and then click the Analyze.  
6. Click Optimize button to start defrag process as shown in Fig. 4.5

Fig.4.5: Disk defragmentation



Computer Software Installation

72

4.5.5  Disk Compression
Disk compression is	a	management	routine	used	to	store	files	in	compressed	versions	
to	save	on	disk	space.	When	an	Operating	System	(OS)	attempts	to	save	a	file	on	
a	 compressed	 disk,	 the	 compression	 utility	 intercepts	 the	 file	 and	 compresses	 it.	
Likewise	when	an	OS	attempts	to	open	the	file,	the	utility	decompresses	it	first.	To	
compress a storage media, proceed as follows:
1. On the Start menu, click on File Explorer.
2. In the File Explorer window, click on This PC to display installed drives.
2. Right click on the drive to be compressed, then click Properties. 
3. Click the General tab, then select Compress this drive to save disk space check 

box as shown in Fig. 4.6.
4. Click Apply to display the popup window shown in Fig. 4.6.
5. Select compression option, then click OK to to close the pop-up window.
6. Finally, click OK to compress the drive.

Fig.4.6: Disk compression



Computer Software Installation

73

4.5.6  Disk Backup
It	 is	 good	practice	 to	 constantly	keep	copies	 (backup)	of	your	 important	files	on	
another drive to avoid loss of originals. Windows 10 has backup utility located 
under Settings menu	used	for	backing	up	and	restoring	files.	To	use	backup	utility,	
proceed as follows:
1. On the Start menu, click Settings to display Setting window.
2. In the Settings window, click Update & security tab.
3. In the Update & Security list that appear, click Backup.
4. Click  Add a drive under Automatically backup my files as shown in Fig. 4.7.
5. Click more options to specify backup options. Backup will be scheduled to 

automatically run as per your specifications.

Fig.4.7: Disk backup

4.5.7  Setting Boot Order
Boot	order	also	referred	to	as	boot	sequence	defines	the	order	in	which	the	operating	
system	should	check	for	the	operating	system’s	boot	files.	The	order	can	be	changed	
in BIOS setup as follows:
1. Turn on or restart the computer.
2. During power-on-self-test (POST), press the appropriate key(s) to enter the BIOS 

setup screen such as shown in Fig. 4.8.
3. Specify boot order so that the computer boots from removable installation media.



Computer Software Installation

74

Fig.4.8: Boot sequence

4.6  Installing Operating System
Installation of an Operating System is a fundamental process that starts with 
identifying	minimum	or	recommended	system	specifications	discussed	earlier.
In this section, we demonstrate how to download and install Microsoft Windows 10 
Operating System. To start with, we demonstrate how to download windows 10 and 
create	a	bootable	DVD	or	flash	drive.	

4.6.1  Creating Windows 10 Installation Media
To upgrade from previous versions of Windows, Microsoft has adopted a hybrid web 
and media-based installation of Windows 10.  If you opt for installation media, you 
have to download Media Creation Tool from Microsoft’s website. Media Creation 
Tool provides users with  better experience in Windows 10 download compared to 
common download procedure.  To create an installation media, proceed as follows:
1. Connect you computer to the Internet and use your favourite browser to visit 

Microsoft website. Navigate to Software Downloads, and search for Media 
Creation Tool. 

2. Once the download page is displayed, select either 32-bit or 64-bit button  
depending on the architecture of your machine. To know the architecture of your   
PC, read the manual that came with the machine or use diagnostic utilities. 

3. Download the tool onto your desktop or any location. Once the download is 
complete, select Create installation  media for another PC on the screen shown 
in Fig. 4.9. 



Computer Software Installation

75

4. The screen shown in Fig.4.10 lets you specify the language, architecture and 
Windows 10 version to be installed. 

Fig.4.10: Installation media  configuration

5. In	the	screen	that	appears,	choose	USB	flash	drive	to	create	bootable	media	on	
a	memory	stick.	You’ll	be	required	to	insert	a	flash	drive	of	with	more	that	3GB	
free space. If you prefer using a DVD, choose ISO file so that you burn the image 
onto DVD later. 

6. Click Next to start the download process. Once the download is complete, you 
may proceed to Windows 10 installation phase. In the next section, we take you 
through the general steps of installing Windows 10 on a typical desktop PC.   

Fig.4.9: Creating Installation media



Computer Software Installation

76

4.6.2  Installing Windows 10  
Like earlier versions of Microsoft Windows, installation of Window 10 is a three-
phase process of copying files, installing features and drivers, and configuring 
settings. Microsoft provide two alternative of installing Windows 10:
• Upgrade: Users with licensed versions of Windows 7, 8 and 8.1 can upgrade 

to Windows 10 using the  product key product key they used to install the older 
versions. 

• New Installation:	To	install	Windows	10	for	the	first	time	referred	to	as clean 
install, you need to buy the license which you can get via email. Remember it is 
illegal to install pirated copy of Windows 10.

 In this section, we take you through general procedure for installing Windows 10 
for	the	first	time	from	USB	flash	drive:
1. Insert the USB flash media created earlier using Media Creation Tool. Windows 

10 setup screen shown in Fig. 4.11 is displayed. If the screen does not appear 
automatically, you may be required to change boot sequence in BIOS settings or 
use “Advanced startup options” available on certain devices.

Fig.4.11: Windows 10 setup wizard

2. In the next screen shown in Fig. 4.12, enter the product key sent to you through 
e-mail if you are installing Windows 10 for the first time. Alternatively, enter 
the product key that came with older version of Windows 7, 8 or 8.1 that you are 
upgrading.  Click Next to proceed.



Computer Software Installation

77

3. On the Install Now window, click Install Now button  to display the screen  of  
Fig. 4.13.  Under Which type of installation do you want, choose Upgrade 
if you have a version of Windows 7 or 8 installed on your computer. If you are 
installing Windows 10 for the first time, choose Custom, then click Next.

Fig.4.13: Windows 10 Installation options

Fig.4.12: Windows 10 product key



Computer Software Installation

78

4. In  the next screen that appears shown in Fig. 4.14, select an existing partition or 
create a new one where Windows 10 is to be installed. Note that partitioning a 
drive is a sensitive task to be handled with care to avoid loss of programs or data. 

Fig.4.14: Selecting disk partition
5. Once you specify the partition in which Windows will reside, clicking the Next 

button takes you to the phase of copying Windows 10 files onto the partition as 
shown in Fig. 4.15.  It is after files have been copied that the third phase of drivers 
and features configuration is started. During drivers and features configuration  
phase, the PC restarts several times.

 

Fig.4.15:	Copying	of	Windows	system	files



Computer Software Installation

79

6. The moment the settings screen shown in Fig. 4.16 is displayed, choose whether 
the installer should use express or customized setting. For privacy reasons, make 
sure you read and understand the Privacy statement before choosing any other 
two settings. 

Fig.4.16: Specifying Windows pernalized settings

7. Next, sign in or create a Microsoft account when prompted as shown in Fig. 4.17. 
Microsoft account is important because it allows the user to access Windows 10 
resources e.g. online emails, cloud, and Apps. 

  
Fig.4.17: Signing up to Microsoft Account

8. The final steps is to let the installer configure Apps before the desktop shown on 
Fig. 4.18 is displayed. You are now ready to use Windows 10.



Computer Software Installation

80

 

Fig.4.18: Windows 10 desktop

•	 Important: Once you install and activate Windows 10 on a device for the first time, 
the installer registers your hardware with Microsoft’s servers. You don’t have to 
enter the product key the next time you re-install Windows 10 on the same device.

Activity 4.7: Software Installation
1. In groups, demonstrate and outline steps on how to install various versions of 

Microsoft Windows and open source operating systems such as Ubuntu Linux.
2. Configure the following Windows 10 desktop properties. In each case, outline 

the steps followed to carry out the task: 
(i) Change the background theme on the desktop. 
(ii) Set desktop icons to display This PC, Network and Recycle bin icons. 
(iii) Select icons that appear on the taskbar.

Assessment Exercise 4.1
1. In reference to EULA, differentiate between open source  software and proprietary 

software.
2. Demonstrate step-by-step how to you would partition hard disk. 
3. Outline system requirements that need to be considered to install Windows 10 

operating system. 
4. Explain why it is good practice to install genuine copy of an operating system.  



Computer Software Installation

81

4.7  Installing Device Drivers 
A device driver is a utility program that acts as an interface between a hardware 
device and the operating system. For a hardware device such as printer, keyboard or 
scanner to function properly, its drivers must be installed. Once you connect a new 
device such as a printer to a computer, the operating systems automatically detects 
the device and installs appropriate drivers.  If no drivers found from Windows drivers 
list, you have to download or use drivers that came with the device. 

4.7.1  Installing drivers automatically

Automatic installation of drivers also known as plug-and-play means that once a new 
device is detected by the computer, Windows searches and automatically installs for 
appropriate drivers.  The following are basic steps followed in the installation of  
plug-and-play devices:
1. Connect the device to the computer.
2. Windows 10 detects the new device and signals plug-and-play service to 

automatically install the device drivers.
3. If appropriate drivers are found, the device is automatically installed without user 

intervention.
4. The computer may restart to configure the new device. 

4.7.2  Installing drivers manually 
Often computer and hardware manufacturers place the drivers on a storage media or 
provide them online for download.  To manually install drivers, proceed as follows:  
1. Right click This PC on the disktop and select Manage. The Computer 

Management window shown in Fig. 4.19 is displayed.
2. Select Device Manager, click Action menu, then select Add legacy hardware
3. Follow instructions on the Add Hardware wizard that appears. 

Fig. 4.19: Installing drivers manually



Computer Software Installation

82

Activity 4.8: Device Drivers Installation
In groups, demonstrate and outline a step by step procedure for installing a new device 
such as a printer or scanner on a computer running Windows 10 operating system.

4.8  Installing Application Software
There are thousands of application software such as word processors, spreadsheets, 
database management systems, desktop publishing software, education software 
among others. Most software developers package several programs into a suite  with 
good	example	being		Microsoft	Office	2013.	In	this	section,	we	demonstrate	how	to	
install	Microsoft	Office	2013	suite	on	desktop	PC:	
1. Insert Microsoft Office 2013 DVD or USB installation media into the computer. 

In the license agreement screen that appears, click the check box “I accept the 
terms of this agreement” shown in Figure 4.20.  

             Fig.4.20: End-user license agreement
2. Once you accept Microsoft terms of agreement, choose whether to upgrade an 

existing version or custom to install new copy as shown in Fig. 4.21.

Fig.4.21:	Office	2013	installation	options



Computer Software Installation

83

3. To upgrade an existing version of Microsoft Office, click Upgrade. Make sure 
the radio button “Remove all previous versions” is selected, and then click Next. 
The installation progress screen shown in Fig. 4.22 is displayed.

 
 
 
 
 
 
 

Fig.4.22:	Office	2013	installation	progress

4. Once the installation process is complete, you may sign in for Microsoft account 
to get online access to your documents from SkyDrive. SkyDrive is a Microsoft 
name for cloud-based storage. Finally, the screen shown in Fig. 4.23 is displayed 
to confirm that you have successfully installed Office 2013.  

Fig.4.23:Office	2013	welcome	screen



Computer Software Installation

84

5. To confirm that Office 2013 has been installed, click the Start button then All 
apps. The list of installed Microsoft Office 2013 apps is displayed as shown in 
Fig. 4.24.

Fig.4.24:	Office	2013	Installed	apps

Activity 4.9: Installing Apps
Demonstrate	how	you	would	install	an	application	software	such	as	Microsoft	Office	
2016, Web browser or a Computer games in a computer running on Windows 10 
Operating system.

Unit Test 4
1. Explain the importance of reading the user manual before installing new software. 
2. Outline the procedure you would follow to install device drivers and application 

software.  
3. State four factors you would consider before purchasing application software. 
4. State three hardware requirements to be considered when installing  application 

software. 
5. Explain importance of end-user license that comes with proprietary software. 



Number Systems

85

Key Unit Competency
By the end of the unit you should be able to:
•	 Compute numbers in different base systems.
•	 Perform arithmetic operations on binary number.

Unit Outline
•	 Fundamentals of number system.
•	 Number base systems.
•	 Converting decimal to other base systems.
•	 Binary to other base system conversion.
•	 Octal to decimal conversion.
•	 Octal to hexadecimal conversion.
•	 Hexadecimal to decimal conversion.
•	 Decimal fraction to binary conversion.
•	 Binary fraction to decimal conversion.
•	 Negative decimal to binary conversion.

•	 Arthmetic operations on binary numbers.

Introduction
In Mathematics, we represent any number using a set of ten digits ranging from 0 to 
9. However, in digital computers, any type of data is represented using two voltage 
states “on” and “off” represented using 0 and 1. In this unit, we begin by discussing 
types of number systems followed by demonstrations on how to convert numbers from 
one system to another. Later, we take you through four binary arithmetic operations 
namely addition, subtraction, multiplication and division.

5.1  Fundamentals of Number Systems
The term number system refers to a set of symbols or numeric values (numbers) used 
to represent different quantities. In computer science, it is important to understand 
number systems because the design and organisation of digital computers depends 
on number systems. Historically, the ten digits ranging from 0 to 9 used to express 
any number originated from India. Because the number of digits is ten, we refer to 
it as base 10 or decimal number system. 
In digital computers, any type of data whether numbers, alphabets, images or sound 
is represented using a sequence of two digits; 0 and 1. The two digits are referred 
to as binary digits (bits). Because knowledge of number systems is important, we 
begin this section with basic concepts associated with binary and decimal numbers.

NUMBER SYSTEMSUnit 5



Number Systems

86

5.1.1  Bit, Byte and Nibble

In digital computers, data is represented using a sequence of bits, bytes, nibble and 
word:
•	 Bit: Bit is a short form for binary digit referring to a single digit 0 or 1 used to 

represent any data in digital computers. In other words, a bit is the smallest unit 
used to represent data in digital computers.

•	 Byte: A byte is a sequence of bits used to represent alphanumeric characters and 
special symbols. In most cases, computers represent any type of data using a 
sequence of 8 bits.

•	 A nibble: A sequence of four bits representing half of a byte.

Fig. 5.1 shows an illustration that distinguishes the three terms.

Byte Byte

Fig. 5.1: Bit, Nibble and Byte

5.1.2  Magnitude of Numbers

Normally, the magnitude or weight of a digit in a number like 785 can be determined 
using base value (radix), absolute value, and positional (place) value. 
•	 Base value: The base of a number also known as radix refers to the maximum 

number of digits used to represent a number system. For example, the number 
785 falls within numbers 0 to 9 hence it is a base 10 number. When dealing with 
number systems, always remember to indicate the base value. For example, 45

10
 

shows that 45 is a base 10 number.
•	 Absolute value: This  is the face-value of a digit in a number system. For example, 

5 in 785 has a face value of 5 regardless of its position in the number. 
•	 Positional value: The positional (place) value is the position of a digit relative 

to other digits. For example, Table 5.1 shows the place value of 5 in 785 is ones 
while the digit with highest place value is 7 whose weight is 700. 

Place value Hundreds 102 Tens,101  Ones,100

Digit 7 8 5
Weight 700 80 5

 Table 5.1: Positional value



Number Systems

87

Activity 5.1: Magnitude of numbers

In groups, research in the internet how each of the digits in 485 can be interpreted 
in terms of base value, absolute value, and place value. 

Assessment Exercise 5.1

1. Define the following terms:
(a)  bit  (b)  byte  (c)  nibble

2. Differentiate between a byte and a nibble.
3. Binary number system is fundamental to understanding how a computer works. 

Explain why it is important to understand the concept of number systems.
4. Using an illustrations, explain how data is represented in digital computers.

5.2  Number Base Systems
Number systems are determined by the base representing valid digits used to represent 
a number. The four types of number systems used in computing are decimal (base 
10), binary (base 2), octal (base 8), and hexadecimal (base 16) number systems.

5.2.1  Decimal Number System

Decimal number system consist of ten digits 0-9 most of us are familiar with. The 
prefix	deci in the word decimal is a Latin word deci that means ten. Because the 
decimal number system has ten digits, it is also known as a base 10 or denary number 
system. In computing, counting of decimal numbers start from 0.

Significance of Decimal Digits

Significance	of	a	digit	refers	to	its	weight	that	is	determined	by	its	absolute	and	place	
value.	In	a	decimal	number	system,	the	most	significant	digit	(MSD)	is	the	leftmost,	
while	the	least	significant	digit	(LSD)	is	the	rightmost	digit.	For	a	number	like	7085,	
Table 5.2 shows that 5 is the least	significant	having	a	place	of	5	while	7	is	the	most	
significant	with	place	value	of	7000.

Place value 103 =1000 102 = 100 101 =10 100 = 1
Decimal digit 7  0 8 5
Weight 7000  0 80 5

 Table 5.2. LSDand MSD in decimal numbers



Number Systems

88

5.2.2  Binary Number System

Binary numbers consist of two digits – 0 and 1 referred to as binary digits, in short’ 
bits. In binary base system, the positional value of a number increases by powers of 
two. When dealing with different number systems, always remember to indicate the 
base of a binary number such as 1011

2
.

Significance of Binary Digits

The	most	significant	digit	(MSD)	in	a	binary	number	is	the	leftmost	digit,	while	the	
least	significant	digit	 (LSD)	 is	 the	rightmost	digit.	For	example,	Table	5.3	shows	
that in binary number like 1011

2 
the LSD on the right has weight of 1 that is   (1 × 20), 

while the MSD has a weight of 8.

Place value 23 = 8 22 = 4 21 = 2 20 = 1
Binary digit 1 0 1 1
decimal value 8  0 2 1

 Table 5.3. LSD and MSD in binary numbers

NB: The total weight of the binary number 1011
2
 represents 11 in decimal numbers obtained by 

adding: 8+0+2+1 = 11
10

 

Activity 5.2: Types of number systems

Digital computers use a number system with a base of two, rather than base ten to 
represent any data. This is because it is much easier to engineer circuits that implement 
“binary number system.” In groups, discuss the four types of number systems and 
classify them according symbols used to represent any number.
If 1011 represents 11 in decimal form, represent decimal numbers 0 to 15 in binary 
form. 

5.2.3  Octal Number System

The octal number system also known as octadecimal has  eight digits ranging from 
0 – 7 that are used to represent any number. This means that a number like 785 cannot 
be a valid octal number because 8 in between 7 and 5 is not within 0 to 7 digits.

Significance of Octal Digits

In octal number system, the MSD is the leftmost digit, while LSD is on the right. For 
example, Table 5.4 illustrates an octal number 7245

8
	with	7	being	the	most	significant	

digit with decimal weight of 3584
10

.

Place values 83 =512 82 =64 81 = 8 80 = 1
Octal digit 7 2 4 5
Base 10 value 3584 128 32 5

 Table 5.4: LSD and MSD in octal numbers



Number Systems

89

To get the decimal number equivalent to 7245 we add: 3584 + 128 + 32 + 5 = 3749
Thus; 7245

8
 = 3749

10
.

5.2.4  Hexadecimal Number System

Hexadecimal is a base 16 number system consisting of 16 digits that range from 0 
to 9, and A to F. The letters A to F are used to represent numbers 10 to 15 as shown 
in Table 5.5. Always remember to indicate the base of a hexadecimal number using 
the subscript 16 e.g. 4F9

16
.

Base 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Base 16 0 1 2 3 4 5 6 7 8 9  A B C D E F

 Table 5.5. Hexadecimal digits

Significance of Hexadecimal Digits

In	hexadecimal	number	system,	significance	of	digits	increases	from	right	to	left	in	
multiples of 16. For example, Table 5.6 shows in 946

16
, 6 is the LSD while 9 is the 

MSD with decimal place value of 2304
10

.
The decimal equivalent of 946

16
 is obtained by adding:

2304 + 64 + 6 =2374

Thus 946
16 

 = 2374
10

.

Place value 162 = 256 161 = 16 160 = 1
H e x a d e c i m a l 
digit

9 4 6

Base 10 value 2304 64 6
	 Table	5.6:	Significance	of	hexadecimal	numbers

Table	5.7	below	shows	a	summary	of	the	four	number	systems	classified	according	to	
their base values:

System Base Valid digits Example
Binary 2 01 1001

2

Octal 8 01234567 5640
8

Decimal 10 0123456789 5640
10

Hexadecimal 16 0123456789 ABCDEF 56AF
16

 Table 5.7: Summary of number systems

Activity 5.3: Octal and hexadecimal number systems

In	groups	of	three,	discuss	the	benefits	and	reasons	for	using	octal	and	hexadecimal	
number systems.



Number Systems

90

5.3  Converting Decimal to other Base Systems
Mathematically, it is possible to convert a number from one base system to another. 
In the following section, we demonstrate how to convert decimal numbers to other 
base  systems. 

5.3.1  Decimal to Binary Number Conversion

To convert a decimal number to binary, there are two possible methods, the division-
remainder, and positional-value methods.

5.3.1.1  Division-by-Base Method

In division-by-base method, a decimal number is repeatedly divided by the base until 
the dividend is indivisible by 2. In every division, write down the remainder on the 
right of the dividend. Read the sequence of 0s and 1s bottom-ups that represents the 
binary number. For example, to convert 45

10 
to binary form, proceed as follow:

 

Explanation

1. Divide 45 by 2. We get 22 remainder 1. 
2. Next divide 22 by 2. We get 11 remainder 0.
3. Continue dividing until the number is indivisible by 2. In this case, 1 is not 

divisible hence we write 0 remainder 1.
4. Read the remainder digits as 0s and 1s bottom up.

NB: The remainder in the last division marked with asterisk is 1 because 1 is not 
perfectly divisible by 2 in the previous step.

The following example demonstrates how to convert 107
10

 to binary form: 

Explanation

1. Divide 107 by 2. We get 53 remainder 
1. 

2. Continue dividing until the quotient 
is not perfectly divisible by 2.

3. Read the remainders upwards.

2   107
2   53 R  1
2   26 R  1
2   13 R  0
2   6 R  1
2   3 R  0
2   1 R  1
     0 R  1

107
10

 = 1101011
2

Thus: 45
10

=101101
2

2  45
2  22  R 1
2  11  R 0
2    5  R 1
2    2  R 1
2    1  R 0
      0  R 1× 



Number Systems

91

Activity 5.4: Converting decimals to binary form

Using division-by base method, convert the decimal number 247 to binary form. 
Confirm	whether	is	the	11110111

2
 is correct answer.

5.3.1.2  Place value Method

The second method of converting decimal numbers to binary form is the place value 
method. For example, to convert 247

10
 to binary form, proceed as follows:

1. Start by writing down the place values in powers of 2 up to the value equal to or  
slightly larger than the number to be converted. For example, to convert 247

10
, 

write down the place values up to 28, i.e. 256 as shown in Table 5.8. 

Place value in 
powers of 2

28 27 26 25 24 23 21 20

Place value in 
decimal

256 128 64 32 16 8 2 1

Table 5.8: Place-value method: Step 1
2. Subtract the highest place value i.e 256 from the number as shown in table 5.9. 

If the difference is 0 or positive, write 1, otherwise write 0 if the difference is 
negative.

Place value 28 27 26 20

Difference 247 – 256 247 – 128
Binary digit 0

Table 5.9: Place-value method: Step 2
 NB: Note that under the place value 28, we write 0 because 247-256 returns a 

negative value. 
3. If the difference returned a negative carry forward the number, the next lower 

significant place value and calculate the difference. Since 247 – 128 returns 119 
(positive), write 1 as shown in Fig. 5.10.

Place value 256 128 64 32 16 8 4 2 1

Difference 247 – 256 247 – 128 119 – 64

Bit 0 1 1

 Table 5.10: Place-value method: Step 3
4. Repeat the process until you encounter the least significant, until you subtract the 

previous step difference from the least significant place value as shown in Table 5.11:

256 128 64 32 16 8 4 2 1

247 – 256 247 – 128 119 – 64 55 – 32 23 – 16 7 – 8 7 – 4 3 – 2 1 – 1= 0

 0       1 1 1 1 0 1 1 1 

 Table 5.11: Place-value method: Step 4
5. Read the binary digits from left to right. This gives us 011110111.
 Thus:  247

10
 = 011110111

2
.



Number Systems

92

Table 5.11 demonstrates how to use place value method to convert 107
10

 to  binary 
form. First, write the place values up to 128, and then calculate the difference from left 
to right. If the difference is > =0, insert 1 otherwise insert 0 as shown in Table 5.11.

128 64 32 16 8 4 2 1
107–128 (107–64) (43–32) (11–16) (11–8) (3–4) (3–2) (1–1)
0 1 1 0 1 0 1 1

 Table 5.11: Place value method

Thus: 107
10

=1101011
2

Activity 5.5: Decimal to binary conversion

1. Using the place value method, convert the following to binary number equivalent to:

(i) 145
10

  
(ii) 1280

10

(iii) 5204
10

(iv) 8000
10

2.  Using the place value and division by base methods convert each of the following 
base 10 numbers to their binary equivalents.

(a) 10
10

 (c) 43
10

 (e) 365
10

(b) 512
10

 (d) 143
10

 (f) 954
10

5.3.2  Decimal to Octal Conversion

To convert a decimal number to octal form, we repeatedly divide the dividend by 
the base value 8 until the quotient is indivisible by 8. The remainders consisting of 
digits between 0 and 7 are read upwards. For example, to convert 586

10
 to an octal 

number, proceed as follows: 

Thus: 586
10

 = 1112
8

8  586
8    73 R  2
8      9 R  1
8      1 R  1
8      0 R  1

(586 ÷ 8 = 73 rem   2   )

(  73 ÷  8 =  9 rem   1   )

(     9 ÷  8 =  1 rem  1   )

(     1 ÷   8 =   0 rem  1   )



Number Systems

93

Activity 5.6: Decimal to octal conversion

Using division-remainder method, convert the following decimal numbers to octal 
form.
(a) 999 (b) 1875 (c) 5210 (d)  505

(e) 1810 (f) 3185 (g) 1000 (h) 750

5.4.3  Decimal to Hexadecimal Convertion

To convert a decimal number to hexadecimal form, repeatedly divide the quotient 
by16 until the quotient is not divisible by the base value. The resulting remainders 
consisting of digits from 0-9, and A-F are read bottom-up. For example, to convert 
a decimal number 896 to hexadecimal form, proceed as follows:
Continue dividing until the quotient is no longer divisible by 16.
Read the remainders from bottom to top.
Thus: 896

10
 = 380

10

Thus: 896
10

 = 380
16

16    896
(896 ÷ 16 = 56 rem  0   )

(  56 ÷  16 =  3 rem   8   )

(     3 ÷  16 =  0 rem  3   )

16      56 R 0
16        3 R 8     
            0 R 3     

Explanation

Divide the number by 16 and write down the quotient and the remainder. Note the 
remainder can be a digit between 0 and F.

Taking another example let us convert a decimal 4056 to hexadecimal form. 
 16    4056

D

F

16      253 R    8
16        15 R  13     
              0 R 15     

Since hexadecimal symbols between 10 and 15 are represented by letters A to F, 
replace 15 with F and 13 with D in the remainders.
Thus: 4056

10
 = FD8

16

Activity 5.7: Decimal to hexadecimal conversion

Using division-by base method, convert the following decimal numbers 
 
to their 

hexadecimal equivalents:
(a) 107   (b)  9850

  
(c)   5207    (d)  7500   (e)  7075



Number Systems

94

5.4  Binary to other Base System Conversion
Conversion of a binary number to other  base systems is the reverse procedure to 
what we have covered in the previous section. In this section, we demonstrate how 
to convert binary numbers into decimal (base 10), octal (base 8) and hexadecimal 
(base 16) form. 

5.4.1  Binary to Decimal Conversion
To convert a binary number to decimal form, proceed as follows:
1. Write place values under which you place the bits from the least significant to 

the most significant as shown in Table 5.12. For example, Table 5.12 shows a 
binary number with digits placed under corresponding place values.

2. Multiply each bit by corresponding place value e.g starting with most significant 
e.g in case of 101101, multiply the left most bit by 32.

3. Sum the partial products to get the decimal number. In our case we add (1 × 28) 
+ (0 × 24) + (0 × 23) + (1 × 22) + (1 × 21) + (1 × 20) 

This gives us:
32 + 0 + 8 + 4 + 0 + 1 = 45
Therefore, 101101

2
 = 45

10

Place value 25 24 23 22 21   20

Binary digits 1 0 1 1 0  1
 Table 5.12: Binary to decimal conversion

Activity 5.8: Binary to decimal conversion

1. Convert 100100
2
 to decimal equivalent. Check whether the returned  decimal is 

9 or 36.
2. Convert 1011110

2
 to decimal form.

3. What is the decimal equivalence of  11111111
2
?

Assessment Exercise 5.2

Convert the following binary numbers to decimal form:
(a)  0101

2
  (b)  1111

2
  (c)  10101101110

2

(d)   10111111
2
  (e)  1011001

2
  (f)   111000111

2



Number Systems

95

5.4.2  Binary to Octal Conversion

To convert a binary to Octal system group the One’s (1’s) and zero’s(0’s) into sets 
of three bits starting from right to left. The reason for grouping into 3 bits is because 
the maximum octal digit (7) has a maximum of 3 digits as shown in Table 5.13.

Bits 000 001 010 011 100 101 110 111
Octal 0 1 2 3 4 5 6 7

 Table 5.13: Binary representation of Octal digit

For example, to convert 11010001
2
 to octal format, proceed as follows

1. Group the bits to sets of 3 starting from right.
2. Write down the octal digit represented by each set of bits as shown in Table 5.14:

Binary digits 011 010 001
Octal digits 3 2 1

 Table 5.14: Binary to Octal conversion

Thus: = 011010001
2
  ≡ 321

8

Assessment Exercise 5.3

Convert the following binary numbers to Octal form.
(a) 10100100 (b) 10100111 (c) 1110010

 
 

(d)  101110101 (e) 10010010
 

(f) 11011111000 
(g) 1100001011 (h)  1011011001 (i) 110011100111 
(j)  100110110101011

5.4.3  Binary to Hexadecimal Conversion

Similar to the approach used with octal number system, a binary number can be 
converted to hexadenal format by grouping the bits to a set of 4 bits. This is because 
the largest hexadecimal digit i.e. F(15) has 4 bits as shown in Table 5.15: 

Hexadecimal digit                                             Decimal  4-bits
00 00 0000

01 01 0001

02 02 0010

03 03 0011

04 04 0100

05 05 0101

06 06 0110

07 07 0111

08 08 1000



Number Systems

96

Hexadecimal digit                                             Decimal  4-bits
09 09 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

 Table 5.15: Binary representation of hexadecimal digits

For example, to convert 11010001
2
 to hexadecimal form, group the bits into sets of 4 starting 

from right to left as follows: as shown in Table 5.16:

Binary 1101 0001

Hexadecimal D 1

 Table 5.16: Binary to hexadecimal conversion

 Thus:  = 1101 0001
2
 = D1

If a binary number does not have an exact set of 4 bits after grouping such as 1100100001, 
proceed as follows:
1. Split the number into sets of 4 bits starting from right to left. In our case, we get 

three complete sets and one incomplete one:
 11  0010  0001
2. Because the leftmost set has two bits, add two zeros to it on the left to get: 
      0011  0010  0001
3. Using the binary equivalents in Table  5.17, place each the equivalent hexadecimal 

digit under each of the set of bits. 

Binary digits 0011         0010 0001
Hexadecimal   3    2    1 

 Table 5.17: Grouping bits to represent a hexadecimal digit

      Thus:  0011010001
2 
= 321

16
 

Activity 5.9: Binary to hexadecimal conversion

1. Convert 10111100110
2 
 to its hexadecimal equivalent.

2. Convert  the binary number 111011011
2
 to hexadecimal form.

3. Find the hexadecimal equivalence of 110111
2
.

4. Convert the binary numbeer 0101110
2
 to hexadecimal form.



Number Systems

97

Assessment Exercise 5.4

1. Convert the following hexadecimal numbers to their binary equivalents:
(a) 1010010101

2
 (b) 1001000111

2
 (c) 111011111101

(d) 100100000111
2 

(e) 101110101101
 

(f) 1100101111011111

(g) 101100001011100
 

(h)  1010101111001101
 

(i)  1010101110000111010

5.5  Octal to Decimal Conversion
To convert octal numbers to decimal form, we use the division-by-base and place 
value methods used on binary numbers.  For example, to convert 512

8
 to decimal 

form,  proceed as follows:
1. Write each number under base 8 place value as shown in Table 5.18:

Place value 82 81 80

Octal  digit 5 1 2
 Table 5.18: Converting octal to decimal form

2. From left to right, multiply each digit by its place value as shown below:

   64 × 5  = 320

     8 × 1  = 8

     1 × 2  = + 2

       330

 Thus: 512
8
= 330

10

Assessment Exercise 5.5

Convert the following octal numbers to decimal form.
(a)  77

8
 (b) 64

8
 (c)  102

8
 (d)  1200

8
 (e)  1000

8

(f)  173
8
 (g)  123

8
 (h)  777

8
 (i)  345

8
 (j) 166 

8

5.6  Octal to Hexadecimal conversion
Because	octal	to	hexadecimal	conversions	cannot	be	done	directly,	we	first	convert	
given octal numbers to its decimal or binary equivalent. In the second step we convert 
the decimal or binary number to its hexadecimal equivalent.  
1. To start with, we demonstrate how to use the two-stage approach to convert an 

octal number 1002
8
 to hexadecimal:

 1002
8 
= (1 × 83) + (0 × 82) + (0 × 81) + (2 × 80)

 =  1 × 512 + 0 × 64 + 0 × 8 + 2 × 1 
=  512 + 0 + 0 + 2

2. Convert the decimal number 514 to hexadecimal using division-by-base method.:



Number Systems

98

16    514
16       32 R  2
16         2 R  0     
              0 R 2      

 Thus, 1002
8
 = 202

16

Alternatively, you can convert an octal number to hexadecimal by converting the 
number to binary form as follows:
1. Convert each octal digit to a 3-bit binary number as shown in Table 5.19 below:

Octal digits 1 0 0 2
Binary digits 001 000 000 010

           Table 5.19:Converting octal to binary

2. Convert the resulting binary number i.e. 001000000010
2
 to hexadecimal by 

grouping the bits into four groups starting from right:
3. Write down the hexadecimal equivalent of each of the 4-bit grouping as shown 

below:

Binary nibble 0010 0000 0010

Hexadecimal digits 2 0 2

 Table 5.20:Converting  binary grouping to hexadecimal

 Therefore, 0010 0000 00100
2
 = 202

16

5.7  Hexadecimal to Decimal Conversion
To convert a hexadecimal number to base ten equivalent, proceed as follows:
1. First, write the place values starting from the right hand side.
2. If a digit is a letter such as an ‘A’ write its decimal equivalent.
3. Multiply each hexadecimal digit with its corresponding place value, and then add 

the partial products.

The following example illustrate how to convert 111
16

 
 
to decimal form:

1. Write each digit under its place value as shown in Table 5.21.

Hexadecimal place 
values

162 = 256 161 = 16     160 = 1

Hexadecimal digits    1 1 1
 Table 5.21: Converting hexadecimal to decimal
2. Multiply each hexadecimal digit with corresponding places value and write down 

the partial products (256 × 1) + (16 × 1) + (1 × 1) downwards as follows:

 



Number Systems

99

256 × 1 = 256
  16 × 1  =    16
    1 × 1 =   + 1
                  273

3. Add the partial products:  256 + 16 + 1 = 273   

      Thus: 111
16

 =  273
10

 Taking another example, let us convert  A9
16

 to decimal form:

Place value 161 = 16 160 = 1
Demand  digit 10          9

 Table 5.22: Converting hexadecimal to decimal
      
 (i) Write each bexadecimal digit under its place value.
 (ii) Add the partial products (16 × 10) + (1 × 9)
  This gives us 160 + 9 = 169

0

  Thus: A9
16

 =  169
10

Assessment Exercise 5.6

Convert the following hexadecimal numbers to decimal form:
(a) 32

16
 (b) CCD

16
 (c)  EFE

16
 (d) 119 

16
 (e)  328

16 

(f) ABD
16

 (g)  10AFFD
16

 (h) DDFF34
16

  (i)  11ABDF
16

 (j)  CDFF31
16

5.8  Decimal Fraction to Binary Conversion
In mathematics, a number with integer and fractional parts such as 87.25 is known as 
a real number.	In	computing,	a	real	number	is	referred	to	as	floating	point	number.	
The fractional part has a value that is less than 1 written as 1/x or 0.x. For example, 
87.25 has a fractional part 0.25 that may also be written as 1/4. The weight of a 
floating	point	number	increases	from	right	to	left	as	shown	in	Table	5.23:

Place value 101 100 • 10–1 10–2 10–3

Decimal digit 8 7 • 5 3 7
Decimal value 80 7 • 0.5 0.03 0.007

 Table 5.23: Decimal fraction

In computing, the same approach is used to represent fractional binary numbers. 
For example, the fractional binary number 11.11011

2
 may be represented as shown 

in Table 5.24.



Number Systems

100

Place value 21 20 • 2–1 2–2 2–3 2–4 2–5

Binary digit 1 1 • 1 1 0 1 1
Decimal value 2 1 • 0.5 0.25 0 0.0625 0.03125

	 Table	5.24:	Representing	floating	point	binary	numbers

For	example,	to	convert	a	number	like	87.25	to	binary	form,	first	convert	the	integer	
part using one of the methods discussed earlier. Then, convert the fractional part as 
follows:
1. Start by multiplying the fractional part by 2 and write the partial product. For 

example, 0.25 × 2 = 0.5.
2. Take the fractional part of the previous partial product and multiply it by 2. In 

our case: 0.50 × 2 = 1.000.
3. Repeat until the fractional part on the right of decimal point of the partial product 

is 0 or starts recurring. For example, in step 2 above, the fractional part is 000 
hence we stop.

4. Read downwards the 0s and 1s on the left of the decimal point of partial products 
as shown below:

 

read this digits

0.25 × 2 = 0.50
0.50 × 2 = 1.00  

87.25 = 1010111.01

To	convert	a	floating	point	decimal	number	7.375,	proceed	as	follows:
1. Convert the integer part 7 using the division-by 2 or place value method. The 

operation should return 111.
2. Convert the fractional part until the part on the right of decimal point is 0 or starts 

recurring:

 

0.375 × 2 = 0.750
0.750 × 2 = 1.500
0.500 × 2 = 1.000  (stop because the part on the right is  zero)

read downwards

3. Read the digits on the left of decimal point downwards as shown by the arrow. 
In this case, the digits are 0.011.

4. Combine the integer and fractional parts to get: 111+0.011= 111.011
2

 Thus: 7.375
10

 = 111.011
2

In this example, we demonstrate how to convert a decimal number 0.40 that returns 
a recurring binary fraction. We proceed as follows:



Number Systems

101

           
read downwards

0.40 × 2  = 0.80
0.80 × 2  = 1.60
0.60 × 2  = 1.20
1.20 × 2  = 0.40
0.40 × 2 = 0.80  (stop	because	the	fraction	starts	repeating	the	first	step)

Thus: 0.40
10

 = 0.0110
2

Activity 5.10: Decimal fraction to binary conversion

1. Convert the decimal number 43.5625
10

 to binary form. Compare your answer with 
101011.1001

2
.

2. Convert the following floating point decimal numbers to binary form:
 (a) 0.625

10
  (b) 0.450

10
  (c) 2.500

10

 (d) 5.1625
10

 (e) 7.1875
10

  (f) 0.350
10

5.9  Binary Fraction to Decimal Conversion
To convert	a	floating	point	binary	number	like	11.011

2
 to decimal form, proceed as 

follows:
1. Convert the bits on the left of the decimal point into decimal form and sum-up 

the partial products as follows:

2 × 1 =  2.000
1 × 1 =  1.000

   3.000
10

Multiply each integer 
part by its place value

Add the two numbers

2. Next, convert the bits on the right of the decimal point to decimal form using 
corresponding place values from left to right as shown below:

  0.50 × 0   =  0.000
  0.25 × 1   =  0.250
0.125 × 1   =  0.125

             0.375

3. Finally, add the two decimal parts: 3.000
10

 + 0.375
10

 = 3.375
10

 
Thus: 11.011

2
 = 3.375

10



Number Systems

102

Activity 5.11: Binary fraction to decimal conversion

Convert 11.11011
2
 to decimal form and compare the value you get with 3.84375

10
.

Assessment Exercise 5.7

1. Convert the following binary numbers to decimal form:
 (a)  0.10011

2
  (b)  0.0010

2
  (c)  0.10101

2

 (d)  11.0110
2
  (e)   101.11110

2
 (f)  100.110

2

5.10  Negative Decimal to Binary Conversion
Conversion	of	negative	decimal	numbers	to	binary	form	is	simplified	by	use	of	one’s 
complement and two’s complement. One’s complement is a value obtained by inverting 
each bit in a binary number while two’s complement is value obtained by adding 1 
bit to one’s complement. In this section, we show how to use one’s complement and 
two’s complement to convert a negative decimal number to binary form.  

5.10.1  Ones complement

One’s	 complement	 is	 a	 temporary	 step	 to	 finding	 twos	 complement	 of	 a	 binary	
number. To convert a binary number to ones complement, we invert 0 bits to 1s and 
vice versa. For example, the one’s complement of 1001110

2
 may be expressed as a 

unary operation as follows:
 ~(1001110) = 0110001; where ~ stands for negation.

   Activity 5.12: One’s complement
Represent the following binary numbers to ones complement. In each case, state the 
decimal number represented by the ones complement.
(a) 1101001

2
 (b) 1111010

2
 (c) 10101101

2

(d)  1011111
2
 (e) 1011001

2
 (f) 11100111

2

5.10.2  Two’s complement

Twos complement is another method used to represent negative numbers in binary 
form. Two’s complement of a number is obtained by getting the one’s complement 
then adding 1 bit. 
For	example,	to	find	the		two’s	complement	of	the	binary	number	1001110

2
, proceed 

as follows:
1. Convert 1001110 to one’s complement using unary operator (~) : 
 ~(1001110) = 0110001;



Number Systems

103

2. Add 1 bit to one’s complement to get the two’s complement:
 0110001 + 1 = 0110010
 Thus: Two’s complement of 1001110 = 0110010.

Taking another example, let us convert the decimal number 45 to binary form and 
express its negative value using twos  complement.  
The	problem	requires	that	you	pad	(insert)	0	bits	to	the	left	of	the	most	significant	bit	
until the number has 8 bit.  To get the 2s complement, proceed as follows:
1. 45

10
 to 8-bit binary form i.e 00101101

2
.

2. Convert the binary number to one’s complement as follows: 
 ~(00101101) = 11010010.
3. Add 1 to one’s compliment number as follows:

 
11010010  + 1

 
= 11010011.

Activity 5.13: One’s and two’s compliment

1. In decimal number system, we may represent integers using nine’s complement 
while in binary, we use ones and twos complement. In groups, perform the 
following activities: 
•	 Demonstrate	how	you	would	represent	nines	complement	of		decimal	number	

like 945. Explain why this complementation is rarely used in computer 
processing logic.

•	 Explain	the	difference	between	ones	and	twos	complement	and	demonstrate	
how you would represent a binary number like 11010010

2
 using twos 

complement. 
2. Convert the following negative decimal numbers to binary equivalent using one’s 

and two’s complement:
 (a) -20   (b) -55  (c) -108  (d) -586

5.11  Arithmetic Operations on Binary Numbers
Basic arithmetic operators such as addition(+), subtraction(–), multiplication (×), 
division(/) can be used to manipulate binary numbers. In computers, these operations 
are performed inside the central processing unit by arithmetic and logic unit (ALU). 
Because, ALU only performs binary addition, subtraction operation is carried out 
using one’s or two’s complements. To perform  multiplication and division, the ALU 
shifts the bits to the left or right before adding the operands. 

5.11.1  Binary addition 

The four rules applied in binary additions are:



Number Systems

104

1.  0 + 0 = 0   
2.  0 + 1= 1   
3.  1 + 0 = 1
4. 1 + 1 = 0 (write 0, and carry 1 to the next significant bit).

For example, to calculate binary addition 111 + 011, proceed as follows:
1. Arrange the bits vertically, and then add them from right to left like in decimal 

numbers as shown below:
   111
   +  011  

2. Start the add operation with the least significant digits on the right.
 1

2
 + 1

2
 = 10

2
 (write 0, and then carry 1)

3. Add the carry over digit from the previous step to the second least significant bit 
to get:

 1
2
 + 1

2
 + 1

2
 = 11

2
 (write 1, and then carry 1)

4. Finally, add the most significant bits, plus the carry over from the previous step 
to get:

 1
2
 + 0 + 1

2
 = 10

2
, (write 10 because to this is is the leftmost)

 Thus: 111
2
 + 011

2
 = 1010

2

The four steps are summarised in Table 5.25 below:

 1st operand   1 1 1
 2nd operand   0 1 1
 Carry digit   – 1 1
 Partial sum  10 1 0

 Table 5.25: Steps of binary addition

Activity 5.14: Binary addition

Workout binary addition of 00110
2
 and 01101

2
. Check if 100011 shown in Table 5.26 

is the correct sum. 

1st operand   0 0 1 1 0
2nd operand  0 1 1 0 1
Carry digit   0 1 1 – – 
Sum 1 0 0 1 1

 Table 5.26: Adding two binary numbers



Number Systems

105

Activity 5.15: Binary addition

Find the sum of the following binary numbers:
10110
   1011  

    +    111
       

To	find	the	sum	of	the	three	numbers,	first	add	the	two	numbers,	then	add	the	partial	
sum to the third number as follows:
     Step 1      Step 2
 10110    100001
     + 1011        +111
    100001    101000

Assessment Exercise 5.8

Work out  the following binary additions:
1.  1010  + 111   2.   1111+1110  3. 1011+111         

4.  11101+ 10110 5.   1000111+ 10010  6. 1101+101 

7.  111110
 
+111+101 8.   100011+10101+ 11011  

9.  1111111
 
      10.    100101  11.  110010

  
12.  1101111

      + 111111             + 11011              + 111011            +   110111

5.11.2  Binary subtraction

The four rules applied in binary subtraction are:

1.  0 – 0 = 0   
2.  1 – 0 = 1   
3.  1 – 1 = 0 
4. 0 – 1 = 1 (borrow	1	from	the	next	more	significant	bit)

The following example illustrate binary subtraction using direct method:

    1101

     – 1010



Number Systems

106

Starting from right to left, work out binary subtraction as follows:

Step 1   1 – 0 = 1, 
Step 2  10 – 1 =1  (borrow 1 from the next significant digit)
Step 3   0 – 0 = 0,
Step 4   1 – 1 = 0,  

Thus:1101– 1010 = 11

Activity 5.16: Binary subtraction

Work out the following the binary difference:

(a) 10011
2
 – 1100

2 
(b) 10110 – 1011

(c) 101 – 100  (d) 10111 – 1111

Assessment Exercise 5.9

Work out the following binary subtractions:
1.   11 001 2. 101   3.    11011 4. 1100        5. 111011
      –  1 010  – 100                  – 111    – 011        – 110
6. 100010 – 11  7.  01101 – 1011  8.  11111111 – 10101101

9. 11101101 – 100111 10.  100000 – 1111

Subtraction using one’s complements

Because a computer does not perform direct subtraction, one’s complement is an 
alternative	method	used	to	find	the	difference	of	numbers.	For	example,		to	compute	
5-3 using the ones complement, proceed as follows:
1. Rewrite the problem as 5 + (–3) to show that  a computer performs subtraction 

by adding 5 to ones complement of the decimal 3.
2. Convert the decimal number 3 to its 8-bit number, i.e., 00000011

2
.

3. Convert  00000011
2
 to ones complement, i.e., 11111100

2
.

4. Convert the first operand i.e 5 from decimal to binary form. This gives us 00000101 
in 8-bits.

5. Add the two binary numbers as shown below.

  00000101
         + 11111100
        (1)00000001

 NB: We observe that the difference between the two numbers has nine bits instead 
of the original 8. This extra bit is known as the overflow bit.

The 9th bit is an overflow 
hence should be ignored.



Number Systems

107

Therefore, the result shows that the difference between 5 and 3 is 00000001; but 
this is not true because the answer should be 00000010.

6. To get the correct answer, add the overflow bit back to the difference. 
 Thus the correct difference is:
 00000001 + 1 = 00000010.

Activity 5.17: Subtraction using ones compliments

Using 8 bits, find the ones complement of the negative decimal number -13
10

.
1. Convert the absolute value 13

10
 to an 8-bit binary number, 00001101.

2. Negate each bit such that zeros becomes 1’s and ones becomes 0’s to get 
11110010

2
. This represents -13 in binary form.

Subtraction using twos complements

Like in one’s complement, the two’s complement of a number is obtained by negating 
a positive number to negative number. For example to get the difference 5 – 3, using 
the two’s complement, proceed as follows:
1. Rewrite the expression as addition of 5 + (–3).
2. Convert the absolute value of 3 into 8-bit binary equivalent i.e. 00000011.

4. Take the one’s complement of 00000011, that is 11111100.
5. Add 1 to the one’s complement i.e. 11111100+1 to get 11111101.
6. Convert 5 to binary and add it to two’s complement of 3 as follows:

 

 00000101
 +  11111101
 (1) 00000010

overflow	bit

NB: After adding the two numbers, the sum becomes a nine bit number. But 
because a computer can handle only 8 bits, the extra bit on the extreme left (most) 
significant	digit	is	referred	to	as	overflow	bit.

7. The	bit	 in	brackets	 is	 an	overflow	hence	 it	 should	be	 ignored.	Therefore,	 the	
correct difference is 00000010.

Activity 5.18: Subtraction using two’s complement

1. In	 terms	of	memory	management,	 explain	why	 an	overflow	bit	 resulting	 from	
arithmetic operations is always discarded.  

2. Using	 two’s	 complement,	 find	 the	 difference	 between	 the	 following	 decimal	
numbers: 

 (a) 31-17  (b) 27-5  
 (c) 127-50  (d) 17-35



Number Systems

108

5.11.3  Binary Multiplication

The pen-and-paper method of binary multiplication is quite similar to that used in 
decimal numbers only that the multipliers are 0s and 1s. In binary multiplications, 
the four rules applied from right to left are:

1.  0 x 0 = 0   
2.  1 x 0 = 0   
3.  1 x 0 = 0 
4. 1 x 1 = 1  (no carry over or borrowing) 

For example, to perform binary multiplication 1011
 
x 101, proceed as follows:

  1 0 1 1   

  × 1 0 1 

1 1 0 1 1 1

Add the partial products we get 110111
2

1 0 1 1
 0 0 0 0

+1 0 1 1

 

Explanation

1. Multiply the first multiplication with each digit of the second multiplication.
2. Shift the partial products to the left.
3. Add the partial products as follows:
 1011 + 0000 + 1011 = 110111

2
 

Activity 5.19: Binary Multiplication

Perform the following binary multiplications:
(a) 101101

  
x 

 
110

 

(b) 101101
  
x 

 
111

 

(c) 1011.01
  
x 

 
110.1

5.11.4  Binary Division

Binary division is a shift and subtract operation. In each step, the dividend is grouped 
into bits which are divisible by the divisor, and then subtracted. For example, to 
perform division of 10101

2  
÷ 

 
11

2 
proceed as follows:



Number Systems

109

         1 1 1 
11    1 0 1 0 1
           1 1 
           1 0 0 
   1 1 
              0 1 1

1 1
0 0

10101 ÷ 11 = 111

Explanation

1. Group the dividend into bits divisible by the divisor starting from left to right, 
and then subtract.

2. Write down the quotient and the divisor from the dividend.
3. Drop down the next digit and check if the dividend is divisible by the divisor.
4. Continue until the resulting dividend is zero or not divisible.

Taking another example of binary division, let us workout 11100110÷110.

1

1

1

1

110

110
100
110
100

11
11

divisor

quotient

won’t go
won’t go

dividend

0

0
0

0

0
0

0
0

1
1

1
1

1
1

1
1

1
0

01

110

remainder

divisible

divisible

Therefore, 11100110÷110 = 100110 remainder 10

Activity 5.20: Binary division

Perform the following binary divisions:
(a) 1011

 
÷ 11

         
(b) 10011

 
÷ 101

   
(c) 1111

 
÷ 

 
11

 
  (d) 11

  
÷ 

 
11



Number Systems

110

Assessment Exercise 5.10

1. Convert the decimal number –7 to an 8-bit binary number using twos complement.

2. Using 16-bit word, find the two’s complement of the following decimal numbers:
 (a)  –31

10
   (b)  –28

10
  (c)   –5

10

3. Convert the following expressions to binary form and perform the operations 
using one’s and two’s complement.
(a)  14 – 7  (b)  28 – 12  (c)  34 – 33  (d)  100– 50

Unit Test 5
1. Differentiate between the following number systems:

(a)  Octal and decimal number system.
(b)  Binary and hexadecimal number systems.

2. Convert the following binary numbers to decimal form:
(a) 101110

2
 (b) 101011

2
  (c) 0110

2

3. Convert the following decimal numbers to binary form:
 (a) 789

10
  (b)   570

10
  (c)   42

10

4. Calculate the sum of the following binary expressions:
 (a) 1110

2
 + 1111

2
  (b)  001

2
 + 100

2
      (c) 1101

2
 + 1011

2
 + 100

2

5. Using ones and twos complement, workout the following arithmetic:
 (a) 11001 – 1101  (b) 1000 – 101 (c) 100011 – 111
 (d) 10101110 – 100110 (e) 10100110 – 101 (e) 111011 – 101
6. Using one’s and two’s complement, convert the following decimal numbers to 

binary form:
(a) – 75

10
  (b)  – 80

10
  (c)  –100

10
  

7. Determine the value of k in the following binary arithmetic operations:
(a) 100110 – k = 001010

2
  

(b)  k × 1101
2
 = 1000001

2

8. Work out the decimal equivalents of the following binary numbers:
 (a) 0.10010 (b) 101.11 (c) 11.101 (d) 0.001
 

9. Find binary equivalents of the following decimal numbers:
 (a) 0.35  (b) 2.50 (c) 65.20 (d) 17.125



Boolean Algebra and Logic Gates

111

Key Unit Competency
By the end of this unit, you should be able to:
1. Identify different logic gates, theorems of boolean algebra and    

evaluate boolean expressions.
2. Utilise laws of boolean algebra on boolean expressions and draw a    

simple logic circuit using logic gates.

Unit Outline
•	 Circuits and Logic gates.
•	 Logic gates.
•	 Truth tables
•	 Solving problems using logic circuits
•	 Boolean Algebra.
•	 Sum of Product (SOP) and Product of Sum (POS)

Introduction
As you may be aware, most modern computers are digital and they use binary logic 
to process data which is represented as a series of 0’s and 1’s. In this chapter, we start 
by looking at simple logic circuits that form the fundamental building blocks of data 
processing	in	computers.	We	then	briefly	look	at	boolean	algebra	and	its	connection	
to logic reasoning.  

6.1  Circuits 

Activity 6.1: Switching a torch on and off
Hold a torch. Switch it ON. After a while, switch it OFF. What do you think makes 
the torch to give light when you move the switch to the ON position?

Simplic circuits representing logic gates
Before we look at logic gates, let us try to represent basic logic operations using an 
arrangement of switches that can control the states of a light bulb, either to go ON 
or OFF. Figure 6.1 shows a normal simple electrical circuit: 

BOOLEAN ALGEBRA AND 
LOGIC GATESUnit 6



Boolean Algebra and Logic Gates

112

bulb

power source

Fig. 6.1: A simple electrical circuit

In Figure 6.1 above, when the switch is OPEN (state 0) the bulb is OFF (state 0) too. 
When the switch is closed (state 1) then the bulb comes ON (state 1) too because 
there	is	flow	of	electricity	in	the	circuit.

6.1.1  NOT circuit
Now	study	Figure	6.2	below.	You	will	notice	that	it	has	a	different	arrangement.	In	
this circuit, when switch A is open, the bulb comes ON since there is a complete 
flow	of	electrical	current	in	the	circuit.	However,	when	A	is	closed,	the	bulb	finds	
itself in between two +ve  opposing voltages that are equal to each other so it goes 
OFF. Therefore, when the state of the switch is 1, that of the bulb is at 0.   This is a 
generally referred to as the inversion or NOT operation i.e. it inverts the input from 
1 to 0 and vice versa.

A

Fig. 6.2: A NOT circuit
6.1.2  AND circuit
In Figure 6.3 below, both switch A AND B must be closed (in state 1) before the 
bulb can light. If either or both switches are open, the bulb is also OFF. This circuit 
represents the AND logic where all the switches must be closed in order to light the 
bulb.



Boolean Algebra and Logic Gates

113

A                           B

Fig. 6.3: An AND circuit

6.1.3  OR Logic
Figure 6.4 below shows a circuit that represents the OR logic. In this case if either 
switch A OR	B	is	closed,	the	bulb	will	light.	The	bulb	will	be	off	only	if	both	switches	
A and B are open at the same time.

Fig. 6.4: An OR gate circuit

6.2  Logic gates
A logic gate is the basic building block of a digital circuit. A digital circuit is one that 
can only be in one of two states at any one time, either ON or OFF. An ON means 
there is high voltage in the circuit while an OFF means zero or no voltage in the 
circuit. It usually has  an input side (with one, two or more inputs) and a single output. 
The input(s) can receive either ON or OFF signals usually represented by 1 or 0 then 
depending on the logic within the gate, the output can either be 1 (one) or 0 (zero). 
Although a single logic gate is simple, many of them are combined together into a 
complex maze to enable complex circuits which process data in the computer at the 
low level depending on the type of signals that are input. 



Boolean Algebra and Logic Gates

114

Basic logic gates
There	are	quite	a	number	of	different	logic	gates.	However,	the	basic	ones	are	shown	
in table 6.1 below. Before discussing each one of them, take note of their names and 
drawing. You should be able to identify and/or draw the representation of a particular 
gate.

A
B

A
B

A
B

A
B

A Q

Q

Q

Q

Q

AND gate: the output Q = 1 if and only if A=1 and B =1; otherwise Q = 0

OR gate: the output Q = 1 if one of the inputs A or B = 1

NOT gate: has only one input. It inverts the input. If A = 1 then 

Q = 0 and vice versa

NAND gate: This is an AND gate followed by a NOT gate (inverted 
AND). Q=0 when A = 1 and B = 1.

NOR gate: This is an inverted OR gate. A NOT gate is inserted after 
and OR gate. Q=1 when A=0 and B=0 otherwise Q=0.

XOR gate or Exclusive OR gate. Q=1 if and only if one of the inputs 
is 1 otherwise for all other combinations, Q=0. 

XNOR gate or Exclusive NOR gate. Q=1 if and only if A and B are 
either both 1 or both 0 respectively; for all other combinations, Q=0 . 
Therefore, it is the opposite of the XOR gate.

A
B

Q

A
B

Q

Table 6.1: Logic gates

6.3  Truth tables
A truth table is a mathematical table used in boolean algebra or propositional logic to 
compute the outcome of all possible combinations of input values i.e. it can be used 
to tell whether an expression is valid for all legitimate input values. For example, 
if the inputs A and B can take values 0 and 1; then possible combinations for inputs 
(A,B) are {(0,0), ),(0,1), (1,0) and (1,1)}.
Assuming	Q	 is	 the	 output,	 each	 logic	 gate	 gives	 different	 outputs	 based	 on	 the	
combination of these values (see Figure 6.2).   
The truth tables are important because they help us to know the output of each 
individual gate given certain inputs hence we can use them to construct more complex 
logic circuits that can solve real problems. 
Given a particular truth table, it should be possible for you to know which logic gate 
or combination of logic gates produced it. An increase in the number of logic gates 
also expands the truth table.



Boolean Algebra and Logic Gates

115

Truth tables for various logic gates
Based on the characteristics of individual logic gates discussed in Table 6.1, we can 
be able to investigate the behaviour of each gate when a combination of inputs are 
used. For the sake of simplicity, we look at gates that have only two inputs and one 
output. We accomplish this by constructing truth tables. A truth table arranges all 
possible input combinations and their relevant outputs (Figure 6.5). In this case, A 
and B represent inputs to the logic gate while Q the output.

    

Fig. 6.5: Truth tables

Activity 6.2: ICs and their internal logic gate structure
Groupwork: 
The integrated circuits (ICs) that we have in our electronic devices like radios, 
televisions, mobile phones, tablets and computers look like the pictures in Figure 
6.6 (a). The internal structure of some of such ICs is shown in Figure 6.6(b)(i) and 
(ii). Study them then answer the questions that follow:

(a)                                          (b)
Fig. 6.6: Internal structure of integrated circuits

(i)

(ii)



Boolean Algebra and Logic Gates

116

1. Identify the gates that are found in each of the ICs (i) and (ii) above.
2. In IC (i): If a high voltage signal is fed at pin 13 and a low voltage signal at pin 

12, what will be the output at pin 11?
3. In IC (ii): If a low voltage signal is at pin 2 and 3, what will be the output at pin 

1?

Activity 6.3: Example of coming up with truth tables
Individual work: 
Study the following logic circuit in Figure 6.7. Construct a truth table for the circuit. 
Do	not	look	at	the	provided	solution	first.

Fig. 6.7: Combination of gates 
Solution:	Notice	that	the	logic	circuit	has	four	inputs.	This	expands	the	different	input	
combinations to 16 i.e: (A,B,C,D)  = {(0000),(0001),(0010),(0011),(0100),(0101),(0
110),(0111),(1000),(1001),(1010),(1011),(1100),(1101),(1110),(1111)}.
How to work out the solution:
1. Start by looking at the inputs A and B. Remember that for an OR gate, if either 

of them or both of them are 1 then the output E will be 1 otherwise it would be 0.
INPUTS OUTPUT 

OF OR
OUTPUT 
OF AND

OUTPUT 
OF NAND

A B C D E F Q

0 0 0 0 0 0 1
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 1
0 1 0 0 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 0 1
0 1 1 1 1 1 0
1 0 0 0 1 0 1
1 0 0 1 1 0 1
1 0 1 0 1 0 1
1 0 1 1 1 1 0
1 1 0 0 1 0 1
1 1 0 1 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 1 0

Table 6.2: Truth table for Figure 6.7



Boolean Algebra and Logic Gates

117

2. Move to the inputs C and D. Remember again that for an AND gate both inputs 
need to be 1 in order for the output F to be 1 otherwise all other combinations 
produce output F = 0.

3. Lastly, E and F are inputs to the NAND gate. For Q to be 0 then both E and F 
must be 1 otherwise Q will be 1 in all other combinations. Therefore, the truth 
table for the circuit in Fig. 6.7 is as shown in Table 6.2:

Activity 6.4: Example of logic gate identification from given truth table

Pair Work: 
Given the following truth tables (Table 6.3), draw and name the logic gate or 
combination of logic gates that can produce them. Assume A,B are inputs while Q is 
the output. Try to answer before looking at the solution.

A B Q
0 0 1
0 1 0
1 0 0
1 1 0

Table 6.3: Truth tables

Solutions
(a)  Looking at the truth table, the gate has two inputs. The output of the gate resembles 

that one of an OR gate followed by a NOT gate. Hence, this is a NOR gate 
(Figure 6.8).

A

B

Q

Fig. 6.8: NOR gate

6.4  Solving problems using logic circuits
Many problems in mathematics and computer science are solved through two valued 
logic; every statement is either True or False (1 or 0).  In life, problems are solved 
by logically thinking through all possible courses of action and coming up with a 
conclusion of the best way to solve the problem. In coming up with the solution, the 
logician comes up with all valid arguments. Logical statements that describe problems 
can therefore be solved using logical circuits or their equivalent truth tables.



Boolean Algebra and Logic Gates

118

Activity 6.5: Example of using logic gates to construct a light switch
Think of a situation where you are requested to use the appropropriate logic gate(s) 
to construct a light switch i.e. when the switch is ON (True), the light is ON (True) 
too; but when the switch is OFF (False), position of the light goes OFF (False) too.  

Solution 
This is typically two NOT gates arranged one after the other.
The truth table for the circuit will be as follows:

Table A Table B Table Q
(switch is Off) F T F (Q is Off)
(switch is On) T F T (Q is ON)

B QA

Fig. 6.9: Constructing a light switch

Activity 6.6: Solving real life problems 
Groupwork: 
In	groups	of	four,	try	to	find	the	solution	to	this	problem.	Do	not	look	at	the	solution	
provided	first.

An alarm bell uses three sensors to determine whether it should sound or not. Two 
sensors A and B are inside the room while C is hidden somewhere outside the room. 
If either sensor A or B or both detect motion in the room and C never reported sensing 
motion outside, then the system knows that there is an intruder. An ON signal is sent 
to the bell and the bell rings loudly. Only authorised persons know where sensor C is 
hidden outside the room. To safely enter the room, they have to follow a procedure i.e.  
start by standing in front of C  for the system to sense their presence before entering 
the room. In that case all the sensors A, B and C will have detected the presence of 
an authorised person, therefore, no signal will be sent to the alarm for it to ring. In 
essence, as long as C detects motion, the alarm assumes that the person entering the 
room is not an intruder. Draw a logic circuit that would represent this logic and do 
a truth table for it.

Solution 
We have to start by reasoning based on the logic gates possible inputs and outputs. 
Let us start by assuming the alarm has three inputs A, B and C. This means one of 
the gates has one input - hence it must be a NOT gate! Let us make the following 
assumptions when reasoning about the inputs A, B and C; and output X.
1. If a sensor senses motion then there is a 1 signal at the sensor. If there is no 

motion, there is a 0 signal at the sensor.
2. If X = 1, the alarm bell rings otherwise it does not ring.



Boolean Algebra and Logic Gates

119

We start by constructing a truth table for the alarm circuit based on all possible 
combinations of inputs A,B and C and expected output X as shown in Table 6.4 (a) 
below. What we know is that for all instances where C = 1, then X = 0 i.e. when C 
detects motion the alarm bell will not ring even if A and B detect motion.
We also know that where either A or B or both are 1(detect motion) and C = 0 then 
X = 1. Of course where both A and B are 0 then X = 0 too since there is no intruder! 
We	can	then	fill	in	the	gaps	as	shown	in	Table	6.4(b).

      
A B C X
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(b)

A B C X
0 0 1 ?
0 0 1 0
0 1 0 ?
0 1 1 0
1 0 0 ?
1 0 1 0
1 1 0 ?
1 1 1 0

(a)

Table 6.4: Truth tables

We	can	now	construct	a	possible	configuration	of	gates	using	a	block	diagram.	All	
we know for now is that one of the gates is a NOT gate. Let us conveniently assume 
that the one on which sensor C is attached is our NOT gate. Looking at truth Table 6.4 
(b) we can conclude that the output X of gate G2 depends on the output of the NOT 
gate (E) together with that of  G1 (D). Ideally, we keep remembering that whenever 
E = 0, then X = 0.

 G1

G2

NOT

A
D

B

E
C

X

Fig. 6.10: The NOT gate in the figure

Let us expand the truth table (b) above, based on the knowledge we have to include 
the	outputs	D	and	E.	We	can	reason	analytically	to	see	whether	we	can	finally	find	
out what type of logic gate G1 and G2 are:



Boolean Algebra and Logic Gates

120

A B C D E X
0 0 0 ? 1 0
0 0 1 ? 0 0
0 1 0 ? 1 1
0 1 1 ? 0 0
1 0 0 ? 1 1
1 0 1 ? 0 0
1 1 0 ? 1 1
1 1 1 ? 0 0

Table 6.5

We take notice that every time either A or B or both are 1 then X = 1 only where E=1. 
Therefore G2 behaves like an AND gate while G1 like an OR gate!! We sketch the 
circuit (Figure 6.11) and verify it using a truth table:

Fig. 6.11: The complete figure

A B C D E X
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 0 0

Table 6.6: Final solution

Problem solved!!

Assessment Exercise 6.1
1. Define a logic gate.
2. What is a logic circuits truth table?



Boolean Algebra and Logic Gates

121

3. Assuming that a NOT gate has an input 0, what will be its output? 
4. Draw a NOT gate. Draw its truth table.
5. Assuming that an OR gate has one input at 1 and the other one at 0.   

What will be its output?
6. Draw an OR gate. Draw its truth table.
7. What is the difference between an OR gate and a NOR gate.
8. Draw a NOR gate. Draw its truth table.
9. Differentiate between an AND and NAND gate.
10.  Draw a NAND gate and its truth table.
11.  Draw an XOR gate and its truth table.
12.  Draw an XNOR gate and its truth table.
13. Develop truth tables for the following logic circuits (Fig. 6.12):

Fig. 6.12: Combination of logic gates
14. A company would like to come up with a logic circuit to monitor what is 

happening in the boiler and get a warning well in advance before the situation 
goes out of control. If the pressure (A), temperature (B) and  humidity (C) are 
low, then a signal is sent to the operator that there is something wrong with the 
system. Similarly, if either pressure or temperature is high and the other low, 
and the humidity is low, a signal will be sent to the operator. Develop a truth 
table for this and draw the equivalent logic circuit.   



Boolean Algebra and Logic Gates

122

6.5  Boolean algebra
Boolean algebra was invented by George Boole in 1654. It can be used to automate the 
manipulation of objects that control real life processes. This is because computers are 
made up of digital switches that are either ON or OFF. Since  the inputs and outcomes 
of boolean algebra are either 1 or 0, it is a more natural way of representing digital 
information or computing logic. The algebra is  used to explain or solve problems 
related to logic and digital circuits.

6.5.1  Laws of boolean algebra
Boolean operations revolve around boolean operators. A boolean operator takes two 
inputs of either 1 or 0 and output a single value also either 1 or 0. 
There are several laws of boolean algebra. The most common operators that are used 
to	manipulate	the	various	logic	elements	are	the	OR	(+)	and	the	AND(•)	e.g.
A + B means A OR B.
A•B	means	A	AND	B	or	mostly	just	written	as	AB	without	the	(•)	symbol.

1. Commutative law
The commutative law states as follows:

(i) A + B = B + A
(ii)	 A•B	=	B•A

2. Associative law
The associative law states as follows:

(i) (A + B) + C = A + (B + C)
(ii)	 (A•B)•C	=	A•(B•C)

3. Distributive law
The distributive law states as follows:

(i)	 A•(B+C)	=	A•B	+	A•C
(ii)	 A	+	(B•C)	=	(A+B).(A+C)

4. Identity law
The identity law states as follows:

(i) A + A–  = A
(ii)	 A•A–  = A

Also:
(iii)	A•B	+	A•B–    = A
(iv)	 (A+B)•(A+B– ) = A

NB: If A = 1 then A– 	=	0.	The	bar	on	top	signifies	a	NOT	operation	on	the	variable.		

5. Redundance law



Boolean Algebra and Logic Gates

123

The redundance law states as follows:
(i)	 A	+	A•B	=	A
(ii)	 A•(A+B)	=	A

6. De Morgans law
The De Morgans law:

(i) (A+B) = A –  . B–

(ii) (A•B)  = A –  + B–

NB: One of the most common mistakes that learners make is to assume that:
(A•B)	=		A•B.					

This is wrong and is not an equality.

7. Boolean constants
(i)	 A•0	=	0	(Null	law)	 	 (iii)	A+0	=	A	 	 	
(ii)	 A•1	=	A	(Identity)	 	 (iv)	A+1	=	1

6.5.2  Boolean algebra simplification
Using the above laws, both simple and complicated boolean expressions and logic 
circuits	can	be	simplified	and	solved.	Truth	tables	for	the	expressions	are	used	to	
come up with relevant solutions. 
In normal algebra, it is possible to simplify complex expressions like 9x + 3y – 2x 
+ 4y to their simplest forms like 7x + 7y i.e.
 9x + 3y - 2x + 4y = 9x - 2x + 4y + 3y    (simple rearrangement)
  = 7x + 7y
Similarly, the boolean laws stated above can be used to simplify complex boolean 
expressions.	It	is	often	the	case	that	a	complex	boolean	equation	has	to	be	simplified	
into its simpler exact equivalent. This becomes very useful when one is designing 
circuits and wants to minimise the number of gates needed to build the circuit. There 
are two methods of simplifying boolean expressions:
1. Using truth tables.
2. Using boolean algebra which entails applying identities and De-Morgans law.
In this book, we shall rely on these laws as stated in section 6.5.1 and on truth tables. 

Activity 6.7: Boolean algebra example
Individual Work: 
Study the example given below: Do the workings too as presented below.
Simplify the following boolean expression:
F(X,Y,Z) = XYZ + XYZ + XZ
Using the distributive law:
  = XY(Z+Z) + XZ



Boolean Algebra and Logic Gates

124

Then using the inverse rule: i.e. 2 + 2–   = 1
  = XY(1) + XZ
Using the identity rule:
  = XY + XZ

We can check using truth tables whether the complex form of the expression is 
equivalent	to	the	simplified	form.	The	truth	table	for	the	complex	form	of	the	equation	
is given below:

X Y Z  XYZ XYZ XZ F(X,Y,Z)
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 1 0 1 0 1
1 1 0 0 0 0 0
1 1 1 0 1 1 1

Table 6.7: Truth table for complex form

Let us look at row 1 to know how we are computing the values:
XYZ	 =	 1•0•0	=	0	(remember	for	AND	all	have	to	be	1	to	get	a	1)	i.e.	on	row		 	

 1 column 1, X; = on row 1 column 2 Y =0 and on row 1 column 3 Z =  0
XYZ	 =		1•0•1	=	0	(remember	if	A	=	0	then	A	=	1)
XY	 =		0•0	=	0	
F(X,Y,Z) = 0 + 0 + 0 = 0 (for row 1; remember OR gate)
F(X,Y,Z) = 0 + 1+ 0 = 1 (for row 3; remember OR gate if one of the   

  inputs is 1 the output is 1)
Let	us	now	do	the	same	with	the	simplified	expression:
F(X,Y,Z) = XY + XZ

X Y Z XY XZ F(X,Y,Z)
0 0 0 1.0 = 0 0.0 = 0 0 + 0 = 0
0 0 1 1.0 = 0 0.1 = 0 0 + 0 = 0
0 1 0 1.1 = 1 0.0 = 0 1 + 0 = 1
0 1 1 1.1 = 1 0.1 = 0 1 + 0 = 1
1 0 0 0.0 = 0 1.0 = 0 0 + 0 = 0
1 0 1 0.0 = 0 1.1 = 0 0 + 1 = 1
1 1 0 0.1 = 0 1.0 = 0 0 + 0 = 0
1 1 1 0.1 = 0 1.1 = 0 0 + 1 = 1

Table 6.8: Truth table simplified expression



Boolean Algebra and Logic Gates

125

NB: If x = 0; x = 1 and vice versa
The F(X,Y,Z) columns tally for both cases so we can conclude that:
F(X,Y,Z) = XYZ + XYZ + XZ = XY + XZ is true.

Activity 6.8 Boolean algebra example
Pair Work: 
Simplify the following expression: Do not look at the solution that is provided below 
first	without	the	permission	of	the	teacher.
	 F(X,Y)	=	(X	+	Y)•(X+Y)		
(i) At each step of the simplification, state the law that you applied. 

Solution
= XX + XY + YX + YY (distributive law)
= XX + XY + YX + 0  (YY = 0 according to inverse law)
= X + XY + YX  (XX = X according to identity law)
= X + X(Y +Y)  (Distributive and Commutative laws)
= X + X(1)   (Y+Y = 1 according to inverse law)
= X + X 
= X     (Identity law)

6.6 Sum of Product (SOP) and Product of Sum (POS)
Using truth tables to simplify boolean equations is good and straight forward. 
However, when the logic circuits become more complex with more inputs, truth tables 
become	very	cumbersome.	It	is	desired	therefore	to	find	a	better	way	of	representing	
logic in such scenarios. We use a standard form of boolean equations known as the 
canonical form written in SOP or POS format. The SOP and POS equations help 
a person to quickly derive solutions from a given logic table and come up with 
equivalent logic circuits.

6.6.1 Sum of products
We have so far seen that given a boolean value A, we assume that A = 1 and its 
complement is A = 0. Conventionally, we can write a boolean expression which has 
three variables in the following form:
 F(A,B,C) = ABC + ABC + ABC 
This kind of expression has three groups of the products of the variables A, B and 
C (AND operations) which are summed together (ORed). We therefore call such an 
expression a sum of products (SOP). Each term in the equation is called a minterm 



Boolean Algebra and Logic Gates

126

e.g. ABC is one of the three minterms. However, note that the domain of three binary 
variables	is	capable	of	generating	eight	different	minterms	but	only	three	were	chosen	
for the above equation. We are going to see how such equations are generated from 
truth tables. 
In the SOP arrangement, the AND operations have precedence over the OR operations. 
That	means	we	first	AND	the	terms	in	the	minterms	before	we	do	the	OR	operations.
When representing minterms, we use a shorthand designation e.g. mx where x = 0, 
1, 2 . . . n. For example, in the above domain where we have three binary variables 
we can generate the following truth table.
 A B C  F Minterms Designation
 0  0  0  0 A B C  m0

 0  0  1  1 A B C  m1

 0  1  0  0 A B C  m2 
 0  1  1  0 A B C  m3

 1  0  0  1 A B C  m4

 1  0  1  0 A B C  m5

 1  1  0  0 A B C  m6

 1  1  1  1 A B C  m7

The minterms column represents the values of each variable A, B, C in the truth table 
e.g. if A = 1 then we write it as A; If A = 0 we write it as A in the minterm.
The values in the column F are	user	defined	depending	on	how	you	wish	your	circuit	
to behave i.e. in this case we want our circuit to give a 1 output if and only if:
 ABC, ABC, ABC (i.e. check the rows where F = 1 as bolded in the table).
To create an equation that represents the required logic, we OR these minterms:
 F(A,B,C) = ABC + ABC + ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
This equation can be written using the designations as:
 F   =  m1 + m4 + m7 as long as we have constructed the truth table   
 correctly and we know the variable combinations for each mx.
NB: From the Equation 1 above, we can now be able to construct a logic circuit 
that meets the conditions set by the equation. This method of coming up with logic 
circuits is far much more easier. It means we can be able to work with a truth table 
that	has	an	arbitrary	number	of	input	variables	and	come	up	with	simplified	boolean	
expressions which can then be used to construct logic circuits that meet the criteria set.

Constructing an equivalent logic circuit
Let us now construct an equivalent logic circuit for Equation 1. We can quickly 



Boolean Algebra and Logic Gates

127

understand each of the minterm combinations as follows:
1. ABC:  NOT-A   AND  NOT-B   AND C
2. ABC: A  AND  NOT-B  AND  NOT-C
3. ABC: A  AND   B  AND  C 
This means if you wish to create the logic circuit, you need three AND gates each 
with three inputs for each of the variables in the minterms. The three outputs of the 
AND gates then become inputs to a single OR gate of three inputs (remember you 
have to OR the minterms). However, notice that we include a NOT gate on any input 
that	has	a	NOT	operator	in	order	to	fulfill	the	required	criteria	(Figure	6.13).

Fig. 6.13:A logic circuit to satisfy Equation 1 - SOP
To verify whether the circuit meets the requirements of Equation 1, we can draw a 
truth	table	to	find	out	if	we	get	a	1	output	only	at	m1, m4 and m7 as is in Table  . 

Activity 6.9: Verifying the logic circuit in Figure 6.13
Draw the truth table for the logic circuit in Figure 6.13. Discuss the outcome with 
other students in the class as the teacher guides. Does your truth table have 1 outputs 
in column F at m1, m4 and m7?

6.6.2 Product of sums (POS)
The product of sums (POS) takes every combination of variables in the domain 
and performs an OR operation. The OR operations are then ANDed. Each valid 
combination is called a Maxterm and is designated as Mx where x = 1, 2, 3 . . . n. 
The OR operations take precedence over the AND operations here. For example, if 
we have a domain of three binary variables we can generate the following truth table:

F

A
B

C
A

B

C

A

B

C

Q1

Q2

Q3



Boolean Algebra and Logic Gates

128

 A B C  F Maxterms Designation
 0  0  0  0 A+ B+C M0

 0  0  1  1 A+B+C M1

 0  1  0  0 A+B+C M2 
 0  1  1  0 A+B+C M3

 1  0  0  1 A+B+C M4

 1  0  1  0 A+B+C M5

 1  1  0  0 A+B+C M6

 1  1  1  1 A+B+C M7

.   
In this case, we can pick only those maxterms where the value of our function F = 1.  
The maxterms can then be ANDed together as follows:
	 F(A,B,C)	=	(A+B+C)•(A+B+C)•(A+B+C)	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	(2)
In order to design a logic circuit that will meet the criteria set by Equation 2, we 
need three OR gates each with three inputs A, B and C. The output of the OR gates 
can then be fed into an AND gate as shown in Figure 6.14.

Fig. 6.14: Logic circuit to satisfy Equation 2 - POS

Activity 6.10: Verifying the logic circuit in Figure 6.14
Draw the truth table for the logic circuit in Figure 6.14. Discuss the outcome with 
other students in the class as the teacher guides. Does your truth table have 1 outputs 
in column F at M1, M4 and M7?

Notice that as you work out the truth table for the logic circuit in Fig 6.14, all the 
three OR gates need to give an output of 1 each i.e. Q1, Q2 and Q3 should all be equal 
to 1 in order for the AND gate to give output of F = 1.

F

A
B
C

A
B
C

A
B
C

Q1

Q2

Q3



Boolean Algebra and Logic Gates

129

Activity 6.11: Applying SOP and POS example
An	air	traffic	control	system	controls	the	landing	and	taking	off	of	aircrafts	at	the	
airport. The system uses four input variables to determine whether an aircraft should 
land	or	take	off:
A: The direction and speed of the wind must be favourable. 
B: The runway lights must be ON and clearly visible.  
C:  The runway must be clear and should not be slippery. 
D: The pilot must be alert and in good health.
The	system	can	give	a	green	light	for	landing/take	off	in	the	following	circumstances:
1.	If	B,	C	and	D	are	okey.	The	pilot	can	be	instructed	on	direction	of	landing/takeoff.
2. If all A,B,C,D are okey.
3.	For	all	other	combinations,	the	system	will	not	allow	landing/takeoff.
Use the sum of products strategy to come up with a logic circuit that can deliver the 
right decisions to the air controller. 
We start by constructing the truth table:
A B C D F Minterms Maxterms     
0 0 0 0 0 ABCD   m0    A+B+C+D   M0   
0 0 0 1 0 ABCD   m1    A+B+C+D   M1   
0 0 1 0 0 ABCD   m2    A+B+C+D   M2  
0 0 1 1 0 ABCD   m3   A+B+C+D   M3  
0 1 0 0 0 ABCD   m4   A+B+C+D   M4  
0 1 0 1 0 ABCD   m5    A+B+C+D   M5 
0 1 1 0 0 ABCD    m6 A+B+C+D   M6  
0 1 1 1 1 ABCD    m7 A+B+C+D   M7  
1 0 0 0 0 ABCD    m8 A+B+C+D   M8  
1 0 0 1 0 ABCD    m9 A+B+C+D   M9  
1 0 1 0 0 ABCD   m10 A+B+C+D   M10  
1 0 1 1 0 ABCD    m11 A+B+C+D   M11  
1 1 0 0 0 ABCD   m12 A+B+C+D   M12 
1 1 0 1 0 ABCD   m13 A+B+C+D   M13 
1 1 1 0 0 ABCD   m14 A+B+C+D   M14 
1 1 1 1  1 ABCD   m15 A+B+C+D   M15

Notice that a four variable truth table is large. To satisfy the conditions 1,2 and 3 
above, we set m7 and m15 as the only combination of the variables that will give us a 
1	in	the	system	i.e.	the	greenlight	for	a	plane	to	land	or	take	off.	Following	this,	we	
can then write the required equations as follows:
SOP: F(A,B,C,D) = ABCD + ABCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .(3) 



Boolean Algebra and Logic Gates

130

POS:	 F(A,B,C,D)	=	(A+B+C+D)•(A+B+C+D)	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	(4)
Equation 3 summarises the solution using the sum of products while Equation 4 uses 
the product of sums. After coming up with this equations, it is now possible to design 
logic circuits that would satisfy them. We shall develop the logic circuit for the sum 
of products. After that, we allow you to do the product of sums as an activity.
Looking at Equation 3, we need two AND gates each with four inputs and one OR 
gate in order to come up with the equivalent logic circuit. The circuit is shown in 
Figure 6.15.

Fig. 6.15: Solution to Equation 3 - SOP

Activity 6.12: POS logic circuit
Design the logic circuit for Equation 4 above. Share your solution with the rest of 
the class.
  

6.7 NAND and NOR as universal gates 

   Activity 6.13: NAND and NOR gates
Do some research about the NAND and NOR gates. Sketch them. Draw a two variable 
truth table for each one of them. Present your work to the class.
Now look at Figure 6.13, 6.14 and 6.15. What gates have you used to create the logic 
circuits with in all the examples and activities you have accomplished?

We	have	discussed	about	different	types	of	logic	gates	at	the	beginning	of	this	chapter.	
However, notice that the  AND, NOT and OR gates are the most used when coming 
up with logic circuits. Of course a combination of a NOT and AND gate creates a 
NAND while that of a NOT and OR gates creates a NOR. Now NOR and NAND 
gates have the unique property that any one of them can create and satisfy  any logical 
boolean expression if designed in a proper way. Hence we say that NAND and NOR 
gates are universal gates.

F

A
B
C
D



Boolean Algebra and Logic Gates

131

Unit Test 6
1. Is F(X,Y,Z) = X + YZ equal to F(X,Y,Z) = X + X + YZ? Explain    

your answer.
2. State the two gates that are known as universal gates and explain your answer.
3. Differentiate between the sum of products and product of sums.
4. Design a logic circuit for the following expression:
 (a) F = ABC + ABC.
 (b) Use product of sums to design the circuit in 4(a)
5. True or False. This is a minterm. A + B + C.
6. True or False. This is a maxterm. ABC.
7. Simplify the following and write a truth table for each:

(i)		 F(X,Y,Z)	=	X•Y	+	Y•Z.
(ii)		F(X,Y)	=	(X+Y)	•Y(X+Y).



Introduction to Computer Algorithm

132

Key Unit Competency
By the end of the unit you should be able to:
•	 Identify appropriate steps to solve a problem.
•	 Identify an appropriate algorithm for a given problem.
•	 Represent graphically algorithm using flowchart.

Unit Outline
•	 Algorithm concept.
•	 Design of algorithm.
•	 Variables.
•	 Constants.
•	 Operators and expressions.

Introduction
Before	developing	a	program,	is	it	important	that	a	programmer	specifies	the	order	in	
which the set of instructions contained in the program are to be executed.  This process 
of	defining	the	step-by-step	procedure	in	which	the	instructions	are	to	be	executed	is	
known as algorithm design.	In	this	unit,	we	begin	by	defining	algorithm	concepts	
followed by discussion on tools used to design algorithms. Later, we demonstrate 
how to express algorithm’s logic and concepts using pseudocode and flowcharts. 

7.1  Algorithm Concept
The term algorithm was derived from the name of the 9th century Persian 
mathematician and astronomer Mohammed al-Khwarizmi. The concept has been 
adapted in computer science to refer to a step-by-step procedure	that	specifies	how	
to perform a task or solve a problem. Therefore, a computer program is an algorithm 
implemented using a programming language.
To ensure that an algorithm produces desired solution, a programmer is tasked with 
the following roles: 
1. Identify a problem that may be solved using a computer program. 
2. Outline the social and technological factors that need to be considered before 

converting the problem into a computer program.

INTRODUCTION TO COMPUTER 
ALGORITHMUnit 7



Introduction to Computer Algorithm

133

3.	 Provide	possible	solutions	to	a	problem.	This	may	be	by	means	of	using	off-the-
shelf	software	or	custom-made	software.	

7.1.1 Characteristics of Algorithm
A good algorithm is crucial to development of good computer programs. Some of 
the characteristics of good algorithms include:
• Correctness: The goal during program design is to produce logical designs. 

The design of a system is correct if the system satisfies user’s requirements. It 
is the responsibility of a programmer to find the best possible design within the 
limitations imposed by the requirements and environment in which the program 
will be used.

•		 Verifiability: Verifiability is concerned with how easily the correctness of the 
design can be checked. Design should be correct and it should be verified for 
correctness. 

•		 Completeness: Completeness requires that designs of different system 
components	be	verified.	This	requires	dry-running	of	system’s	data	structures,	
modules, user interfaces, and module integration.

•		 Traceability: In order for a program to meet user’ needs and expectations, it is 
important that the entire design be traceable from user requirements. 

•		 Efficiency: Good design results in an efficient program that consumes less 
processor time and memory space.

•		 Simplicity: Though a program may be complex, its simplicity is one of the most 
important	factors	that	influence	its	user-friendliness	and	ease	of	maintenance.

•		 Documentation: It is good practice to provide documentation containing details 
of a program algorithms.

7.1.2 Role and Structure of algorithms
The role of algorithms is to support programmers in designing and implementing 
computer programs that solve a problem of importance. For example, consider a 
problem	of	finding	the	shortest	route	to	travel	between	Kigali	and	Musanze.	To	solve	
such a problem, algorithm design follows a structured approach outlined below:  
1. The programmer first analyses the problem to come up with problem 

specification as shown in Fig. 7.1.  A problem specification defines input, 
processing and output required to solve the problem

2.	 Map	 the	 problem	 specification	 into	 an	 algorithm	 that	 defines	 the	 logic	 or	
procedure for solving the problem.

3. Once an algorithm has been designed and tested against problem specifications,  
implement it as a program using suitable programming languages. 

4. Finally the program is installed on computers or portable devices to solve the 
problem.  



Introduction to Computer Algorithm

134

	  

Fig. 7.1: Role and structure of algorithm

7.2  Design of Algorithms   
Algorithms can be expressed in many ways such as using natural languages, 
pseudocode,	 and	 flowcharts	 used	 for	 complex	 or	 technical	 algorithms.	To	 avoid	
ambiguities common in natural language statements, most programmers prefer using 
structured	design	tools	like	pseudocode	and	flowcharts	discussed	in	details	later.

7.2.1 Natural language 
The	term	natural	language	refers	to	the	ordinary	language	likes	English	or	Kinyarwanda	
used by human beings to communicate with each other in speech or writing. Because 
an algorithm is a procedure for solving a problem, the natural languages can be used 
to	express	 the	steps	 to	be	followed	to	solve	a	specific	problem.	For	example,	 the	
following is natural language algorithm for how to make a hot sauce: 
1. Before you prepare a hot sauce, make sure you have garlic that is peeled and 

chopped, fresh lime juice, distilled white, vinegar, olive oil, molasses, turmeric 
and salt. 

2. Now, combine the pepper, garlic, lime juice, vinegar, mustard, oil, molasses, 
turmeric, and salt in a blender and puree until smooth. Correct the seasoning, 
adding more salt or molasses to taste. 

3. Transfer the sauce to a clean bottle. You can serve it right away, but the flavour 
improves if you let it age for a few days. 

The	above	‘algorithm’	is	a	recipe,	that	is,	a	step-by-step	instructions	that	takes	raw	
ingredients and produces a tasty product – hot sauce. However, one of the limitations 
of such an algorithm is that it tends to be verbose or ambiguous. Furthermore, there 
are	different	languages	in	the	world	which	makes	it	difficult	for	an	algorithm	written	
in a particular language to be universal. To avoid ambiguities inherent in natural 
languages,	there	are	language	independent	tools	such	as	pseudocode	and	flowcharts	



Introduction to Computer Algorithm

135

discussed later in this section.

Activity 7.1: Natural Language Algorithm
1. Consider a daily routine of waking up and going to class. Outline an algorithm 

named “wakeup-to-class” starting with getting out of bed to attending the first 
lesson	of	the	day.	If	the	routine	is	to	be	computerized,	specify	the	order	in	which	
statements are to be executed.

2.	 In	groups,	identify	ingredients	of	preparing	ibihaza	or	bugali.	If	the	routine	is	to	
be	computerized,	specifying	the	order	in	which	statements	are	to	be	executed.	

 Discuss desirable qualities of recipe in terms of procedure for preparing the 
product. 

3. Consider a payroll program used to computer employee’s salary based on basic 
salary, house allowance, commuter and overtime  allowance. The basic salary is 
based on eight hours per pay for five days a week. If monthly net salary is less 
15% pay as you earn (PAYE) and 2.5% medical cover, perform the following 
tasks:
•	  Using natural language such as English, develop an algorithm for a program 

that calculates gross salary, net and total deductions.

7.2.2  Pseudocode
Pseudocode is a standard method of describing an algorithm without use of any 
specific	programming	language.	The	word	pseudo means that although pseudocode 
statements resemble real program code, it cannot be executed by a computer. The 
purpose of pseudocode design is to help the programmers formulate their thoughts on 
the organisation and sequence of a computer algorithm without the need of following 
the actual coding syntax.  
Although pseudocode is frequently used, there are no standard for its implementation. 
In most cases, we borrow keywords such as PRINT, WRITE, INPUT, and READ 
from programming languages like FORTRAN and Pascal to express an algorithm as 
a pseudocode. For example, Fig. 7.2 depicts pseudocode that takes radius as input 
to calculate and display area of a circle:

Fig.7.2: Sample pseudocode

BEGIN
SET PI = 3.142
 WRITE “Enter  radius of a circle”:
READ radius
Area = PI*radius2

WRITE Area
END

To avoid ambiguity experienced with the use of natural languages, the following are 
basic rules to be followed when writing pseudocode:
1. Pseudocode statements should  be short, clear and readable.



Introduction to Computer Algorithm

136

2. The statements must not have more than one meaning i.e. should be unambiguous.
3. The pseudocode lines should be clearly outlined and identified clearly.
4. A pseudocode should show clearly the start and stop of executable statements
5. Input, output and processing statements should be clearly stated, using keywords 

such as PRINT, READ, INPUT etc.

Advantages of using pseudocode 
The following are some the advantages of using pseudocode to express an algorithm:
1.	Pseudocode	is	easy	to	use	and	create	because	it	uses	English-like	statements.
2. Pseudocode requires very little syntax to write.
3.	Statements	of	a	Pseudocode	can	easily	be	translated	to	any	high-level	language.
4. Pseudocode reduces time spent in coding, testing, and modifying a system.
5. Pseudocode implements structured concepts in a better way

Activity 7.2: Expressing Algorithm using pseudocode
Neza	deposited	FRW	200	000	in	a	bank	at	interest	rate	of	8%	per	annum	for	a	period	
of	five	years.	At	the	end	of	each	year,	the	interest	earned	is	added	to	the	deposit	and	
the new amount becomes the deposit for that year. Formulate a pseudocode that 
would be used to track growth of the investment.

7.2.3  Flowcharts 
A flowchart	is	a	diagrammatic	or	symbolic	representation	of	step-by-step	solution	to	
a	given	problem.	Flowcharts	use	standard	symbols	that	help	programmers	visualize	
input, processing and output operations to be performed by a computer program. 
Unlike natural languages and pseudocode, use of standardised symbols makes the 
flowcharts	easier	 to	 interpret	hence	more	universally	acceptable.	Table	7.1	below	
gives	a	brief	description	of	six	standard	symbols	used	to	create	flowcharts.	

Symbol Name/Meaning Symbol Meaning

Process – Any type of 
internal operation: data 
transformation, data 
movement, etc.

Connector – connects sections 
of the flowchart, so that the 
diagram can maintain a smooth, 
linear	flow.

Input/output – input or output 
of data

Terminal – indicates start or end 
of the program or algorithm.

Decis ion 	 - 	 evaluates 	 a	
condition or statement and 
branches depending on 
whether the evaluation is 
true or false.

Flow lines	-	arrows	that	indicate	
the direction of the progression 
of the program.

Table 7.1: Flowchart symbols



Introduction to Computer Algorithm

137

The	example	shown	in	Fig.	7.3	depicts	a	flowchart	that	takes	radius	as	input	
to calculate and display area of a circle.

PI = 3.142
Area = PI*radius2

Start

Read radius

Write Area

Stop

Fig.7.3: Sample Flowchart

Explanation
1. The first symbol indicates start of the flowchart.
2. The parallelogram (second symbol) indicates the algorithm takes radius as input.
3. The rectangle indicates that:

(i) Pi is assigned constant 3.142
(ii) The area is calculated as Pi × radius2

4. The fourth box display Area as output
5. The last symbol is the exit.

The following are general rules that may be followed when expressing an algorithm 
using	flowchart:
1. Be sure to use the right symbol for the right purpose. For examples it is wrong 

to use a terminal symbol for input.
2. All the symbols of a flowchart should be connected using arrows (flow lines) 

and not plain lines.
3. The direction of flow should be from top to bottom, or sides depending on the 

page layout.
4. The start and end of a flowchart must be indicated with (start/stop) terminal  

symbol. 
5. Flowchart should have only one entry point at the top and one exit point at the 

bottom or side.
6. The decision symbol should have only two exit points for either true or false 

on the sides, or bottom and one side.
7. If a flowchart does not fit one page or column, use connectors to indicate breaks 

in the flowchart. 



Introduction to Computer Algorithm

138

Advantages of using flowcharts 
The	following	are	some	the	advantages	of	using	flowcharts	to	express	an	algorithm:
1. Flowcharts are better way of communicating the system logic. 
2. With a flowchart, problem can be analysed in a more effective way.
3.  Graphical representation of design serves as good program documentation.
4.  Flowchart makes it easier to debug and maintain a program.

Activity 7.3: Expressing algorithm using flowcharts
1. Given that more emphases in algorithm design is on use of flowcharts and 

pseudocodes, differentiate the two algorithm design tools giving advantages of 
each.

2. Consider	Neza’s	case	of	FRW	200	000	deposit	in	a	bank	at	interest	rate	of	8%	
per annum for a period of five years. Revisit the problem in Activity 7.2 and 
design a flowchart  that would be used to keep track of interest earned each year.

Assessment Exercise 7.1
1. Distinguish between pseudocode and flowchart. In each case, give advantages 

and disadvantages.
2. Jane wanted to design an examination system to be used in her school. Advise her 

on three algorithm design tools she may use.
3. Using illustrations, explain at least four standard symbols used in flowchart design.
4. In reference to decision flowcharts, differentiate between decision symbol and 

connector. 
5. Explain three circumstances that may prompt a programmer to use a pseudocode 

instead of a flowchart. 
6. State three advantages of using flowcharts over pseudocode in formulating an 

algorithm.
7. Hakizimana	intends	to	automate	library	services	starting	with	members	registration.	

Draw a hierarchical diagram for the overall library system.

7.3  Variables
A variable	can	be	defined	as	a	name	also	known	as	identifier that represents data 
values which can change. For example, in a mathematical problem of calculating 
area of a circle, radius can take any value as shown in table 7.2. Therefore, radius 
is an input variable while area is an output variable. 

Symbol Input: radius Process: π x radius (π= 3.142) Area
1 5 Area = 3.142 × 5 × 5 78.55
2 10 Area	=	3.142	×	10	×	10 314.20
3 15 Area = 3.142 × 15 × 15 706.95
4 20 Area	=	3.142	×	20	×	20 1256.80

Table 7.2: Definition of variables



Introduction to Computer Algorithm

139

If this problem is solved using as a computer program, radius and area variables 
represents memory locations reserved to hold values that change during program 
execution as shown in the table.  

7.3.1 Rules of Naming Variables and Keywords 
The name given to variable is matter of choice by a programmer subject to the 
following rules:
1. Choose meaningful variable names that tell the reader of the program what the 

variable represents. For example, use sum instead of just s.
2. Each variable in the same algorithm should be identified using a unique name. 

For example you cannot use balls represent input, and balls to represent output
3. By convention, variable names should begin with a letter of the alphabet but 

may be followed by numbers. For example, use balls3 instead of 3balls.  
4. Avoid using variable names that may conflict with reserved or keywords used 

in most programming languages.
5. Variable names made up of two or more words should not have space in between 

the words, instead combine the two words or use an underscore. For example, 
instead of using Basic Salary as variable name, use BasicSalary or Basic_salary. 

7.3.2  Declaration of Variables 
Declaration of variable refers to identify and explicitly state input and output variables 
required to solve a problem. For example, suppose you are required to solve a problem 
of	finding	sum	and	average	of	three	numbers.	To	identify	and	state	input	and	output	
variable from the problem, proceed as follows:
1. Express the problem using natural language in order to identify input, processing 

and output requirements as shown below:

      

Begin
Accept user input for 3 numbers
Calculate sum - add the 3 numbers
Calculate average - divide sum by 3
Display the results sum and average  
End 

2. Identify a statement or statements that indicate input is required. In the above 
algorithm, input is implied in the statement “Accept user input for 3 numbers.” 
The statement implies that the user is expected to input numbers on the keyboard. 



Introduction to Computer Algorithm

140

3. Represent the input values as variables using symbolic names such as Num1, 
Num2, and Num3.

 Identify a statement or statements that indicate the algorithm provides output. 
The algorithm indicates output using a statement “Display the reults.” Deeper 
look at the algorithm points the result to calculated sum as average   

4. Represent the output values as variables using symbolic names such as Sum, 
Average

5. Rewrite the algorithm to indicate the input and output variables as shown below:
  

 

 

Begin
 Input: Num1, Num2, Num3, 
 Output: Sum, Average
 PRINT Enter three numbers on the keyboard
 READ Num1, Num2, Num3
 Sum = Num1+ Num2 + Num3
 Average = Sum/3
 PRINT Sum, Average

End 

NB: Variable names should not have spaces between words. Instead use an underscore 
to combine two words or start the next work with uppercase.

7.3.3 Data types
In programming, data type determines the type of values that can be stored in a 
variable.	Most	programming	languages	supports	the	following	primary	data	types:	
•	 Integers: Integers are whole numbers, which can either positive or negative 

including	zero.	For	example,	0,	5,	-20,	and	68	are	integers.		
•	 Real Numbers: These are numbers with a fractional part. Normally, the fractional 

part	follows	a	decimal	point.	For	example,	68.67	is	a	real	number.		
•	 Character: Character data, sometimes referred to as “string” data, may consist 

of any digits, letters of the alphabet or symbols which
• Boolean:	Bolean	data	type	is	a	type	that	can	only	take	two	values	-	true	or	fale.	

In	logic,	the	true	value	is	represented	by	one	(1)	while	false	is	represented	by	zero(0). 
In addition to primary data types, most programming languages support composite 
data types. A composite data type such as array, record and linked list is obtained by 
combining several primary data types. 



Introduction to Computer Algorithm

141

7.3.4 Initialisation of Variables
Once	a	variable	is	declared	it	does	not	have	a	defined	value,	hence	it	cannot	be	used	
until it is initialised by assigning it a value. Initialising a variable goes beyond 
declaration to assign an initial value to a variable. For example, in our previous 
algorithm, we can initialise variables Num1, Num2, Num3 with initial values as 
shown below: 

 Input: Num1= 3, Num2 =5, Num3 =7, 
The statement assigns the values to the variables such that if the algorithm is 
implemented, the initial sum and average before any user input is calculated as:
 Sum = 3+ 5 + 7; this returns 15
 Average = 15/3; returns 5
Note that in a real program, if a variable has been declared but not initialised, the 
memory location contains nothing, hence we say it holds a null until the user enters 
values to be assigned to the variable. Fig. 7.4 shows how to initialise variables_A, 
Temporary and Variable_B.

Swap_Two_Numbers   
BEGIN
 SET Variable_A, Temporary, Variable_B
 SET variable_A=0; Temporary=0; Variable_B=0
 PRINT “Please enter Variable_A”
 READ Variable_A;
 PRINT “Please enter Variable_B”
 READ Variable_B
 Temporary = Variable_A;
 Variable_A=Variable_B;
 Variable_B=Temporary;
 PRINT Variable_A,Variable_B;
END.

Fig. 7.4: Initialising variables

Activity 7.4: Declaring variables
1. In mathematics a variable is a symbolic number whose value is unknown yet. 

Identify variables in the following algebraic expressions:
•	 y = mx + c
•	 ax2	+	bx	+	c	=	0



Introduction to Computer Algorithm

142

2. Study the pseudocode below and identify input and output variables. In each 
case, indicate data type for each variable.   

Fig:7.5: Declaring and initialising variables

7.4  Constants
Unlike	a	variable	which	 is	an	 identifier	 for	values	 that	can	change,	a	constant	 is	
a	fixed	value	which	cannot	be	changed.	In	mathematics	and	physics,	examples	of	
constants	include	pi	(π),	speed	of	light,	and	gravity.	For	example,	referring	back	to	
the	problem	of	calculating	area	of	a	circle	discussed	earlier,	π	is	a	constant	whose	
value	is	3.142.	If	implemented	as	a	program,	the	value	of	π	can	never	be	changed	
during the program execution. 

Activity 7.5: Definition of constants
In mathematics and physics, a constant is a value that does not change. Study 
the algebraic expressions restated below and identify constants:

•	 y = mx + c
•	 ax2	+	bx	+	c	=	0

Declaration of Constants
Declaring a constant refers to specifying a symbolic name for a value that cannot 
be changed during program execution.
In algorithm design constants may be declared as string or numeric constants. 
A	 string	 constant	 is	 a	 sequence	 of	 characters	 such	 as	 “FRW	7200”	 that	 cannot	
be	manipulated	 	mathematically	while	 numeric	 constants	 such	 as	 7200	 can	 be	
manipulated in a mathematical expressions. For example, to calculate area of a circle, 
we	can	declare	π	(pi)	as	a	numeric	(constant)	as	follows:
• const double PI= 3.142
The pseudocode of Fig. 7.6 illustrates an algorithm in which TAXRATE and 
DAILY_RATE are declared as numeric constants.

BEGIN

SET L,W, Area, Perimeter =0

WRITE “Enter length and width”

  READ L, W

  Area = L * W

  Perimeter = 2*(L + W)

  WRITE Area

  WRITE Perimeter

END



Introduction to Computer Algorithm

143

Program: Payroll

BEGIN

SET TAXRATE = 0.15;

SET DAILY_RATE = 1500

Enter name of the employee

  Enter days worked;

  GrossPay = DAILY_RATE * days;

  Deduction = TAXRATE *GrossPay

   Net = GrossPay - Deduction

  PRINT Grosspay, Deduction, Net;

END

Fig:7.6. Declaring constants

Activity 7.6: Declaring constants
Using internet, download introduction to C++ tutorials and familialise yourself with 
basic concepts. Using knowledge acquired from the tutorials  explain the full meaning 
of constant declaration  const double PI= 3.142. 
   
7.5 Operators and Expressions
To write correct mathematical expressions, you need to understand operators used 
in programming languages namely: assignment, arithmetic, relational, and logical 
operators. 

7.5.1 Assignment operators 
The assignment operators such as (=) or (:=) causes the operand on the left side of the 
operator to be replaced by the value on the right side.  For example, in the following 
expression, the value of x is replaced by the sum of a and b.

• x = a + b

Activity 7.7: Operators and expressions
The order of evaluation of an arithmetic expression follows the rule known as 
BODMAS.	In	a	class	discussion,	brainstorm	on	how	BODMAS	relate	to	precedence	
rule in evaluating the expressions.
x	+	y–10	×	13

y

7.5.2 Arithmetic operators
Arithmetic operators are used to evaluate the four basic arithmetic operations: addition 
(+),	subtraction	(-),	division	(/)	and	multiplication	(*).	In	an	expression	such	as	3+2,	
addition operator adds the two operands to return a value, hence it is referred to as a 
binary operator.  



Introduction to Computer Algorithm

144

7.5.3 Relational operators
Relational operators are used in boolean expressions that compares numeric or string 
constants and returns a true or false. Such operators include: greater than (>), less 
than (<), equal to ( =), less than or equal to (<=), greater than or equal to (>=),  and 
not equal to (< >). Relational operators are binary operators because they act on two 
operands e.g. 5>3 that returns true.

7.5.4 Logical operators
Logical operators derived from Boolean algebra are used on compound expressions 
or conditions to return true or false. The three logical operators used in most 
programming languages are AND, OR and NOT. Unlike AND and OR which are 
binary operators, NOT is a unary like tild (~) in mathematics. This means that it 
negates the operand on its right side; e.g. NOT true returns false. 

Activity 7.8: Logical operators
Consider a task of designing an automated alarm system that has the logic: “If the 
door alarm sounds AND it is after six p.m. AND it is NOT a holiday, OR if it 
is a weekend, then call the police.” Write a statement that would implement the 
alarm logic
    

7.5.5 Bitwise operators
Bitwise	operators	are	similar	to	logical	operators	only	that	they	are	specifically	used	
to manipulate binary digits. The main Bitwise operators are AND, inclusive OR, 
exclusive OR (XOR), NOT (~), binary left shift (<<), and binary right shift (>>). 

Activity 7.9: Bitwise operators
1. Using sample expressions, distinguish between logical operators and bitwise 

operators.
2. Study the truth table shown on Table 7.3 below and indicate values returned by 

evaluating the expressions.  Note that 1 is a binary value representing true and 
0	represents	false.

Expressions Value (1 or 0)

1 and 1

1	and	0

0	and	0

1 or 1

1	or	0

0	or	0

Table 7.3: Truth table



Introduction to Computer Algorithm

145

3. Design an algorithm for a program that would evaluate the following compound 
statements: 
•	 If	(x	=	30)	AND	(gender	=	“male”).
•	 IF	(x	=	20)	OR	(y	<10).	
•	 If	(NOT	false)	OR	(size	>	5.4).

7.5.6 Precedence of operators
Precedence of operators refers to established rule that assigns priority of each 
operator used in an expression. For example, when writing complex expressions in 
mathematics, we use precedence rule known as BODMAS that stands for Brackets, 
Off, Division, Multiplication, Addition, and Subtraction.	BODMAS	rule	means	
that the highest priority is assigned to Bracket, with the lowest priority being assigned 
to	Subtraction.	For	example,	in	the	expression	below,	unless	we	apply	BODMAS	
rule, the answer could be 6.5! 
											x	=	5	+	8	÷	2
	 x	=	(5	+	8)	÷	2	(if	evaluated	from	left	to	right,	we	get	6.5)
	 x	=	5	+	(8	÷	2)	(with	BODMAS	rule	the	result	is	9)

Like	BODMAS	in	mathematics,	we	use	precedence rule in algorithms to assign 
priority to each of the arithmetic, relational and logical operators. Table 7.4 shows 
the order of precedence in each of the four categories from the highest to the lowest. 

Arithmetic Relational Bitwise Logical

1 * Multiplication < Less than NOT (~) NOT

2 / Division <= Less or equal to AND AND

3 % Modulus > Greater than XOR OR

4 + Addition >= Greater or equal to OR

5 -	 Subtraction =

Table:7.4: Order of precedence
NB: In case an expression has multiplication and division such as 8*3/4, evaluation 
is carries out from left to right. 

7.6  Read and Write functions
Functions are “self-contained”	group	of	statements	that	accomplish	a	specific	task.	
In algorithms, the read function gets data from input devices like keyboard while 
write functions prints output on devices such as screen. 

Highest 
precedence

Lowest 
precedence



Introduction to Computer Algorithm

146

7.6.1 Read functions
To represent read functions in an algorithm, we use keywords like READ, INPUT, and 
GET. For example, the following statements demonstrate how to use read functions 
to get radius as input from keyword: 

 READ radius;  
 INPUT radius; 
 GET radius;

Good practice in algorithm design requires the READ functions to be in uppercase 
while values to be read also known as parameters to be in lowercase. For clarity, 
if a function is to read several paramenters, parenthesis may be used to enclose the 
parameters as shown below:

 READ (length, width) 
 INPUT (length, width);
 GET (length, width);

7.6.2 Write Functions
Like in read operations, we use keywords like WRITE, DISPLAY, and SHOW to 
represent functions that display information on the screen. For example, the following 
statements demonstrate how to display area on the screen: 

 WRITE area;  
 DISPLAY area; 
 SHOW area;

For clarity, if a write function is to display several values, parenthesis may be used 
to enclose the parameters as shown below:

 WRITE (area, perimeter) 
 DISPLAY (area, perimeter);
 SHOW (area, perimeter);

Activity 7.10: Read and write functions
1. Using read and write functions, formulate an algorithm that computes roots of 

x from the following quadratic expressions = ax2 + bx + c.  
2.	 Sebahive	took	a	loan	of	FRW	400,000	from	a	local	bank	at	interest	rate	of	12%	

annually. Assuming the loan should be paid back in 4 years time, use read and 
write functions in a pseudocode that computes monthly loan repayment. 



Introduction to Computer Algorithm

147

Assessment Exercise 7.2
1. Design an algorithm for a program that would be used to solve a quadratic equation: 

y = ax2 + bx + c.

2. Design an algorithm for a program that would be used to compare three numbers 
x,	y	and	z,	and	then	display	the	least	among	the	three.

3. Differentiate between read function and write functions as used in algorithms.

4. Jere	deposited	FRW	200,000	in	his	savings	account.	The	amount	deposited	earns	
a 3% annual interest. Design an algorithm that would be used to calculate interest 
after n years.

Unit Test 7
1. Explain the following algorithm concepts:

(a) Precedence rule
(b) Variables

2. To get estimate the rate of fuel consumption, Lemba needs to calculate  kilometres 
per litre consumed by his car. Design an algorithm for a program that lets Lemba:
(a)	 Enter	current	fuel	reading	and	after	refilling.
(b)	 Enter	kilometres	and	fuel	reading	after	driving	for	at	least	30	km	on	a	highway.	

The computer should then calculate and prints estimated consumption in km/
litre.

3. Draw a flowchart that prompts for five numbers, and then calculates sum and 
average. The computer should display total sum and average of the five numbers.

4. Draw a flowchart that reads temperature for each day in a week, in celsius, converts 
the celsius into fahrenheit and then calculate the average weekly temperatures. 
The algorithm should display weekly average temperature in degrees fahrenheit.

5. Nyframahoro	deposited	FRW	2000	in	a	Micro-finance	company	at	an	interest	rate	
of		20%	per	annum.	At	the	end	of	each	year,	the	interest	earned	is	added	to	the	
deposit and the new amount becomes the deposit for that year. Draw a flowchart 
that would track the growth of deposits over a period of seven years.



148

Control Structures and One Dimension Array

Key Unit Competency
By the end of the unit, you should be able to:

•	 Derive logic in algorithm which include control statements.
•	 Handle one dimensional array in algorithm.

Unit Outline
•	 Conditional logic.
•	 Control structures.
•	 One-dimensional array.

Introduction
Control structures are statements or symbols used in algorithms to represent the 
logical	flow	or	order	in	which	program	statements	are	to	be	executed. In this unit we 
will begin by describing conditional logic that is fundamental to control structures. 
Later, we demonstrate how three control structures namely sequence, decision and 
iteration are used in algorithms. Before closing the unit, we discuss one of the 
elementary data structures known as one-dimensional array.

8.1  Conditional logic
In everyday life we use statements like If I had the time and the money I would go 
buy a tablet and learn how to use it. Such a statement is a conditional logic implying 
that	 certain	 conditions	must	 be	 satisfied	 for	 an	 action	 to	 be	 taken.	Therefore,	 a	
conditional logic is a proposition formed by combining two or more facts using the 
words like if, case and then. The conditions in the if statement are combined using 
logical links like: and, or and not.

8.1.1  Simple conditional logic
Simple conditional logical requires only one fact for an action to be taken, hence 
statements do not require use of logical links like and, or and not.	For	example,	the	
following statement is a simple conditional logic because it only requires participation 
in class for the teacher to take action:

CONTROL STRUCTURES AND 
ONE DIMENSION ARRAYUnit 8



149

Control Structures and One Dimension Array

 

The	teacher	promises	that	if	“you participate in class”, 
then “you will get five extra  points” 

•	 Fact: you participate in class – can be true/false
•	 Action: you will get extra five points - can be true/false

8.1.2  Compound conditional logic 

Compound conditional logic make use of logical links to combine several facts for 
an	action	to	be	taken.	For	example,	the	following	statement	requires	two	conditions	
to	be	fulfilled	for	the	teacher	to	take	action:

•	 The	teach	promises	that	if	“you are always punctual”” and “participates in 
class” then “you will get five extra points” 

This	statement	implies	that	the	teacher	can	only award five extra points (true) if a 
student is always punctual (true) and participates in class (true). In Mathematics, 
facts and actions	can	be	represented	using	symbols	in	a	table	as	shown	in	Table	8.1.	

p	(Fact1) q	(Fact2) p AND q

T T T

T F F

F T F

F F F

Table 8.1: Compound AND conditional logic

Conditions linked with AND logic requires an action to be taken only when all conditions 
are	true.	For	example,	the	third	column	in	Table	8.1	above	shows	that	the	two	conditions	
must	be	true	(T)	for	the	teacher	to	award	a	student	five	extra	points.	The	table	also	
shows four other possible outcomes depending on the true/false value of p and q. 

Conditions linked with an OR logic lead to an action when either one or both are true. 
For	example,	the	teacher	may	decide	to	awarded	five	points	if	a	student	is	punctual	or	
participates	in	class.	This	statement	can	be	represented	using	OR	logic	in	a	table	as	
shown	in	Table	8.2.

p	(Fact1) q	(Fact1) p OR q

T T T

T F 	 T

F T T

F F F

Table 8.2: Compound OR conditional logic

In algorithm design, there are many occasions conditional logic is required when 
alternative	actions	are	to	be	considered.	In	the	next	sections	on	control structures, we 
demonstrate	how	to	express	conditional	logic	using	relational and logical operators. 



150

Control Structures and One Dimension Array

For	example	the	flowchart	extract	of	Fig.	8.1	and	equivalent	pseudocode	demonstrates	
use of conditional logic to check if a person is an adult.

Print “Youth”

Age>18?

Print “Adult”false

true
IF Age > 18 THEN
   PRINT “Adult “
 ELSE
    PRINT “Youth “
END IF

Fig. 8.1: Sample IF conditional logic

8.2  Control Structures
Control	structures	(statements)	refer	to	a	conditional	logic	that	determines	the	flow	
of	 an	 algorithm	or	 execution	of	 a	 program.	The	 three	 types	of	 control	 structures	
discussed in this unit are sequence, selection and looping.

8.2.1 Sequence Control Structure

Sequence control	structure	refers	to	logical	flow	of	statement	one	after	another	in	the	
order in which they are written. This	means	that	algorithms	designed	using	sequence	
control	do	not	depend	on	evaluation	of	a	conditional	logic.	The	pseudocode	shown	in	
Fig.	8.2	illustrates	sequence	control	in	which	two	numbers	are	first	entered	before	sum	
and product are calculated and displayed on the screen.

BEGIN
SET variables sum, product, number1, number2 
PRINT “Enter two numbers”
READ number1, number2
sum = number1 + number2
product = number1 * number2
PRINT sum, product
END

Begin

Sequential 
flow of 
control

End

Fig. 8.2: Sequence control structure

Activity 8.1: Sequential control structure

1.	 Formulate an algorithm  that would prompt a user to enter the length and width 
of	a	rectangle.	The	program	then	calculates	and	displays	the	area	and	perimeter.	



151

Control Structures and One Dimension Array

2.	 Study	the	flowchart	of	Fig.	8.3	below	and	explain	why	the	algorithm	represents	
a sequence control structure.

Product = x * y

Start

Read x, y

 Write Product

Stop

Fig. 8.3: Flowchart for sequential control

8.2.2  Selection Control Structure

Selection control structure also known as decision control statement is a conditional 
logic used when there is one or more alternatives to choose from. If a selection 
statement provides several alternatives to choose from, we refer to such as  a statement 
as case selection.		The	four	types	of	selection	control	structure	are if ...then, if...else, 
nested if and switch/case.

8.2.2.1  If …then selection

The	if…then	is	a	conditional	logic	used	to	test	whether	the	condition	is	true	before	
an action is taken. If the condition is true, the statement in the body of if statement 
is	 executed;	otherwise	nothing	happens	 if	 false.	The	general	 syntax	of	 if..then	 is	
expressed	as	follows:

  If condition is true then

  Do Task-A

For	example,	in	the	following	statement,	if...then	condition	tests	whether	mark	is	80	
and above. If the condition is true, the statement distinction is displayed on but this 
case, if the condition is false, nothing happens:

If mark >= 80 then
   PRINT “distinction”

One important application of if…then	selection	is	to	validate	user	input.	For	example,	
the	Fig.	8.4	shows	a	flowchart	with	if … then selection used to test whether a number 
entered is less than zero. If the number is negative, the algorithm displays invalid mark.  



152

Control Structures and One Dimension Array

Fig. 8.4: Sample IF..THEN control

Invalid mark

mark<0?

Yes

No

mark

start

stop

Explanation
1.	 Once	the	user	enters	a	mark,	the	algorithms	checks	whether	the	input	is	less	than	

zero.
2.	 If	true	then	statement	‘invalid mark’ is displayed, otherwise nothing happens.

8.2.2.2  If ... else selection

If	…	else	selection	is	suitable	when	there	are	two	available	options.	In	general	the	
format of if... else statement can be represented as:

IF <boolean expression>THEN

Statement 1

ELSE

Statement 2

END IF

Explanation

The	Boolean	expression	within	If....then	statement	is	first	evaluated.	If	true,	statement 
1 is evaluated otherwise statement 2 is evaluated if the condition returns false. For 
example,	Fig.	8.5	 (a)	 and	 (b)	 shows	 the	flowchart	 and	pseudocode	 for	 	 checking	
voters	eligibility	depending	on	age.	If	a	person	is	18	years	and	above,	the		expression	
returns true and displays “Vote” else if a person is below the set age limit, the program 
displays “Do”.  



153

Control Structures and One Dimension Array

Vote

is
Age > =18?

Don’t VoteYes

Stop

No

Read Age

Start

Fig. 8.5(a): If..Else Flowchart

BEGIN
USE VARIABLE: AGE AS 
INTEGER
  WRITE “Enter person’s age”
  READ Age
  IF Age > =18
    WRITE “Vote”
   ELSE
     WRITE “Don’t Vote”
 END

Fig. 8.5(b): If..Else selection pseudocode 

Activity 8.2: If ... else selection

1.	 Draw	a	flowchart	for	a	program	that	reads	two	numbers	and	displays	the	larger	
of	the	two	numbers.	The	algorithm	should	use	IF...ELSE	selection	to	compare	
the two numbers. 

2.	 Study	the	flowchart	shown	in	Figure	8.6	below	and	state	the	value	of	Z	if	the	
following	values	of	x	and	y	are	entered	by	the	user:
(a)	 X	=	20,	Y	=	10	
(b)	 X	=	19,	Y	=	20

Fig.8.6: Flowchart for modifying z

Set	z	=	100

Start

Read	x,	y

Stop

x>y?

Write z

yes

no

z=	z	+	50

8.2.2.3 Nested IF

Nested IF selection is used where several options have to be considered to make a 
selection.	The	general	format	of	the	Nested	IF	is:



154

Control Structures and One Dimension Array

IF <boolean expression>THEN
   statement 1
 ELSE IF <boolean expression>THEN
  statement 2
 ELSE IF <boolean expression>THEN
  statement 3
ELSE 
statement 4
END IF

Explanation

1.	 The	statement	first	evaluates	if	the	condition	is	true.			If	 true,	 the	 statement	 is	
executed.

2.	 If	the	first	condition	is	false,	the	else if	statement	is	evaluated.	This	continues	
until the else statement is encountered.

Note	that	in	nested	if	selection,	the	last	statement	must	be	within	else	that	executes	
the	statement	if	the	boolean	expression	returns	false.	When	drawing	a	flowchart,	if	
there are n options to select from, the number of diamonds representing IF should be 
n-1.	For	example,	Fig.	8.7	shows	an	algorithm	for	a	program	that	takes	current	date	
(Todate)	and	date	of	birth.	Depending	on	the	current	date,	the	algorithm	computes	
age used to classify the people into categories shown in table on top-right side.

Cat=Grown up

age<3?age<1?

Cat=PreUnit

Stop

no

yes

age<6? age<13?

Cat=PrimarykidCat=Kid Cat=Preschkid

Age	=	ToDate	–	DoB

DoB,	ToDate

Start

Cat

Fig. 8.7: Sample nested IF..ELSE selection

 Age	(years) Category 

1	-	2		 			 Pre-school	Kid
3	-	5																		 Pre-unit	Kid	

6	-	12		 								 Primary	Kid	
Above	12									 Grown	Up

Below	1		 Kid	 										



155

Control Structures and One Dimension Array

Explanation
1.	 The	user	first	enters	a	person’s	date	of	birth	(DoB)	and	the	current	date	(ToDate)	

that are used to calculate  age.  
2.	 Based	on	age,	the	algorithm	uses	nested	if	to	assign	the	person	to	one	of	the	

categories	 (cat)	defined	 in	 the	 table	on	 the	 right.	For	 example,	 if	age <1 as 
indicated in the first decision symbol, cat is assigned to kid using the statement:

	 cat	=	kid;	
3.	 The	algorithm	displays	category	of	the	person	in	the	output	symbol.	For	example,	

if cat is assigned to kid, the output symbol displays Grown up.

Activity 8.3: Nested If selection  

Fig.	 8.8	 shows	 an	 algorithm	 for	 a	 program	 that	would	 be	 used	 to	 accept	 three	
numbers A, B and C, compare them  and display the largest of the three. C o n v e r t 
the	flowchart	to	a	pseudocode.	

Fig. 8.8: Nested IF for finding the largest number

yes
A>C?B>C?

Largest=ALargest=CLargest=B

Largest

A, B, C

no yes

nono

yes A>B?

Stop

Start

8.2.2.4  Switch/Case selection

An	 alternative	 to	 nested	 if	 selection	 is	 use	 of	 switch/case	 selection	 control.	The	
following	algorithm	represents	the	general	syntax	of	a	switch	statement.

SWITCH(expression)
CASE expression 1:
statement 1
statement 2
 .
 .
CASE expression n:



156

Control Structures and One Dimension Array

 statement(s)
DEFAULT:
 statement(s);
END SWITCH

For	example,	the	pseudocode	of	Fig.	8.9	shows	a	sample	selection	of	menu	items	in	
a hotel implemented using switch selection.

BEGIN
use variable number AS Integer
PRINT “Enter menu item”
READ number;
SWITCH(number)
 CASE of 1:
 PRINT “My choice is Milk”
 CASE of 2:
 PRINT “My choice is Tea”
 CASE of 3:
 PRINT “My choice is Coffee”
DEFAULT:
 PRINT “Your choice is not valid”
END SWITCH
END

Fig. 8.9: Sample Switch...Case Selection

Explanation

1.	 The	procedure	accepts	a	number	as	input.	
2.	 The	switch	statement	checks	if	the	input	is	number	1,	2	or	3.	For	example,	if	

number	is	3,	it	displays	“My choice is coffee”.
3.	 If	 the	number	entered	does	not	fall	within	the	three	numbers,	 the	DEFAULT	

statement	is	executed.

To	demonstrate	further	use	of	switch/case	selection,	Fig.	8.10	shows	a	flowchart	used	
to	determine	discounted	price	of	products	depending	on	the	item	code.	For	example,	
if	the	product	code	is	B123,	its	prefix	B	means	that	it	belongs	to	category	B.	Note	
that each category is used to determine the rate used to discount  the cost of an item. 



157

Control Structures and One Dimension Array

no

yes

rate=0.00

yes

rate=0.05

Stop

discprice = price *rate

Itemcode,  discprice, rate

no

yes yes

rate=0.01rate=0.02 rate=0.03

Assign category

item_code, price

Start

nono 
Category	A? Category			B? Category		C? Category	D?

Fig. 8.10: Sample switch/case flowchart

Activity 8.4: Switch/case selection

A school intends to develop a computer program that automates processing of 
computer	science	exam	grades	as	follows:

•	 70	–	100		 A
•	 60	–	69		 B
•	 50	–	59		 C
•	 40	–	49		 D
•	 Below	40		 E

Design	a	flowchart		that	expresses	selection	logic	for	a	program	that	assigns	grades	
as per grading system above.   

8.2.3 Looping control Structure

The	looping control structure, also referred to as iteration or repetition, causes the 
program	to	repeatedly	execute	statements	within	the	loop	until	the	condition	is	false.	
For	example,	consider	repetitive	task	that	occurs	during	shopping	represented	by	the	
following natural language algorithm:



158

Control Structures and One Dimension Array

WHILE shopping list is not empty DO

pick an item and put in a shopping cart.

Continue picking until the list is exhausted.

END WHILE

Proceed to checkout counter to make payment.

This	algorithm	describes	a	common	practice	of	buying	items	in	a	retail	outlet.	The	
statements under the WHILE keyword indicate that a buyer continues picking items 
until	the	shopping	list	is	exhausted.	The	keyword	END WHILE shows that it is after 
picking all the items from the shopping list the buyer stops and proceeds to make 
payment at checkout counter.”

8.2.3.1 FOR Loop 

For	loop	is	a	looping	statement	used	to	evaluate	a	condition	before	executing	statement	
in	the	body	of	the	loop.	The	for	loop	can	be	represented	using	the	following	general	
syntax:	

FOR variable = lowerlimit TO upperlimit DO

 statements;

END FOR

For	example,	the	pseudocode	of	Fig.	8.11	shows	how	to	use	the	FOR	loop	to	design	
a	program	that	displays	the	first	20	positive	integers	and	their	sum.	Note	that,	as	long	
as the lower limit is less than the upper limit, the number is added to sum and the 
count	incremented	by	1	until	the	lower	limit	is	equal	to	or	greater	than	the	upper	limit.

Explanation

1.	 The	algorithm	set	initializes	sum	with	zero.
2.	 The	for	loop	sets	the	initial	count	to	zero	and	maximum	to	19	i.e	number	<	20.
3.	 In	every	loop	the	premium	sum	is	updated	by	adding	a	number.
4.	 The	for	loop	is	existed	once	the	maximum	count	is	reached.	

BEGIN
SET Sum = 0
FOR number = 0 To number < 20 Do
     Sum = Sum + number
   END FOR  
PRINT Sum
END

Fig. 8.11: For loop-sum of 20 natural numbers. 



159

Control Structures and One Dimension Array

Activity	8.5:	For	loop

A	class	of	ten	students	took	a	quiz	in	computer	science.	Using	the	FOR	loop,	formulate	
an algorithm that would be used to compute cumulative total and mean score of the 
class.

8.2.3.2 WHILE Loop 

Like the FOR	loop,	WHILE	loop	first	evaluates	the	condition	before	executing	the	
body	of	the	loop.	Therefore,	While	loop	executes	statements	zero or more times.	The	
general	syntax	of	a	while	loop	can	be	expressed	using	the	following	pseudocode	on	
the	left	or	flowchart	of	Fig.	8.12	on	the	right.

WHILE	<	boolean expression>	DO                  
condition?	

true

false

statements

Fig. 8.12: While..loop

 statements

END	WHILE

For	example,	in	a	commercial	bank,	a	customer	may	be	allowed	to	withdraw	money	
through	 the	ATM	 if	 the	minimum	balance	 is	 over	RWF500	otherwise	 a	message	
“Insufficient funds” is displayed. Assuming for each transaction the minimum 
withdrawable	amount	is	100,	the	control	logic	shown	in	Fig.	8.13	would	be	used	to	
enforce the business rule. 

Fig. 8.13: Looping and selection-withdrawal balance

bal>500?

bal= bal - amount

Write	Receipt

Read	amount

Start

amount%100=0?Try	again

Insufficient	funds

Stop

no

yes

amount must be divisible by 100no

yes

Explanation
1.	 The	algorithm	shows	that	the	user	first	enters	withdrawal	amount.	For	example,	

if	 the	user	enters	2000,	 the	conditional	 logic	“if amount % 100 = 0” checks 
whether	 dividing	 the	 amount	 by	 100	 returns	 0	 as	 the	 remainder	 is	 0.	 If	 the	
expression	returns	false,	the	algorithm	displays	a	message	“Try again” before 
prompting the user to re-enter amount. If true, the algorithm proceeds to check 



160

Control Structures and One Dimension Array

whether	the	current	balance	(bal)	is	above	500.	
2.	 If	the	condition	bal>500	returns	false,	the	algorithm	prints	a	message	“Insufficient	

funds”	before	exit.	
3.	 If	the	current	balance	is	above	500,	the	algorithm	proceed	to	the	next	step	of	

debiting the account using the statement:
 bal = bal - amount
4.	 Finally,	the	algorithm	displays	withdrawal	receipt	on	the	screen.

Activity 8.6: While loop

In groups, formulate an algorithm for automatically counting the number of times an 
electric fence alarm beeps. Once the number of beeps reaches 20, the system triggers 
a remote siren that alerts the security firm to send emergency response team. The 
looping control logic for counting beeps should represented designed with a while 
loop.

To	further	demonstrate	application	of	while	loop,	let’s	look	a	problem	of	determining	
whether	a	calendar	year	such	as	2016	is	a	leap	year.	Fig.	8.14	shows	a	flowchart	for	
a program that would be used to receive a valid year, verify whether it is a leap year, 
and	then	print	the	result	such	as	year	2016	is	a	leap	year.	Note	that	a	leap	year	has	
366	days	and	it	is	divisible	by	4	except	for	years	that	are	exactly	divisible	by	100.	
Years	such	as	2000	that	are	divisible	by	100	and	400	are	leap	years.		

Fig. 8.14: Selection and looping-leap year algorithm

Year%100=0?
yes

Rem	=	Leap

Stop

Rem	=	NotLeap
Rem	=	Leap

Write	Rem

no yes

nono

yes
Year%4=0? Year%400=0?

Read	Year

Start

Year	=9999?
yes

no

Exit?no

yes



161

Control Structures and One Dimension Array

Explanation
1.	 The	user	enters	a	valid	year	or	9999	to	quit	the	algorithm.	For	example,	if	the	

user	enters	2016,	“if Year%100 = 0”	checks	whether	the	remainder	is	0	after	
dividing	the	by	100.

2.	 If	the	expression	returns	true,	year%	400	is	evaluated	otherwise	if	false,	year%4	is	
evaluated. In both cases, Rem (remark) is assigned to Leap using the statement:

 Rem = Leap; 
3.	 If	after	dividing	by	100	returns	a	non-zero	value,	Rem	is	assigned	to	NotLeap	

using the statement:

 Rem = NotLeap; 

4.	 The	algorithm	displays	Leap or NotLeap remark in the output symbol depending 
on the result of the assignment statement.

8.2.3.3  Repeat ...Until Loop

Repeat	…	Until	 control	 is	 similar	 to	 the	 	while	 loop	except	 that	 the	 statement	 is	
executed	at	least	once.	For	example,	Fig.	8.15	shows	a	pseudocode	used	to	convert	
an	integer	number	in	base	10	to	binary	numbers	represented	by	zeros	and	ones.		

BEGIN

 SET Number, Quotient, Remainder

 SET Number=0, Quotient=0, Remainder=0

 PRINT “Please enter a decimal number”

 READ Number;

 REPEAT 

Quotient = Number Div 2
Remainder = Number Mod 2
PRINT Remainder
Number = Quotient

 UNTIL Number=0

 PRINT “Read remainder upwards”;

END.

Fig. 8.15: Repeat.. for converting

Explanation
1.	 The	pseudocode	starts	with	declaration	of	three	variables	that	are	initialised	to	

zero.



162

Control Structures and One Dimension Array

2.	 Once	the	user	enters	a	number	like	25,	the	algorithm	uses	reat	...	until	loop	to	
repeatedly	divide	the	number	by	2	for	example,	25	DIV2		returns	12.

3.	 The	statement	Number	Mode	2	returns	the	remainder	of	integer	division.	For	
example,	25	Mod2	returns	1.

Activity 8.7: Repeat until loop

1.	 Revisit	the	algorithm	in	Activity	8.6	and	represent	it	using	REPEAT..	UNTIL	
loop.

2.	 The	flowchart	of	Fig	8.16	represents	a	program	that	would	be	used	to	compute	
sum	 of	 50	 integers.	 Study	 the	 algorithm	 and	 express	 loop	 construct	 using	
pseudocode. 

 

8.2.4	 Finite	and	Infinite	Loops
A	finite	loop	repeatedly	executes	a	set	of	instructions	until	a	specific	condition	is	met.	
On	the	other	hand,	an	infinite	loop	(endless loop)	continue	looping	indefinitely	due	
to	a	condition	that	is	never	met.	To	force	such	a	loop	to	terminate,	you	may	have	to	
forcefully shut down the computer or close a program by pressing a combination of 
keys	such	as	Ctrl+C.	For	example,	Fig.	8.17	shows	an	infinite	loop	in	which	the	value	
of		x	is	reset	to	1	hence	the	condition	x<5	holds	forever.

  SET x = 0
  WHILE x < 5 DO
     x = 1
     x =  x + 1  
     PRINT x
  END WHILE

Fig. 8.17: Infinite loop

Set	n	=	0
Set	sum	=	0

Start

Stop

n<=50?

n	=	n	+	1
sum= sum + n

Write Sum

yes

no

Fig. 8.16: Repeat..Until for sum of fifty numbers.



163

Control Structures and One Dimension Array

Explanation 
1.	 This	section	of	an	algorithm	starts	by	initialising	x	to	0.
2.	 Once	the	algorithm	enters	the	while	loop	the	value	of	x	is	replaced	with	1	then	

x	+	1.	This	means	what	the	value	of	x	before	printing	is	2.
3.	 The	algorithm	prints	X	and	then	checks	the	condition	to	compare	x	(i.e.	2)	with	

5.	Because	2<5,	the	algorithm	enters	the	loop	again.	The	value	of	x	is	reset	to	1	
then	incremented	to	2	and	the	looping	continues.

Activity	8.8:	Finite	and	infinite	loop

A college offers a course that prepares students for a motor vehicle driving test. In the 
previous month, twenty of the students who completed this course took both theory 
and	practical	tests.	To	keep	record	of	test	results,	you	have	been	asked	to	develop	an	
algorithm	using		the	following		specifications:

•	 Prompt the user to enter driving test results for each student with a  comment 
pass or fail.

•	 The	algorithm	displays	a	summary	of	the	test	results	indicating	the	number	of	
students who passed and the number who failed.

•	 If	more	than	85%	of	the	students	passed	the	test,	the	program	displays	a		message	
“give commission to instructors!”

1.	 Carefully read the problem statement and identify the input, processing and 
output requirements. 

2.	 Using	top-down,	stepwise	refinement,	state	the	conditional	logic	of	the	problem	
and	represent	the	solution	as	a	pseudocode	or	flowchart.	

8.2.5  Break and Continue Statements
Although a loop performs a set of repetitive task until a condition is met, sometimes 
it is desirable to skip some statement inside a loop or prematurely terminate the loop. 
In such cases, break and continue statements are used.

8.2.5.1 Break statement

A	break	statement	is	used	to	force	immediate	exit		from	a	loop	or	selection	statements.	
The	statement	is	normally	used	with	if	statement	such	as	the	one	shown	in	Fig.	8.18.	
Once	the	condition	is	encountered	the	program	flow	is	transferred	to	the	next	state-
ment following loop or selection statements. 



164

Control Structures and One Dimension Array

BEGIN

 FOR count=1 TO 10 DO

 IF count = 5 THEN 

  break

 ENDIF

 PRINT count //1,2,3,4

 END FOR

END.

Fig. 8.18: Sample Break logic

Explanation 
1.	 The	for	loop	initializes	count	to	1	and	then	sets	the	upper	limit	to	10.
2.	 Once	the	loop	encounters	5,	the	break	statement	causes	the	algorithm	to	exit	the	

loop	and	print	numbers	0,	1,	2,	3,	4	and	5.	The	numbers	after	5	are	ignored.

8.2.5.2  Continue statement

The	continue	 	statement	 is	used	 in	 looping	 to	skip	 the	remaining	statements	 in	 the	
body	of	the	loop	and		perform	the	next	iteration.	Like	the	break	statement,	continue	
statement	is	also	used	with	if	statements	to	specify	the	condition	as	shown	in	Fig.	8.19.

Explanation

1.	 The	for	loop	initializes	count	1	and	then	sets	the	upper	limit	to	10.
2.	 Once	the	loop	encounters	5,	the	continue	statement	causes	5	to	be	ignored.
3.	 The	algorithm	prints	the	values	1,	2,	3,	4,	6,	7,	8,	9,	10	before	exiting	the	loop.

BEGIN

 FOR count=1 TO 10 DO

 IF count = 5 THEN 

  continue

 ENDIF

 PRINT count 

 END FOR

END.

Fig. 8.19: Sample Continue logic



165

Control Structures and One Dimension Array

Activity 8.9: Break and continue

1.	 To	test	if	a	number	n	is	a	prime	number,	we	could	loop	through	2	to	n	-	1	and	
test	whether	each	number	divides	exactly	 into	n	giving	a	 remainder	of	zero.	
Formulate an algorithm for a program that tests if the given number is prime 
number.	The	logic	should	use	a	loop	and	break	statements	to	test	the	use	input.

2.	 Develop	a	pseudocode	for	a	program	that	accepts	positive	integers	starting	from	
zero. If the number is less than zero, program should print an error message and 
stop	reading	numbers.	If	the	number	is	greater	than	100,	the	program	ignores	
the	number	and	transfers	control	to	the	next	iteration.	

8.2.6  Goto Statements

Goto	is	a	jump	statement	that	alters	the	flow	of	execution	to	a	section	of	an	algorithm	
or	program	identified	by	a	goto	 label.	Let’s	 take	an	example	of	an	algorithm	that	
would continue to prompt the user for a password until he or she enters secret as the 
password	(Fig.	8.20).	To	repeat	the	prompt,	a	label	named	“again:” is placed at the 
start of the pseudocode shown below. If “secret” is not entered the algorithm uses 
the goto statement to go to again label to repeat the prompt.

BEGIN
Repeat-again:
PRINT	Please	type	your	password:
READ	mypassword

IF	mypassword	=	secret	THEN
PRINT	“login	successful”

ELSE
PRINT	“incorrect	password”
goto Repeat-again

END
Fig. 8.20: Sample Goto statement

Note	that	although	a	goto	statement	is	an	easy	method	of	controlling	flow	of	execution,	
it is considered as bad program design practice because it can cause logic errors that 
may	be	difficult	to	detect	especially	in	complex	programs.

8.2.7 The Exit Statement

The	exit	statement	may	be	used	in	algorithm	design	to	indicate	a	point	at	which	a	
program	may	terminate	prematurely	during	processing.	For	example,	the	flowchart	
shown	in	Fig.	8.21	shows	that	once	the	user	enters	a	number,	the	exit	statement	is	
evaluated.	If	exit	is	true,	the	program	terminates	without	adding	the	number	to	sum.



166

Control Structures and One Dimension Array

  

Fig. 8.21: Exit statement

Sum = sum + number

Exit

No

Yes

Read number

Start

stop

Assessment Exercise 8.1
1.	 Differentiate between selection and iteration control structures.
2.	 Explain	the	importance	of	the	following	selection	statements:	

(a)	 IF..THEN
(b) Nested IF
(c)	 SWITCH

3.	 Explain	 three	 types	 of	 looping	 control	 structures.	 Support	 your	 answers	with	
illustration.

4.	 Design an algorithm for a program that would be used to compare three numbers 
x,	y	and	z,	and	then	display	the	least	among	the	three.

5.	 State four types of selection control structures supported by most structured 
programming languages.

6.	 Study	 the	 income	 taxation	 brackets	 used	 by	Rwanda’s	 revenue	 authority	 and	
draw	a	flowchart	for	a	program	that	would	be	used	to	compute	tax	payable	by	an	
employee depending on marital status and monthly income.

8.3  One-Dimensional Array
A one dimensional array	is	a	group	of	contiguous	memory	locations	identified	by	
the same name for storing data the same type. An array can be one dimension such 
as	a	list	of	items,	two	dimension	such	as	a	table	or	matrix.	

To	make	the	concept	of	array	clear,	 let	us	consider	an	entertainment	hall	 that	has	
capacity	of	100	seats,	10	in	each	row.	Suppose	you	and	your	friends	would	like	to	
seat	together	along	one	row.	The	reserving	one	row	of	seats	in	an	entertainment	hall	
is equivalent to one-dimensional array. 

To	access	a	particular	element	 in	an	array,	we	specify	 the	name	of	 the	array	and	
the position number (index or subscript) of the element. A subscript is a position 
number	 that	must	 be	 an	 integer	 or	 an	 integer	 expression.	 It	 is	 important	 to	 note	



167

Control Structures and One Dimension Array

that reserving too much memory location that are not likely to be occupied leads 
to	memory	wastage.		Table	8.3	shows	an	integer	array	called	Scores	containing	10	
elements	identified	by	indexes	0	to	9.	

Scores 65 50 19 30 20 45 60 89 55 72
Index 0 1 2 3 4 5 6 7 8 9

Table 8.3: One-dimensional array of 10 elements

Note that each of the score elements may be accessed by giving the name of the array 
i.e. Scores followed by the index	of	the	element	for	example,	Scores [5] returns the 
sixth	element	that	holds	45	because	counting	starts	from	0.	

8.3.1  Declaration of Arrays

An	 array	 occupy	 space	 in	memory.	Therefore,	 declaring	 an	 array	 is	 the	 same	 as	
declaring other variables only that a computer reserves contiguous memory locations 
enough	to	store	the	number	of	elements.	The	general	syntax	of	declaring	an	array	is:

• Arrayname: Array [elements] of datatype  e.g. 
• Scores: Array[10] of integer; 

Once the Scores array is declared, the computer sets aside ten memory locations for 
storing	integers	such	as	65,	50,	19,30,20,45,60,89,55,	and	72	shown	earlier	in	Table	
8.3.	

Regardless	of	language	used	to	implement	arrays,	the	following	are	factors	that	need	
to be considered.

•	 Array name: Decide on a suitable array name that indicates several elements 
are to be stored e.g. scores.

•	 Data type of elements: An array can only hold elements of the same data type.
•	 Size of array:	The	size	of	an	array	determines	the	maximum	number	of	values	

that an array will hold.
•	 Dimension:  An array can be one-dimensional list or multidimensional such as 

a	table	(matrix).

Activity 8.10: One dimensional array

Study	Table	8.4	that	shows	graphical	representation	of	two	arrays:	

(a) 
Customer 20 -3 4 12 10 30
Index 0 1 2 3 4 5

(b) Temperature (°C) 5.1 -25.9 30.0 200.8 10.90 7.65
Index 0 1 2 3 4 5

Table 8.4: One dimensional arrays



168

Control Structures and One Dimension Array

1.	 Determine each array name, data type and number of elements stored in each array.
2.	 Using section of a pseudocode, write a sample  declaration for  each array.

8.3.2 Array initialization

Initialization refers to assigning an array initial values during declaration. For 
example,	elements	of	an	array	can	be	initialized	during	declaration	by	assigning	them	
to comma separated list as follows:  

Scores: Array[10] = {34, 20, 45, 87, 92, 21, 43, 56, 12, 15}

The	statement	first	declares	an	array	of	10	elements	and	then	initializes	each	element	
with values enclosed in (curly) braces.

8.3.3  Accessing Array Elements 

In arrays, an element can be accessed by specifying the array name and the location 
(index)	of	the	element.	For	example,	to	access	the	first	element	(index	0)	in	an	array	
named scores, use scores [0]. Once you access the element, you can then read or 
write a value into it. 

8.3.3.1 Reading array elements

To	store	(read)	a	value	into	an	array,	you	need	to	know	the	name	of	the	array	and	
the	 index	of	 the	element.	Then	a	READ	function	may	be	applied	 to	 the	element.	
For	example	READ Scores [4]	stores	a	value	in	the	fifth	location	of	the	score	array.	
Multiple	values	may	be	read	into	several	elements	using	a	FOR	loop	as	shown	in	
Fig.	8.22.		

Fig. 8.22: Reading elements into an array

Explanation

1.	 The	scores	array	is	set	to	store	10	elements	of	integer	type.
2.	 The	for	loop	uses	index	as	a	counter	to	continously	store	ten	elements	0	to	9.

BEGIN

 SET Scores=Array[10]of Integer

 FOR Index=0 TO 9 DO

  READ Scores[Index];

  Index = Index + 1 

 LOOP

 END FOR

END.



169

Control Structures and One Dimension Array

3.	 The	for	loop	is	eliminated	once	the	ten	elements	have	been	read	into	the	array.

8.3.3.2  Writing Array Elements

To	write	 (display)	elements	 from	an	array,	use	a	write	 function	 together	with	 the	
arrayname	and	location	(index)	of	the	element.	To	display		a	single	value	of	an		array	
you	must	provide	the	array	name	and	index	to	the	write	operation.	For	example,	the	
value in Scores [1] may be displayed by using PRINT Scores[1]	.	To	display	multiple	
values	such	as	the	10	elements	in	the	Scores	array,	use	the		FOR	loop	by	setting	the	
initial	value	to	0	and	the	upper	limit	to	9	as	shown	in	Fig.	8.23	below:	

Explanation

This	 for	 loop	 is	 used	 to	display	10	 elements	 from	 the	 scores	 array.	The	 index	 is	
incremented	by	1	until	the	ten	elements	are	displayed.

Activity 8.11: Array of integers

Thirty	students	were	asked	to	rate	quality	of	the	food	in	the	student	cafeteria	on	a	scale	
of	1	to	5	(1=poor, 2=fair, 3=neutral, 4 =good, and 5=excellent). Write a pseudocode 
for	a	program	that	places	the	30	responses	in	an	array	of	integers	and	summarizes	
the results of the poll in terms of counts and percentages.

Assessment Exercise 8.2
1.	 Declare	a	one-dimensional	array	that	represents	a	fleet	of	25	buses	numbered	

from	100	to	125.
2.	 The	following	is	a	list	of	numbers	representing	customers	waiting	to	be	served	

in	a	banks:	64,	25,69,	67,	80	and	85.	
(a) Define an array named Customers and  initialize it with the waiting list 

numbers.
(b) Develop an pseudocode for reading and writing the elements into customer 

array.
3.	 Formulate	an	algorithm	that	converts	numbers	from	base	10	to	binary	and	store	

the binary digits in an array and correctly displays the  binary number.
4.	 Study	Fig.	8.24	representing	a	pseudocode	fragment	for	printing	elements	from	

and	array.	Identify	possible	errors	and	explain	what	happens	if	the	error(s)	are	
not corrected.

 FOR Index:=0 TO 9 DO
  WRITE Scores[Index];
  Index:= Index + 1 
 END FOR

Fig. 8.23: Displaying values from an array



170

Control Structures and One Dimension Array

  

 Beeps:Array[5]={2,5,6,3,7,9,8};

 FOR count=0 TO 5 DO

  PRINT Beeps[count];

  count= count + 1 

 END FOR

Fig. 8.24: Beeps array

Unit Test 8
1.	 Differentiate between nested IF and switch/case selection.
2.	 Explain	the	importance	of	the	following	looping	control	statements:	

(a)	 WHILE
(b)	 FOR
(c)	 REPEAT...UNTIL

3.	 Explain	 at	 least	 two	 reasons	 that	would	make	 a	 program	 to	 infinitely	 repeat	
execution	of	a	loop.	How	can	such	undesirable	behaviour	be	resolved?	

4.	 Using	illustrations,	differentiate	between	a	one-dimensional	array	and	a	matrix.
5.	 State four factors that need to be considered when declaring a one-dimensional  

array.
6.	 The	 Fig	 8.25	 below	 shows	 the	 faces	 of	 six-sided	 die	with	 each	 side	marked	

with	dots	representing	faces	1	to	6.	To	generate	random	numbers,	a	player	rolls	
a	single	die	6000	times	and	the	frequency	of	each	face	that	appears	is	stored	in	
an array. Formulate an algorithm that would be used to count frequency of each 
face in an array.

Fig. 8.25: Six-sided dice



171

Introduction to Computer Programming

Key Unit Competency
By the end of the unit, you should be able to explain programming paradigms.

Unit Outline
•	 Computer programming concepts.
•	 History of programming languages.
•	 Highlevel programming languages.
•	 Computer programming paradigm.
•	 Features of good programming language.

Introduction
Computers have been applied in different areas, from controlling nuclear plants 
to providing games in mobile phones. Because of this diversity in computer use, a 
computer, tablet or mobile must have  relevant programs. This unit introduces basic 
concepts used in computer programming, evolution of programming languages and 
programming	paradigms	since	the	advent	of	the	first	programmable	machine.	

Activity 9.1: Computer programming concepts
The structure of any language  such as Kinyarwanda, Kiswahili, French, English or 
Chinese is described in terms of form (syntax) and meaning (semantic). In groups, 
research on the internet and use your knowledge in language studies to brainstorm 
on the two concepts.

9.1  Computer Programming Concepts
Before we begin discussing the details of computer programming, we need to consider 
a few concepts that will be used from time to time in the rest of this book. In this 
section,	we	briefly	highlight	some	of	the	fundamental	concepts	used	in	programming	
which includes: 

9.1.1  Computer program
A computer program refer to a set of instructions, written using a programming 
language	to	instruct	a	computer	to	perform	a	specified	task.	A	program	is	like	a	recipe.	
It contains a list of ingredients (referred to as variables) and a list of instruction 
(statements) that tell the computer what to do with the variables. 

9.1.2  Software
Though the term software and program are used interchangeably, technically, software 
refers to a program and associated documentations, while a program is basically a 
set of executable instructions loadable into computer memory.

INTRODUCTION TO COMPUTER 
PROGRAMMINGUnit 9



172

Introduction to Computer Programming

9.1.3  Programming
Computer programming is a systematic process of writing a computer program using 
programming languages. The person who writes computer programs is referred to as 
a programmer. Other terms used to refer  to a programmer are software developer 
and software engineer.

9.1.4  Programming languages
A	programming	language	is	a	formal	language	that	specifies	syntax	and	semantics	
rules used in writing a computer program. Some examples of programming languages 
include BASIC, C, C++, Java, Pascal, FORTRAN and COBOL.

9.1.5  Source code
The term source code refers to a set of instructions or statements written by a  
programmer that are not yet translated into machine-readable form. A source code is 
mostly	a	text	file	written	using	programming	languages	like	BASIC,	Pascal,	C	or	C++.	

9.1.6  Object code
Once a source code is written, it can be translated into machine readable form referred 
to as object code. To translate source code statement to object code is similar to the 
way one can translate English to Kinyarwanda, there are language translators used 
to translate source code to object code. 

9.1.7  Compilers and interpreters
A compiler is a language process that translates the entire source code into object 
code.	The	object	file	can	be	made	into	an	executable	program	by	carrying	out	another	
process known as linking. Linking combines compiled code with one or more existing 
object	codes	to	create	an		execution	file. In Windows operating system, you can easily 
identify an	executable	file	because	it	has	an	EXE extension such as winword.exe. 
Unlike a compiler that translate the entire source code to object code, an interpreter 
translates source code one statement at a time. Because the interpreted statements 
are	saved	as		an	executable	file,	every	time	the	program	is	run,	each	statement	must	
be interpreted. Table 9.1 gives a summary of differences between compilers and 
interpreters.

Interpreters Compilers

Translates source code one statement at a 
time.

Translates the entire source code at once before 
execution.

Translates the program each time it is run hence 
slower than compiling.

Compiled object code is saved on the disk hence 
runs faster than interpreted programs.

Interpreted object code takes less memory 
compared to compiled program.

Compiled programs require more storage to 
store the object.

Table 9.1: Difference between compilers and interpreters.



173

Introduction to Computer Programming

Activity 9.2: Computer programming
Most	students	wonder	how	they	would	benefit	from	the	study	of	mathematics	and	
computer	programming.	In	groups,	brainstorm	on	some	of	the	benefits	of	learning	
the two subjects and how the disciplines are interrelated.

Assessment Exercise 9.1
1. Define	the	terms:	

(a) computer programming, 
(b) source code. 
(c) object code.

2. Differentiate between the compilers and interpreters.
3. Though the terms program and software are used interchangeably, they are 

technically different. Explain the difference between the two.

9.2  History of Programming languages
The	person	to	be	credited	as	the	first	programmer	was	a	lady	by	the	name	Ada Byron 
in early 1800. Since then many programming languages have been developed over the 
years.	These	languages	can	be	classified	into	two	main	categories	and	five	generations.	
The first and second generations consist of low-level languages while the third to 
fifth generations comprise of high-level languages.

9.2.1  Low-level Programming Languages 
Low-level languages are regarded as low because they can be directly understood 
by a computer while some requires minimal translation to machine readable form. 
Low	level-languages	are	classified	into	two	generations:	first	generation	languages	
also known as machine languages, and second generation languages referred to as 
assembly languages.

9.2.2  First Generation Languages 
First generation languages (1-GLs) refers to  machine languages  (binary code) used to 
program	the	first	generation	programmable	computers	such	as	UNIVAC	and	ENIAC.	
These computers were programmed by connecting wires on plug boards. The wiring 
configuration	was	used	to	represent	data	in	binary	form	as	a	series	of	on’s	(1)	and	
off’s	(0)	in	electronic	circuits.	Fig.	9.1	shows	a	sample	binary	code	representing	a	
program used to operate machines such as ENIAC.



174

Introduction to Computer Programming

   11100011 00000001 10000011

 00011100 10001101   10001101

 10001111 11111000 10000001

Fig.9.1: Machine (binary) code
NB: Machine programming was very slow, tedious and error prone. Furthermore, 
such a program is not portable because first electronic computers deferred from one 
another.    

9.2.3  Second Generation Languages  
The second generation languages (2-GLs) referred to as assembly languages marked 
the	first	successful	attempt	to	make	programming	easier	and	faster.	Most	assembly	
languages allowed programmers to write programs as a set of symbolic codes known 
as mnemonics. Mnemonics are basically an abbreviation of keywords as shown in 
Fig. 9.2.

1: move content from address 40005 to register 
ax. 
2:add 45 to content in ax. 
3: if the sum is greater than 0, jump to location 
11300

mov  ax,   [40005] 

add    ax,  45

jp  11300 

Fig.9.2: Assembly program code

Unlike machine languages, program code written in assembly language has to be 
translated to machine code using a language processor known as assembler. An 
assembler is a special program that converts instructions written in low-level assembly 
code into machine code. Nevertheless, programs written using assembly languages 
are machine dependent hence not portable.

Activity 9.3: Second generation programming languages
In groups, research on the internet the programming languages used on Second 
generation	computers	such	as	IBM7094	and	UNIVAC	1108.			

9.2.4  Benefits and limitations of low-level languages
Having	 looked	 at	 the	 two	 categories	 of	 low-level	 programming	 languages,	 let’s	
highlight	some	of	the	benefits	and	limitations	of	low-level	languages.

Benefits
1. Program written using low level languages requires small amount of memory 

space.
2. The processor executes them faster because they require minimal or no 

translation.  
3.  Low level languages are stable and hardly crash or break down once written.



175

Introduction to Computer Programming
Limitations
1.  Low level languages are difficult and cumbersome to use and learn.
2.  They require highly trained experts both to develop and maintain.
3.  Checking for errors (debugging) in low level programs is difficult and time 

consuming.
4.  Low level programs are machine dependent hence they are not portable. 

Assessment Exercise 9.2

1. Define the terms binary code, mnemonics, and assembler.
2. Differentiate between machine languages and assembly languages.
3. Explain how the first generation computers were programmed using binary code.
4. Highlight three advantages and three disadvantages of low level languages.
5. Mr. Kwizera bought a new electrical kettle. On the power switch of if were two 

inscribed digits 0 and 1:
(a) Explain what each of the two symbols stand for.
(b) Explain why the two symbols are important in computers and computer 

programming. 

9.3  High-level Programming Languages 
Due to drawbacks of low-level languages, high-level languages began to appear in 
1950’s.	High	level	languages	that	closely	resembles	natural	(human)	languages	like	
English. Unlike low-level languages, high-level languages are independent of machine 
architecture. This means that, instead of a programmer spending more time learning 
the architecture of the underlying machine, more time is devoted towards solving 
a	computing	problem.	Generally,	high-level	programming	languages	are	classified	
into three generations namely: third generation (3-GLs), fourth generation (4-GLs), 
and	fifth	generation	(5-GLs)	programming	languages.

9.3.1  Third generation languages
Third level languages (3-GLs) are also known as procedural or structured programming 
languages. Procedural languages make it possible to break down a program  into 
components known as procedures or modules each performing a particular task. 
Examples of 3-GL include Pascal, FORTRAN (Formula Translator), BASIC 
(Beginners All-Purpose Symbolic Instruction Code), C, C++, Adca and COBOL 
(Common Business Oriented Language).

9.3.2  Fourth generation languages
Fourth generation languages (4-GLs) were improvement on 3GLs meant to reduce 
programming	effort	by	making	programming	more	easier	and	flexible.	



176

Introduction to Computer Programming
Furthermore, most 4GLs incorporates advanced programming tools for integrating 
programs with  databases and generating summarised reports. Examples of 4-GLs 
include Structured Query Language (SQL), Focus, PostScript, RPG II, 
PowerBuilder, FoxPro, Python, Progress 4GL, and Visual Basic. 

9.3.3  Fifth generation languages
Fifth generation languages (5-GLs) also known as natural languages are used to 
develop	systems	that	solve	problems	using	artificial	intelligence.	Artificial	intelligence	
refers to computer systems that mimic human-like intelligence. Such intelligence 
include visual (seeing), perception, speech recognition, decision making and 
movement. Therefore, in 5GL programming, the programmer only worries about 
constraints required for the problem to be solved. Typical examples of 5GLs include 
Prolog, LISP, Scheme, Ocaml, and Mercury. 

9.3.4  Benefits and limitations of high-level languages
Having	looked	at	the	various	high-level	programming	languages,	let’s	highlight	some	
of	the	benefits	and	limitations	associated	with	most	of	these	languages.

9.3.4.1  Benefits
1.  High level languages are portable i.e. they are transferable from one computer 

to another.
2.  High level languages are user friendly and easy to use and learn.
3.  High level languages are more flexible, hence they enhance the creativity of the 

programmer and increase productivity in the workplace.
4.  A program in high level languages is easier to correct errors. 

9.3.4.2 Limitations
1.  Their nature encourages use of many instructions in a word or statement hence 

the complexity of these instructions slows down program processing.
2.  They have to be interpreted or compiled to machine readable form before the 

computer can execute them.
3. They require large computer memory to run.

Assessment Exercise 9.3
1. Distinguish between the following terms:

(a) Third generation. 
(b) Fourth generation programming languages. 

2. Briefly explain the evolution of programming languages. In each case, identify 
the generation and languages used.

3. State three advantages and three disadvantages of high-level languages.
4. On internet, conduct research to identify and discuss five examples of structured 

programming language.



177

Introduction to Computer Programming

9.4  Computer Programming Paradigms
The term paradigm	was	first	used	by	Thomas	Kuhn	in	his	1962	to	refer	to	theoretical	
frameworks	within	which	all	scientific	thinking	and	practices	operate.	In	other	words,	
paradigm refers to theory or ideas concerning how something should be done, made, 
or thought about. Paradigm shift refers to fundamental change on how something 
should be done, made, or thought about.  

9.4.1  Definition of Programming Paradigm
Programming paradigm refers to pattern, theory or systems of ideas that are used to 
guide development of computer programs. In other words, it is a school of thought or 
philosophy	that	defines	concepts,	practices	and	views	on	how	computer	programming	
should be conceptualized or performed. Several programming paradigms have 
evolved	each	of	which	presents	programmers	with	a	specific	mode	of	thinking	about	
computer programming. In the next section, we classify programming paradigms into 
imperative, functional, logic and object oriented.

9.4.2  Classification of Programming Paradigms
Programming	paradigm	may	be	classified	into	four	main	categories	namely		imperative	
programming, functional programming, logic programming and object-oriented 
programming. 

9.4.2.1  Imperative programming paradigm
Imperative programming also referred to as procedure-oriented is a paradigm in 
which commands (program instructions) are executed in sequential order. One of the 
fundamental characteristic of programs written using imperative languages is that 
they have variables that change during program execution. For example, consider 
the following statement that adds two numbers x and y and assigns the result to a 
variable named sum: 
 sum = x + y
Every time different values for variables x and y are provided, sum changes from 
the previous state to new state as shown in Table 9.2.  

x y Sum = x + y Remarks

8 9 17 17 is current state

10 12 22 17 replaced by 22

15 30 45 22 replaced by 45

Table 9.2: New state of variables
Programming languages that support imperative programming including machine 
languages, assembly languages, Basic, Pascal and C. 



178

Introduction to Computer Programming
9.4.2.2  Functional Programming Paradigm
Functional programming is a paradigm based on concept of functions that consists 
of the function name and list of values known as parameters enclosed in parenthesis. 
The main difference between functional programming and imperative paradigm is that 
functional programming does not require use of assignment statements to manipulate 
variables. Instead, manipulation of variables is accomplished by applying functions 
to a list of parameters also known as arguments. The following syntax known as 
polish notation is used to represent a function and list of arguments:
 (function_name parameter1... parametern);
For example, consider a function that calculates sum of four parameters 5, 4, 7 and 
9. We can use addition symbol (+) or mnemonic add to represent addition function 
as follows:
 (+ 5 4 7 9) or (Add 5 4 7 9)
In this case, the function takes four parameters to calculate the total; this gives us 
25. The parameters in this example can also be manipulated using other arithmetic 
functions like subtraction (-), multiplication (*) and division (/). Examples of 
programming languages that support functional paradigm include LISP, Scheme, 
Haskell, MetaLanguage (ML), Miranda, Caml, and F#.

Activity 9.4: Programming paradigms
Using examples, differentiate between imperative, and functional programming 
paradigms. 
In	groups,	brainstorm	on	benefits	and	limitations	of	functional	programming	paradigm.	
Use a sample function in Polish notation to demonstrate how to subtract or multiply 
three parameters.

9.4.2.3  Logic Programming Paradigm
Logic programming is a rule-based paradigm that focuses on use of logic or predicate 
calculus. In logic programming paradigms, only facts and rules are declared to produce 
desired results. This means that a logic program is a set of facts that make use of a 
set of rules to answer a query. For example, the following  statement  in a language 
known as Prolog (standards for programming logic) could mean that if ann is the 
mother of shella, then ann is an ancestor of shella:
 ancestor(ann, shella) :- mother(ann, shella).

Logic programming	paradigm	fits	well	when	applied	in	artificial intelligence (AI) 
that	deal	with	the	extraction	of	knowledge	from	basic	facts	and	rules.	In	artificial	
intelligence, various logical assertions (proportions) about a situation are made to  
establish all known facts. Languages that emphasize logic programming paradigm 
include Prolog, GHC, Parlog, Vulcan, Polka and Mercury.



179

Introduction to Computer Programming

Activity 9.5: Logic programming
•	 In	groups,	brainstorm	on	benefits	and	limitations	of	logic	programming	paradigm.	
•	 Use a sample functional program to demonstrate how rule-based program 

statements are executed in regard to facts, rules, inference and answers to queries.

9.4.2.4  Object Oriented Programming Paradigm
Object-Oriented Programming Paradigm (OOP) is the latest paradigm in which 
properties (data) and operations (procedures) are combined to form objects. 
Therefore, an object represents a real-world “thing” such as a person, animal, plant, 
place, or building. In object-oriented programming, similar objects are grouped 
together to form classes. For example, the Table 9.3 below shows three types of 
classes	that	define properties and operations applicable to each object:

Class Properties (data) Sample object Operation

Person first	name,	surname,	gender “Peter, Muse, Male” Add, delete, edit, person

Building House No,  Type, Town “H34, Bungalow, 
Kigali”

Add, delete, edit, building

Plants Type, Name, Height “Tree, cypress, 5 
metre”

Add, delete, edit, plant

Table 9.3: Classes and objects
Because the latest paradigm shift is development of OPP programs, most imperative 
languages like C, Pascal and Basic have evolved to support OOP. Examples of 
programming languages that support OOP include Delphi Pascal, C++, Java, C#, 
Visual Basic.Net, and Objective-C.
In summary, Table 9.4 shows the four major programming paradigms namely 
imperative, functional, logic, and object-oriented programming:

Paradigm Concept Description Program Program 
execution Results

Imperative Commands 
(instructions)

Computations as 
statements that 
directly change a 
program state

Sequence of 
commands

Executions of 
commands

Final state 
of computer 
memory

Functional Function Treats 
computation as 
the evaluation 
of mathematical 
functions 
avoiding change 
of state

Collection of 
functions

Evaluation of 
function

Value	of	
the main 
function

Table 9.4: Summary of programming paradigms languages (continued next page)



180

Introduction to Computer Programming

Paradigm Concept Description Program Program 
execution Results

Logic Predicate Treats a program 
as a set of 
propositions 
comprising of 
rules and facts

Logic formulas: 
axioms and theorem

Logic proving of 
theorem

Failure or 
success of 
proving

Object-
oriented

Objects and 
classes

Treats a program 
as a collection 
of objects that 
have state and 
behaviour

Collection of 
objects

Exchange 
of messages 
between objects

Final state 
of objects

Table 9.4: Summary of programming paradigms languages

Activity 9.6: OOP Paradigm
•	 Though	OOP	differs	significantly	 from	procedure-oriented	paradigm,	we	may	

not consider this category separate from imperative paradigms. This is because 
some object-oriented languages such as F# supports functional programming. 
Using valid references, defend or challenge this argument.  

•	 In groups, discuss the terms classes, inheritance and polymorphism. In addition, 
brainstorm	 on	 benefits	 and	 limitations	 of	 object-oriented	 programming	 over	
imperative programming paradigm. 

9.5  Features of Good Programming Language
Criteria for evaluating programming languages and paradigms may be controversial 
but Sebesta in his book, “Concepts of Programming Languages, tenth edition” 
suggests four main criteria namely: readability, writability, reliability and cost. 

• Overall simplicity: Overall	simplicity	of	a	programming	language	influences	its	
ease of learning and readability.

• Good orthogonality: Relatively small set of simple constructs can be combined in 
a number of ways to provide required control and data structures of the language. 
Limited orthogonalilty makes it easier to learn, read, and understand a language.

• Adequate data types and data structures: Presence of adequate facilities 
for	 defining	 data	 types	 and	 data	 structures	 help	 increase	 the	 readability	 of	 a	
programming language.

• Clear syntax design: The syntax, or form, of the elements of a language has a 
significant	 effect	 on	 the	 readability	of	 programs.	For	 example,	 use	of	 special	
words such as end if makes a program more readable.

• Support for abstraction:	Programming	language	should	provide	facilities	to	define	
and then use complicated structures or operations in ways that allow many of the 
details to be ignored. Two types of abstraction are process (subprograms) and 
data abstraction (structures, records, objects).



181

Introduction to Computer Programming

• Expressivity: Typically expressivity means that a language has convenient ways of 
specifying computations. For example, in C, C++ and Java, the notation count++ 
is a more convenient and shorter way of incrementing count by 1 equivalent to 
count = count + 1.

• Mechanisms to handle exceptions: This is the ability of a program to intercept 
run-time errors  or detect  other unusual conditions, take corrective measures, 
and then continue with normal execution. A  good programming language should 
provide mechanism to handle exceptions. 

• Type checking: Type checking refers to testing for data type errors during program 
compilation or run-time (execution). Because run-time type checking is expensive, 
it is more desirable for a programming language to verify data type at compilt-time.

• Cost-effective: The total cost of a programming language can be evaluated in terms 
of compiler cost, software development process, compilation time, implementation 
platforms, programmer training and maintenance.

Activity 9.7: Qualities of a good program
Research on internet and write brief report on characteristics of a good programming 
language. 

Exercise 9.4
1. Explain the concepts: object-orientation, and logic programming paradigms. 
2. Explain	why	knowledge	of	programming	language	characteristics	can	benefit	the	

whole computing community.
3. Explain the programming paradigm supported by F# programming language.
4. Explain why is it useful for a programmer to have some background in language 

design, even though he or she may never actually design a programming language?

Unit Test 9
1. Differentiate between a computer program and software.
2. Explain how evolution of computers have influenced paradigm shift in computer 

programming.  
3. List three examples of object-oriented programming languages.
4. Differentiate between procedural programming and functional programming 

paradigms.
5. Pascal and FORTRAN are examples of _______ generation programming 

languages.
6.	 Procedural	languages	make	it	possible	to	break	down	a	program	into	components	

known as ___________ or ________.
7. A programming paradigm in which a program is executed in sequenced order 

is known as _________.



182

Introduction to C++ Programming

Key Unit Competency
By the end of the unit, you should be able to write and execute a given algorithm 
using C++ Programming language. 

Unit Outline
•	 Evolution	and	features	of	C++.
•	 Compiling and executing C++ programs.
•	 Input and output streams.
•	 Variables.
•	 Constants.
•	 Output formatting.

Introduction
In 1980s when object-oriented programming started to gain grounds, Bjarne 
Stroustrup who was then a researcher at AT&T Bell Laboratories took the most 
popular language, C, and extended it with object-oriented features of SIMULA 67 
and Smalltalk to facilitate object-oriented programming (OOP). To date, C++ is 
one of the best languages for multi-paradigm programming and a good language for 
learning procedural and object-oriented programming paradigms. In this unit, we 
begin by tracing the evolution of C++ then demonstrate how to write C++ programs.

10.1  Evolution and features of C++ 
10.1.1  Evolution of C++ 
Evolution	of	C++	can	be	traced	back	to	1980	when	Bjarne Stroustrup developed a 
language he referred to as “C with Classes” at Bell Laboratories. Motivated object-
oriented programming pioneered in Smalltalk, Stroustrup included powerful features 
of SIMULA 67 into C with design goal of supporting object-oriented programming 
while retaining backward compatibility with C. 
By 1984, more enhancements had been added to “C with Classes” hence it was 
renamed C++. Therefore, the name C++ uses C increment operator (++) to indicate that 
C++ is an enhancement of C. This integration of object orientation into procedural-
oriented C makes C++ a multiparadigm language suitable for developing system 
software like operating systems.  

10.1.2 Features of C++ 
The design and evolution of C++ describes the principles of C++ that make it suitable 
language for cross-platform systems programming. This section gives an overview 
of C++ key design, programming and language-technical concepts that you may 

INTRODUCTION TO C++ 
PROGRAMMING Unit 10



183

Introduction to C++ Programming
need to familiarise with before you start writing programs. The following are general 
features	of	C++	that	makes	it	one	of	the	most	powerful	and	flexible	programming	
supported by most computers. 

• Portability: Programs written in C++ are portable across multiple hardware 
and software platforms. For example, a program developed to run on Microsoft 
Windows can be run on Linux or Macintosh operating systems with minimal or 
no	modification.

•	 Object-oriented	programming: The design goal of C++ is to support object-
oriented programming. As mentioned earlier, instead of using function that access 
global variables, both data and variables are encapsulated into an object. This 
make data more secure because the communication between program objects is 
through message passing 

• Keywords: Keywords also referred to as reserved words are words that have 
special meaning in a language and can only be used for intended purpose. C++ 
has a large number of reserved words such as include, main, while, for, if, else 
and return.

• Identifiers:	In	C++	programming,	identifiers	are	symbolic	names	used	to	identify	
elements like variables and constants in a program. Because C++ s case sensitive, 
it	is	important	to	observe	caution	when	creating	user-defined	identifiers.

• Operators: Operators are used to evaluate an expression that returns a value. 
The three main types of operators supported both by C++ are arithmetic (+, -, /, 
* and %), relational (e.g. >, <, = =, != ), and logical (&&, | |, !). Other compound 
operators include increment (++), decrement operators (– –), bitwise operators, 
and ternary  (? :) operator.

• Storage in memory: In C++ a variable is a named storage location in computer 
memory for holding data of a particular type. Common data types supported by 
C++ include integers, floating-point	(real), characters, arrays and records. 
C++ also supports complex data types such as struct(records), arrays and linked 
lots.

• Case sensitive:	C++	is	case-sensitive.	This	means	that	an	identifier	(symbolic	
name)	 in	 uppercase	 is	 different	 from	 the	 same	 identifier	 in	 lowercase.	 For	
example,	an	identifier	“age”	is	completely	different	from	“Age”	or		“AGE”.	Most	
programmers C++ prefer to use lowercase for variable names, and uppercase in 
case of constants.

•	 Type	checking: C++ provides a rules and mechanism for checking data types 
before execution starts. If a compiler detects inconsistence, it ensures that the 
data	conversions	defined	in	the	language	or	by	the	user	do	not	cause	runtime	
errors or system failure.



184

Introduction to C++ Programming

Assessment Exercise 10.1
1. Using examples, discuss the main features of C++ programming language.
2.	 Explain	why	C++	is	regarded	as	a	system	programming	language.	
3. Describe chronologically, the evolution of C++ programming language.
4.	 Explain	why	C++	is	regarded	as	multi-paradigm	programming	language.

10.2  Syntax of C++ Program
In C++, a program may consist of objects, functions, variables, and other  components. 
However, regardless of size or complexity of a C++ program, the program has to 
include directives, and at least one function called main. For simplicity, the Fig. 10.1 
shows general syntax of a C++ program: 

Fig. 10.1: Basic Structure of C++ Program

#include directive;

global variables/constants;

user_defined_functions 

return_type main(){

   executable statements //comment

return something

}

10.2.1  Sample C++ program
To demonstrate the general syntax of a C++ program, we start with a HelloWorld 
program 10.2(a) whose output is shown in Fig. 10.2(b). Such a program is widely 
used to introduce beginners to any programming language. 

/* display “Hello World” 

#include <iostream>

using namespace std;

int main() {

cout<<”Hello World”<<endl;

return 0;

}

(a) Hello world program                      (b) Hello world output
 Fig. 10.2: Hello word C++ Program

•	 The	first	line	that	starts	with	forward	slash		is	a	comment	that	describes	what	
the program does. Comments are ignored by a compiler, but that may inform 
other programmers what the program is doing at any particular point. There are 
two types of comments:  (/*...*/) or double-slash (//). The  /* … */ multi-line 
comment instructs the compiler to ignore statements within the delimiters. On 



185

Introduction to C++ Programming
the other hand, the // is a comment delimiter that instructs the compiler to ignore 
a single-line comment.  

•	 The second statement #include <iostream> that starts with # is known as a 
preprocessor directive because it instructs a preprocessor to search for iostream file 
and insert it into your program. A preprocessor is a utility program that processes 
special instructions  written in a C++ program. The preprocessor directive to 
include the iostream is critical because it contains input and output functions. 

 In the past, the directive was accomplished using old style directive 
#include<iostream.h> that instructs a preprocessor to include iostream.h header 
file into the source code. In standard C++, this directive has been deprecated 
meaning that it is no longer supported by some compilers. However, to demonstrate 
use of <iostream.h>, hello world program can be rewritten as follows (Fig. 10.3):

/* display ‘Hello World’ on the 
screen */

#include <iostream.h>

int main() {

cout<<”Hello World”<<endl;

return 0;

}

Fig. 10.3: Using iostream.h directive

•	 Using namespace std; namespace is a feature in C++ used to ensure that 
identifiers do not overlap due to naming conflict. Identifiers may overlap by 
sharing	different	parts	of	a	program.	Each	namespace	such	as std (standard)
defines a scope in which identifiers are placed. This eliminates the need to use 
an operator called scope resolution operator represented by (::).  

•	 int	main	(); C++ programs consist of one or more functions. The parentheses 
after main indicates that this is a subprogram unit known as a function. In 
C++, the main ( ) function is executed first regardless of its location within the 
source code. The int (integer) before main ( ) indicates that the function gives 
out (returns) integer to another function. The curley bracket { immediately after 
( ) parenthesis is the opening delimiter that shows  the start of the main function 
body. 

•		 cout	<<“Hello	World”;This is the statement that actually displays Hello	World	
statement on computer screen. The first word cout that stands for console out 
is used to fetch output from computer memory and print it on the screen. In this 
example, cout together with the symbol <<  known as stream insertion operator 
causes  Hello	World to be printed on the screen.

 Following Hello World string is the << endl that forces the cursor to be moved 
to a new line. The alternative is use of ‘In’ as shown below.

   cout “Hello World|n”;



186

Introduction to C++ Programming
•	 return	0; When return statement is used at the end of a function, a value of 

0 (zero) is returned to the operating system  to indicate that the program has 
terminated successfully.

•	 The	last	curly	bracket,	}	is	a	closing	delimiter	that	denotes	the	end	of	the	main	
function.

10.2.2 Compiling and Executing C++ Program
Typically, compilation and execution of C++ programs goes through six phases: edit, 
preprocess, compile, link, load and execute illustrated in Fig. 10.4. In this section, 
we explain these steps used to create helloworld program discussed above using an 
open source development environment known as DevC++.

Library Linker

Compiler

Preprocessor

Executable	Code
(my.exe)

Source Code
(e.g. my.cpp)

Preprocessed
Source Code

Object Code
(my.obj)

Fig. 10.4: C++ compile and executive

10.2.2.1  Editing Source code
In programming context, writing a program is commonly referred to as editing source 
code.	You	first	create	a	C++	program	source	file	such	as	the	hello	program	discussed	
earlier using the editor, make necessary corrections and save the program on a 
secondary storage device, such as the hard drive with .cpp, .cxx, or .cc extensions 
e.g	my.cpp.	Each	statements	must	end	with	a	semicolon	and	a	block	of	statements	
belonging to a function or control structure must be enclosed in curley brackets. 
The most common C++ statements include: input statements starting with cin >>, 
output  statements that start with cout<<, and assignment such as an expression to 
add two numbers.
There are several commercial and open source development tools available in which 
you can compile, build and run C++ applications. Common examples include GNU 
C++, Dev C++, Microsoft Visual C++, CodeLite, NetBeans and Eclipse.



187

Introduction to C++ Programming
10.2.2.2 Preprocessing
Once you issue the command to compile the source code, a preprocessor runs just 
before the compilation starts. The preprocessor obeys commands called preprocessor 
directives such as removing comments  and blank spaces from the source code before 
compilation takes place.

10.2.2.3 Compiling
Compiling is the next step after preprocessing in which the source code is translated 
into object code. For example, the above illustration shows that my.cpp source code 
is compiled to my.obj.

10.2.2.4 Linking
C++	programs	contain	references	to	functions	defined	elsewhere	such	as	the	iostream. 
A linker combines the object code compiled from your source code with the imported 
library	functions	to	produce	an	executable	file.	In	Microsoft	Windows,	executable	
files	have	.exe extension such as My.exe shown earlier in Fig.10.4. 

10.2.2.5 Loading
Before a program is executed, it must be loaded from the disk into main memory. 
This is done by the loader	that	takes	executable	file	from	the	storage	media	and	loads	
it into main memory. 

10.2.2.6 Execute
Finally, the computer executes the program in memory. Once the program encounters 
the end marker, it is unloaded from main memory and control returned to the operating 
system.	To	execute	a	program,	type	the	file	name	with	exe	extension	e.g	my.exe	at	
the command prompt.

Activity 10.1: Compiling and executing C++ program
Write a C++ program named CPPTutorial that displays a statement “Programming 
in C++ is Fun”. Using illustrations, explain the process the program undergoes from 
to be translated from source code to an executable program.  

Assessment Exercise 10.2
1.	 Explain	the	importance	of	the	following	compiler	utilities:

(a) Preprocessor.  (b) Linker.
2. Using an illustration, explain how a C++ program is compiled from source code 

to an executable file. 
3.	 Identify	integrated	development	environments	(IDE)	or	tools	that	can	be	used	

to create C++ applications.



188

Introduction to C++ Programming

4. Study the sample C++ code below and identify possible syntax errors:

5. Using appropriate C++ integrated development environment, create a program 
that displays in “Rwanda is a Beautiful Country”.

10.3  Input and Output Streams
In C++, input/output (I/O) operations occurs in streams which are sequences of 
bytes.	During	input	operations,	bytes	flow	from	a	device	e.g.,	output	keyboard	to	
main	memory	while	in	output	operations,	bytes	flow	from	main	memory	to		devices,	
e.g., monitor. The C++ standard library contains iostream header that declares basic 
services	required	for	stream	I/O	operations.	The	header	defines	cin and cout objects 
that correspond to the standard input stream, and output stream.

10.3.1  Output Stream
Output	capabilities	 in	C++	are	provided	by	a	 library	file	known	as	ostream. The 
ostream has an object called cout that stands for console out that prints output on 
a standard output, usually a display screen. The object is used in conjunction with 
stream insertion operator, which is written as << (two “less than” signs). For 
example, the following cout statement statement causes the statement “Let’s be one 
Nation” to be printed on the screen: 

 cout<< “Let’s be one Nation”; 

In this case, the << operator inserts the data that follows it on the right. In this case, 
“Let’s be one Nation” is displayed on the standard output stream.

10.3.2 Input Stream
In C++ handling input is done using the cin combined with >> known as stream 
extraction operator. cin represents the standard input device (or Console INput), 
i.e., keyboard. The symbol >> after the cin. The >> operator causes data input such 
as an integer value to be input from cin into computer memory. The operator must 
be followed by the variable that stores the data to be extracted from the stream. For 
example, the following statements extracts value such as 78 from keyboard buffer 
(temporary memory) and assigns it to score: 
 cin>>score;

#include <iostreams>
using namespace std; 
 {
 cout>>“Rwanda is a Beautiful Coun-
try”;
 return 0;
 }



189

Introduction to C++ Programming
It is important to note that the >> operator skips black spaces encountered in the 
input stream. The following program demonstrates use of input and output stream 
to read (accept input) and write (display) the output.

#include <iostream>

using namespace std;

int main() {

   int firstInt;  // declare a number firstInt 

   int secondInt; // declare a number  secondInt

   int sum, diff, product, quotient;

   cout << “Enter first integer: “; //use cout to prompt for input 

   cin >> firstInt;  //use cin to get/read input from user                

   cout << “Enter second integer: “;  

   cin >> secondInt;                  

    // Perform arithmetic operations

   sum  = firstInt + secondInt;

   diff = firstInt - secondInt;

   product = firstInt * secondInt;

    // use cout to display the results

   cout << “Sum is: “ << sum << endl;

   cout << “Difference is: “ << diff<< endl;

   cout << “Product is: “ << product << endl; 

   return 0;

}

Fig. 10.5 shows the output after running the program.

Fig. 10.5: Sample program using cin and cout statements

In the program, the cout << “Enter	first	integer: uses cout <<  outputstream to display 
a prompt message. This is followed by cin	>>	firstInt; statement used to read the user 
input from the keyboard and store the value into variable firstInt. 

Activity 10.2: Inputstreams and outputstreams
Fig. 10.6 shows a pseudocode for a program that takes three numbers x, y and z, 
evaluates the expression and displays the result on the screen. Study the pseudocode 
and convert it to a  C++ program.



190

Introduction to C++ Programming

 
 
 
 

 
 
 
 
 
 
 
 
 
10.4 Variables and Data types
The main memory is divided into byte locations also called memory cells as shown 
in Fig. 10.7. The number associated with memory location is called memory address. 
A group of consecutive bytes is used as the location for a data item, such as an 
integer or character. In this section, we describe how to store data of as valuables in 
memory cells.

10.4.1 Variables
In	C++,	a	variable	can	be	defined	as	a	portion	or	location	in	memory	set	aside	to	
store a certain value such x or y whose content is subject to change. It is called a 
variable because the value stored in it can be changed. In C++, a variable must have 
a “name” also known as identifier to uniquely identify the variable and type of data 
that to be stored in the variable. 

Activity 10.3:Variables
In groups, let each member perform the following mental challenge for timed 30 
seconds:	Take	the	first	number	x whose value is 5 and store it in your memory. At the 
same time take another number y	whose	value	is	2.	Now,	add	1	to	the	first	number,	
then	adds	the	two	numbers,	and	finally	deduct	4	from	sum	of	x and y. What is the 
final	answer?		

BEGIN
 Var: X, Y, Z, Result: Integers
 PRINT ”Please enter Variable X”
 READ X;
 PRINT “Please enter Variable Y”
 READ Y
 TPRINT “Please enter Variable Z”
 READ
 Result = X + 2*(Y - Z);
 PRINT Result;
END.

Fig. 10.6: Pseudocode for I/O streams.

3-byte location
2 bytes location

3 bytes location
free memory

1-bytes location

Fig. 10.7: Memory allocation



191

Introduction to C++ Programming
The mental process that you have just done in activity 10.3 with your memory is 
similar to what a computer can do with two variables. The same process can be 
expressed as pseudocode shown in Fig. 10.8:

Fig. 10.8: Mental challenge pseudocode

Begin

  x = 5 //x stores 5

  y = 2 //y stores 2

  x = x + 1 //x now stores 6 

  sum = X + Y //sum stores 8

 diff = sum - 4 //diff stores 4

End 

The activity demonstrates how a computer can store millions of numbers in memory,  
conduct sophisticated mathematical operations, and return the answer within fraction 
of a second.  
In	C++,	each	variable	 requires	an	 identifier	 (symbolic	name)	 that	distinguishes	 it	
from other variables. The following rules may be observed when naming variables 
and	other	identifiers	in	C++:
1. A valid identifier is a sequence of one or more letters, digits or underscores 

characters ( _ ). For example, x, sum, and age are valid identifiers.
2. C++ is a “case sensitive” language. This means that an identifier written in 

uppercase is not the same as that written in lowercase letters. For example, 
“House” is not the same as “house.”

3. Avoid using spaces between words. For My	House should be written as one word 
like MyHouse or use an underscore to combine the two words (My_House). 

4. Variable identifiers should always have to begin with a letter. For example, 
“3houses” is invalid. 

5. Identifiers may start with an underscore character ( _ ), but in some cases the 
syntax is reserved for keywords.

6. The syntax rule of C++ defines keywords also known as reserved words, which 
have a unique meaning and must not be used for any other purposes.  The reserved 
words already used are main, int, return,  and using. The table below lists the 
reserved words of C++. C++ Reserved	Words, all of which are in lower-case 
letters as shown in Table 10.1.

and and_eq asm auto bitand 
bitor bool break case catch 
char class const const_cast continue 

default delete do double dynamic_cast 

Table 10.1: Reserved words (continued next page)



192

Introduction to C++ Programming

else enum explicit export extern 
false float for friend goto 
if inline int long mutable 
namespace new not not_eq operator 
or or_eq private protected public 
register reinterpret_cast return short signed 
sizeof static static_cast struct switch 
template this throw true try 
typedef typeid typename union unsigned 
using virtual void volatile wchar_t 
while xor xor_eq

Table 10.1: Reserved words
7. Avoid meaningless identifiers such as J23qrsnf, and restrict single letter variable 

names such as x or i to variables that are used temporarily in the a section of the 
program.

Activity 10.4: Rules of naming variables
From relevant sources, identify all the keywords in C++ and explain what would 
happen	if	a	programmer	uses	one	of	these	keywords	as	a	variable	identifier.

10.4.2  Data types
The computer memory is organised in  to cells that can store one or more bytes. A 
byte is the minimum amount of memory that we can manage in C++. To declare a 
variable, you must declare the type of variable so that the computer reserves enough 
bytes to store a value of that type.

10.4.2.1  Data types
Primary data type refers to basic data types used to identify the type of values used 
in a program.
The most common primary data types in C++ include: int,	char,	float,	double,	 bool, 
long int and short int.  Table 10.2 shows summary of primary data types, memory 
size, and range of acceptable values. 

Type Meaning Size	(bytes) Range

short int Short integer 2 -32768 to +32767
int Integer 4 -2147483648 to +2147483647
long int Long integer 4 -2147483648 to +2147483647
float Floating point number 4 1.2 × 10-308 to 1.8 × 10308

Table 10.2: Data types and their properties (continued next page)



193

Introduction to C++ Programming

double Double	precision	float 8 2.2 × 10-308 to 1.8 × 10308

char Alphanumeric characters 1 -128 to +127
bool Boolean value:true/false 1 true (1) or false (0)

Table 10.2: Data types and their properties

10.4.2.2 Complex data types
A complex data type is a combination data of similar or different types.
C++ supports complex data types such as string, array, struct (record), enumerated 
type, linked lists, and pointers. Apart from string data type,  other examples of 
complex data types include arrays, linked lists, stacks, queues, trees and graphs. In 
this section we only demonstrate how to declare a string.
To declare data of the type string, use the general syntax. 
String var name e.g string student_name;

Activity 10.5: Data types
In a C++ program, if user declares a short integer variable and enters a number such 
as 78,500 or a string like “pen”, the program may return a runtime error or display 
gabbage.	Define	the	term	memory	overflow and explain the nature of results produced 
by such a program.

10.4.3  Declaration  of variables 
Variable declaration refers to reserving memory location by specifying the type of 
data to be stored. To declare a variable in C++, we use the following  general syntax:
 data_type variable_name; 

For example, the following two statements are valid declarations that instructs a 
computer to reserve 4 bytes for variable a, and 8 bytes for means core: mean_score.
 int a;// reserve 4 bytes
 double mean_score; //reserve 8 bytes
To declare more than one variables of the same type, use a single statement but 
seperate	identifiers	with	commas	as	follows:
data_type variable1, variable2...variablen;
For example:
 int first_Int, second_Int, sum, difference;
This declares four variables; first	Int, second int sum and difference of integer type. 
The statement can also be written as follows.



194

Introduction to C++ Programming

Fig. 10.9: Declaring appropriate data types

 int first_Int;
 int second_Int;
 int sum;
 int difference;
Depending on the range of numbers to be represented, data types like short, long 
and int can either be signed or unsigned. Signed type represents both positive and 
negative values, while unsigned type can only represent zero and positive values. 
This	can	be	specified	using	signed	or	unsigned	as	follows:
 unsigned short int number_of_sisters;
 signed int MyAccountBalance;

Due	to	difficulties	experienced	in	manipulating	strings,	C++	introduced	a	data	type	
known as string. The data type treated as an object in C++ is associated functions 
(methods) used to manipulate literal strings.

Activity 10.6: Declaration of variables
1. Study the program of Fig. 10.9 that prompts a user to enter two numbers:  a and 

b. The program then multiplies the two numbers, and displays a valid product 
on the screen. To avoid possible memory overflow, replace the product data type 
with appropriate size that will hold a large value:

#include <iostream>
using namespace std;
int main() {
int a, b, product; // declare 3 variables as integers
cout << “Enter first integer:”;// input message
cin >> a; // read a from keyboard
cout << “Enter second integer:”;
cin >> b; // read b from keyboard
product = a * b;
cout << “The product is:” << product << endl;
return 0;

}

Fig. 10.9: Declaration of valuables

2. Using suitable variable declaration, convert activity 10.3 consisting of variables 
x, y, sum and diff  into a C++ program. 

10.4.4  Scope of variables
The scope of a variable can either be global or local. A global variable is declared 
outside all functions while a local variable is declared within a function.. For example, 
the program shown in Fig. 10.10 declares global variables: area and perimeter outside 
the main function and local variables length and width within the main() function.



195

Introduction to C++ Programming

#include <iostream>

using namespace std;

int area, perimeter; //global variables

int main() {

  int length, width;//local variables

  cout<< “Enter rectanglelength: “;

  cin>>length;

  cout<< “Enter rectangle width : “;

  cin>>width;

  //calculate the area and pereimeter

  area = length * width;

  perimeter = 2* (length + width);

  //display the area and perimeter

  cout<< “Area of rectangle:” << area<< endl;

  cout<< “The perimeter is:”<< perimeter<<endl;

return 0;

}

Fig. 10.10: Scope of variables

10.4.5 Initialisation of variables
By default, when you declare a variable, its value is unknown unless the user provides 
input. For a variable to store a concrete value, you can initialize it with a default 
value as follows:
 data_type identifier = initial_value; 
For	example,	to	initialise	Age	with	a	default	value	0,	we	write	the	definition:	
 unsigned int Age = 0; or unsigned int Age (0);
The program below shows how to initialise variables age and height to default 
values 24 and 5.7 as shown on the output screen. The program output shown in  the 
following	figure.

Fig. 10.11: Initialising variables age and height to default values

#include <iostream>

using namespace std;

int main () {

unsigned int age = 24;

double height =5.7;

cout<<”Default age:”<<age<<endl; 

cout<<”Default height”<<height<<endl;

return 0;

}



196

Introduction to C++ Programming
NB: Declaring and initializing a variable with a default value is referred to as defining	
a variable.	In	other	words,	to	define	a	variable	is	to	state	its	data	type,	identifier	and	
assigning it an initial value. 

Activity 10.7: Initialisation of variables
Consider earlier problem in Activity 10.3. By initializing x with 5 and y with 2,  write 
a program that returns sum and difference.

Assessment Exercise 10.3
1. Using C++ statement, demonstrate how to define a variable that stores Rwanda 

cities and towns. The variable should be initialised with the name of the capital 
city, i.e. Kigali. 

2. Write a C++ program that can be used to compute hypotenuse of a right-angled 
triangle whose sides are a, b and c shown in Fig. 10.12 below. Note that in to 
easily solve the problem, you may be required to use an in-built square function. 

Fig. 10.12: Right angled triangle

10.5 Constants
Unlike variables, a constant is a value in memory that does not change during program 
execution. For example, in mathematics, pi is a constant whose numeric value is 22/7 
or	3.142.		In	C++,	constants	may	be	classified	into	literal constants and symbolic 
constants. 

10.5.1 Literal Constants
Literals constants are used to express particular values within a program. For example, 
in the following statement, 25  is a literal constant because you can neither assign 
another value to it nor can you change it.
 x + 25;
Literal	constants	can	be	classified	into	integer numerals, floating-point	numerals, 
characters, strings and boolean constants. For example, 75 is an integer literal 
constant,	while	75.0	is	a	floating-point	literal	constant.	On	the	other	hand	“K”	a	single	
character  constant while string. 
Note that in C++, a character consists of one letter or numeral  enclosed within 
single quotation marks such as ‘H’ while a string consists of one or more characters 

a

b

c



197

Introduction to C++ Programming
in double quotation marks. Boolean literal constants takes only two values, i.e., true 
(1) or false (0).

10.5.2 Symbolic Constants 
A symbolic constant is a constant that is represented  using a symbolic name. Once 
a symbolic constant is initialised, its value cannot be changed.  There are two ways 
to declare a symbolic constant in C++ are: 
1. Using preprocessor directive #define. For example, the following statement 

declares a symbolic constant named sodas_crate that is replaced by 24 during 
execution:

 #define sodas_crate 24;
2. Using keyword const followed by the data type of the symbolic constant as 

shown in the statement below: 
 For example, 
 const short int sodas_crate = 24;
 The advantage is that the compiler is able to determine data type of the constant 

hence preventing possible runtime errors. 

10.5.3 Declaring Constants 
To	declare	a	symbolic	constant	of	a	specific	data	type	in	C++	use	the	keyword	const 
as follows:
 const double PI = 3.142;
The following program (Fig. 10.13) demonstrates how to declare a symbolic constant 
P1 used in a calculating area of a circle. See the output in Fig. 10.14.

#include <iostream>
using namespace std;
int main() {
   double radius, circum, area; 
   const double PI = 3.14159265; //declare PI as constant 
   cout << “Enter the radius: “;  
   cin >> radius;                
   area = radius * radius * PI;
   circum = 2.0 * radius * PI;
   cout << “Circle area is: “ << area << endl;
   cout << “Circumference is: “ << circum << endl;
   return 0;
}

Fig. 10.13: Declaring  constants

Fig. 10.14 shows a sample output after running the program.

Fig. 10.14: Declaring a constant P1 (output)



198

Introduction to C++ Programming

Activity 10.8: Declaration of constants
Using C ++, write a C ++ program that prompts a user to enter the radius of a sphere, 
the program then calculates the surface area and volume of the sphere. In the source 
code,  you must declare Pi as a symbolic constant whose value is  3.142. 

10.6 Output Formatting
In programming, creating nicely formatted output is a good programming practice to 
improve readability of output and the user interface. In C++, the output stream has 
special characters and objects called manipulators used to format numbers, character 
sand strings. In this section, we discuss a few manipulators found in <iostream>.

10.6.1 The endl manipulator
When supplied with operator << at the end of a statements, endl object causes a newline 
character to be inserted at the end of a line. For example, the Hello word statement in 
our	first	program	can	be	formatted	to	appear	on	its	own	line	with	the	cursor	blinking	
on a new line using the statement below:

  cout << “Hello, world!” << endl;

10.6.2	The	setw()	manipulator
To	produce	number	and	string	output	formatted	to	fixed	width	in	terms	of	number	of	
character, C++ has a manipulator object called setw().	For example, setw(20) in the 
statement	below	adjusts	the	field	width	between	the	asterisk	and	Hello	to	20	characters.	
If the characters are fewer, a blank space is inserted on the left of the output. 
  cout<< “*”<< setw(20)<< “Hello!”<<endl;

10.6.3	The	setprecision()	manipulator
In	C++,	formatting	floating	point	numbers	may	be	rounded	off	to	the	nearest	integer	
using setprecision()	manipulator. The object is used together with fixed  or scientific 
manipulators to specify the number of digits to be displayed. For example, the following 
statements rounds off the number to 2 decimal places: 

 cout<<setprecision(2)<<fixed<<1234.56789

To use the setw() and setprecision() manipulators, you must include 
<iomanip> preprocessor directive. For example, the following program demonstrates 
how to use the three objects to format output as shown in Fig. 10.15.



199

Introduction to C++ Programming

#include <iostream>
#include <iomanip>
using namespace std;
int main(){
  cout << setw(9) << 8.25 << endl;
  cout << setw(20)<< “Hello!”<< endl;
    cout<<setprecision(2)<<fixed<<1234.56789<< endl;
    cout<<setprecision(3)<<scientific<<1234.56789<< endl;
  return 0;
}

Fig.	10.14	shows	the	output	formatted	using	sector(),	setprecision	fixed	and	scientific	
manipulators.

Fig. 10.14: Using the three objects to format output

10.6.4 Format Base of Integer Output 
In	computing,	 the	commonly	used	numeric	constants	are	decimal	 integers,	floating	
point (real numbers), octal (base 8) and hexadecimal (base 16). In C++ we use format 
specifier	to	format	or	convert	a	number	from	one	base	to	another.	To change the base of 
printed values use dec, oct, and hex manipulators. The following program demonstrates 
how to format the three number systems: 

#include <iostream>
using namespace std;
int main(){
  int value =  65; 
  char letter = ‘B’; 
  cout << “The following is display of formatted output” << endl;
  cout << “decimal: “ << dec<<value << endl;
  cout << “octal:” << oct<<value << endl;
  cout << “hexadecimal”<< hex<<value <<endl; 
  return 0;
}

Fig. 10.15 shows output formatted to decimal, binary and hexadecimal numbers.

Fig. 10.15: Using three base manipulators



200

Introduction to C++ Programming

10.6.5  Format Output using Escape Sequence 
Output formatting can also be accomplished using a combination of a backslash and 
a character, known as escape sequence. They are called escape sequences because 
the backslash causes an “escape” from normal way a character is interpreted by C++ 
compiler. An example of an escape sequence used instead of endl is the newline “\n” 
that causes the cursor to go to a new line. The following program uses “\t” escape 
sequence characters to format output into rows and columns.

#include <iostream>
using namespace std;

int main(){

  cout << “Name\t orange\t mango\t apple \n”;

  cout << “John:\t3\t 5\t 8”<< endl;

  cout << “Janet:\t 4\t 5\t 7”<< endl;

  cout <<”Peter:\t 5\t 3\t 6”<< endl;

  return 0;}

Fig. 10.16 shows the output formatted to rows and columns using ‘\t’ escape sequence.

Fig. 10.16: Using escape sequence to format output
Table 10.4 shows a summary of common escape sequence used to format output:

Escape Meaning Description
\n New line Forces the cursor or insertion pointer to move 

to a new line
\t Tab Moves tabs horizontally to create uniform 

white spaces between outputs.
\b backspace Move the character backwards without 

erasing anything.
\v Vertical tab Moves tabs vertically to create uniform white 

spaces between outputs.
\r Carriage return Moves	the	cursor	to	the	first	column	of	the		

net line.
\f form feed Moves the cursor to the start on next page.

Table 10.4: Escape sequence characters



201

Introduction to C++ Programming

Activity 10.9: Formatted output
Create a BMI calculator program that reads the user’s weight in kilograms and height 
in meters, then calculates and displays the user’s body mass index in three decimal 
places using the expression below:

Assessment Exercise 10.4
1.	 Explain	the	importance	of	using	fixed	and	scientific	notation	in	formatting	of	

floating-point numbers.
2. Using manipulator functions setw() and setprecision (), modify the program used 

for calculating surface area and volume of a sphere in Activity 10.9 so that the 
results are displayed correct to two decimal places.

3.	 Explain	importance	of	the	following	escape	sequence	characters	used	to	format	
output in C++ programs: \n, \b, \a, and \t. 

Unit Test 10
1. Define the term reserved word.
2. Explain	why	C++	is	both	procedural	and	object-oriented	programming	languages.
3. Explain	how	C++	evolved	from	C.
4. State five common features in C and C++ programming languages.
5. Differentiate between procedural and object-oriented programming.
6.  State five rules that should be observed when choosing constant and variable 

identifiers.
7. Why is it illegal to use a keyword such as if, else or for reserved for specific 

purpose in C++? 
8. Write a program showing the basic structure of a  C++ program.
9.  Write a C++ program that allows the user to enter marks for three subject. The 

program should calculate, then display the total and mean score of the three 
subjects. 

10.  Write a program that prompts a user  to input five floating point numbers. The 
program computes sum and average, and then displays  the results  correct to 3 
decimal places.  

11.  Write a program that reads temperature for a week in degree celsius, converts 
the celsius into Fahrenheit, and then calculate the average weekly temperature. 
The program should display the output formatted to 2 decimal places.

12.  Malaika took a loan of FRW 400 000 from a bank payable in three years at an 
annual interest rate of 8%. Write a program that calculates  total amount paid  at 
the end of the third year.

weight_kilograms
height_metres x height_meters

BMI =



202

Expressions and Operators in C++ Language

Key Unit Competency
By the end of the unit, you should be able to apply expressions and operators in C++ 
programming.

Unit Outline
•	 Expressions and operators.
•	 Classification of C++ operators.
•	 Classification of C++ expressions.

Introduction
To write expressions that do not corrupt computer memory or return invalid results, 
you need to understand operators used in C++ programming language. This unit is 
related to the section on operators and expressions discussed earlier under the unit on 
introduction to programming. The unit also serves as a continuation to the previous 
unit on introduction to C++ programming. To begin with, we discuss in details 
operators used in C++ such as assignment, arithmetic, relational, logical, bitwise, and 
special operators. Later, we demonstrate how to form primary to complex expressions 
using C++ operators.  

11.1  Expressions and Operators
In mathematics, the term expression refers to a sequence of operators and operands 
that	specifies	relational	or	mathematical	computation.	An	operator is a sign (e.g. 
+, -), or keywords, while an operand is numeric value manipulated by an operator. 

 

Y = 15+3÷3 ×(12+5)
operators operands

Brackets

In programming context, an operator is a symbol or keyword that instructs a compiler 
to evaluate mathematical or logical expressions. In addition to mathematical operators, 
most programming languages support special operators some of which are English-like 
keywords. Given that C++ is a system programming language, most of its operators 
are special symbols available on a standard keyboard. This makes the language more 
portable, and internationally accepted because its syntax does not rely a lot on natural 
languages like  English.

EXPRESSIONS AND OPERATORS 
IN C++ LANGUAGEUnit 11



203

Expressions and Operators in C++ Language

11.2 Classification of C++ Operators
Given that operators, operands and expressions go hand-in-hand, in every section 
we demonstrate how to apply an operator on operands  using simple expressions.  

11.2.1 Arithmetic operators
The most basic mathematical signs are the arithmetic operators which include addition 
(+), subtraction (−), multiplication (×), and division (÷). In  C++, the same operators 
are used but multiplication and division operators are replaced with asterisk (*) and 
forward slash (/) respectively. 
Table	11.1	below	gives	a	summary	of	the	five	arithmetic	operators	supported	in	C++.

Operator Name Description Example (A=10, B=20)

+ Addition Adds	two	operands A+B	returns	30
− Subtraction Subtract right operand 

from left
A−B returns −10

* Multiplication Multiplies binary 
operands

A*B	returns	200

/ Division Divides numerator by 
denominator

B/A	returns	2

% Modulus Gives remainder of 
integer division

B%A	returns	0

Table 11.1: Arithmetic operators

Observation on the table above shows that the only unusual operator in arithmetic 
is the modulus (%) symbol. In C++, the operator is used to return remainder of an 
integer division. For example: 

  remainder=7%4; //returns 3 
  test = 16%4; returns 0.

The	five	arithmetic	operators	are	binary	operators	because	they	take	two	operands.	
For example, the expression 8 + 7 contains a binary operator (+) and two operands, 
i.e., 8 and 7. The following program shows how to use of arithmetic expressions in 
C++ whose output is shown in Fig 11.1.



204

Expressions and Operators in C++ Language

#include <iostream>

using namespace std;

int main () {

int x = 18, y = 6; 

int prod, sum, rem;

float div; 

sum = x+y; //compute sum              

div = x/y; //compute division    

Fig. 11.1: Arithmetic operators

prod = x*y;//compute product         

rem = x%y; //compute remainder       

cout<<”Sum:”<<sum<<endl;

cout<<”Quotient:”<<div<<endl;

cout<<”Product:”<<prod<<endl;

cout<<”Remainder:”<<rem<<endl;

return 0;

}

11.2.1.1 Procedure rule
Similar	to	BODMAS	rule	in	mathematics,	C++	uses	precedence rule to evaluate arithmetic 
expressions: The precedence rule from the highest to the lowest is as follows:

Arithmetic Precedence
1 * Multiplication Highest
2 / Division
3 % Modulus
4 + Addition
5 - Subtraction Lowest

Table 11.2: Precedence rule in C++
 For example, in the following expression:
 k = a * ((b + c)/d);
1. Operators in expressions contained within parentheses are evaluated first. 

Parentheses are said to be at the “highest level of precedence.” In cases of nested 
parentheses, the innermost pair of parentheses are applied first; in this case (b+c) 
is evaluated first.

2.	 Multiplication	and	division	operations	are	applied	next.	If	an	expression	contains	
several multiplication, division and modulus operations, operators are evaluated 
from left to right. This is because multiplication, division and modulus are said 
to be on the same level of precedence.

3.	 Addition	and	subtraction	have	the	lowest	precedence.	If	an	expression	contains	
several addition and subtraction operations, the operators are applied from left to 
right. 



205

Expressions and Operators in C++ Language

Activity 11.1: Precedence rule
1. In groups, discuss how the precedence rule can be applied to determine the value 

of X in the following expression:
  X = 23 + 5 + (84* 9) + 6 / 3;

2.	 What	are	the	possible	values	of	X	if	the	precedence	rule	is	not	applied?	
3.	 Study	the	sample	code	below	and	identify	an	expression	that	replaces	content	

of amount variable with product of quantity and price. The output is shown in 
Fig.	11.2.

 #include<iostream>

 using namespace std;

 int main () {

int quantity =12;

double amount =1.0,price=500;

amount = quantity * price;

cout<< “The amount is: “<<amount<<endl;

return 0;

4. Rewrite the following mathematical expression into a C++ assignment statement: 
ax2 + bx + c.

11.2.2 Assignment operators
The assignment operator that resembles equals to (=) causes the operand on the left 
side of the assignment operator to have its value changed to the value on the right 
side of the operator. For example, the following statement assigns the integer value 
5 to the variable named fruit:
 fruit = 5;
The part at the left of the assignment operator (=) is known as the lvalue (left value) 
and the right one as the rvalue (right value). The lvalue has to be a variable whereas 
the rvalue can be either a constant, a variable, result of an operation or any combination 
of	these.	The	most	important	rule	when	assigning	is	the	right-to-left	rule:	Assignment	
operation always takes place from right to left, and never the other way round. The 
following statement is invalid!
 5 = students;

Activity 11.2: Assignment operator
Study the program code below in which variables a, b and c are initialized with values 
7,	9	and	10	respectively	as	shown	in	Fig	11.3.	Determine	the	values	printed	by	each	
of the cout statements if the value of a	is	12	and	b is 15.

Fig. 11.2: Precedence rule



206

Expressions and Operators in C++ Language

#include <iostream>

using namespace std;

int main () {

int a, b, c;

a = 7; b = 9;

a = b; b = 7;

c=10; c = a + 2*(b=5);

cout<<”Print a:”<<a<<endl;

cout<<”Print b:”<<b<<endl; 

cout<<”Print c”<<c<<endl;

return 0;

}

11.2.3 Compound Assignment Operators
C++ has a unique way of combining arithmetic and assignment operators compound 
operators typically referred to as self-assigned operators. The most commonly used 
self-assigned operators are conditional addition (+=), subtraction (-=), division (/=), 
multiplication (*=), and modulus (%=). Those used with other operators such as 
>>=,	<<=,	&=,	^=,	|=)	are	left	for	class	discussion.	Table	11.3	gives	a	summary	of	
the	five	self-assigned	operators.

Operator Name Description Example (A=10, B=20)

+= Conditional 
Addition

Adds	to	itself	value	on	the	
right operator

A+=B;	assigns	A=30
(A=A+B;	A=10+20)

−= Conditional 
Subtraction

Subtract from itself value on 
the right of operator

A−=B;	assigns	A=−10
(A=A−B;	A=10−20)

*= Conditional 
Multiplication

Multiplies itself with value on 
the right of operator

A*=B	assigns	A=200
(A=A*B;	A=10*20)

/= Conditional 
Division

Divides itself by value on the 
right of operator

B/=A	assigns	A=2
(B=B/A;	A=20/10)

%= Conditional 
Modulus

Gives remainder of integer 
division

B%=A	assigns	B=0
(A=A%B;	A=10%20)

 Table 11.3: Self-assigned operators

11.2.4 Increment  and decrement operators
In C++, increasing a value by 1 is referred to as incrementing while decreasing it by 
1 is decrementing. C++ supports  a unary (++) operator as a shortcut to incrementing 
a value by 1 and decrementing (--) by 1. Note that the term unary means that the 
operator takes only one operand. For example, the following statements increases 
and decreases value of count by 1 respectively:
 count++; // equivalent to count=count+1.
 Count--; // equivalent to count=count-1.

Fig. 11.3: Assignment operators 



207

Expressions and Operators in C++ Language

The statements can also be expressed using self-assigned operators as follows:  
 count += 1;  count -= 1;
One	characteristic	of	++	and	--	operators	is	that	they	can	be	used	as	prefix	and	suffix.	
This means that, an operator can be written either before the variable e.g. ++count 
or	after	it	as	in,	count++.		The	prefix		increments	the	value,	and	then	fetch	it	while	
postfix	fetches	the	value	first,	then	increments	the	original.	For	example,	if	x	is	5	
and you write:
 int a = ++x;
the statement increments x to 6, and then fetches the value to assign it to a. The 
resulting value of a is 6 and that of x is also 6. If, after doing this operation, you write:
 int b = x++;
the statement fetches the value in x. i.e., 6 and assigns it to b, then it goes back to 
increment x. Thus, the new value of b is 6, and that of x is 7.

Activity 11.3: Increment and decrement operators
Assuming	orange	=	15,	banana	=	35	and	isombe	=	13,	clients=	3.	Demonstrate	how	
you	would	increment	and	decrement	each	item	by	1?

11.2.5 Relational operators
There are six relational operators supported in C++: equals (==), less than (<), greater 
than (>), less than or equal to (<=), greater than or equal to (>=), and not equals (!=). 
Like arithmetic operators, relational operators are also binary operators because they 
act	on	two	operands	e.g.	5>3	to	return	true	or	false.
 Table 11.4 shows summary of relational operator in their order of precedence from 
highest to lowest. 

Operator Name Description Example (A=10, B=20)

= = Equal to Checks two operands are equal, if 
yes it returns true.

A	=		=B;	returns	false

< Less than Checks if operand on left is less than 
that on the right.

A<B;	returns	true

> Greater than Checks if operand on left is greater 
than that on the right.

A>B;	returns	false

<= Less than or 
equals to

Checks if operand on left is less than 
or equal to that on the right.

A<=B;	returns	true

>= Greater than 
or equals to

Checks if operand on left is greater 
than or equal to that on the right.

A>=B;	returns	false

!= Not equal to Checks if operand on left is not 
equal to that on the right.

A!=B;	returns	true

Table 11.4: Relational operators



208

Expressions and Operators in C++ Language
NB: In C++ the single (=) sign is used as an assignment operator while  (==)is 
used as the equality sign.  

Activity 11.4:Relational operator
Study the following program and determine the output after execution of statements 
consisting of relational expressions. Note that, in C++, evaluation of relational and 
logical	expressions	returns	1	for	true	or	0	representing	false.	
#include <iostream>
using namespace std;
int main(){
int x =7, y=5;
cout<<(x==y)<<endl; 
cout<<(x>y)<<endl;
cout<< (x!=y)<<endl;
cout<<(x<y)<<endl;
return 0;

11.2.6 Logical operators
In C++, there are three logical operators used to form complex relational conditions. 
These	are:	&&	(AND),	||	(OR),	and	!	(NOT)	also	called	negation.	Whereas	the	&&	and	
|| operators are binary, ! is a unary operator that takes only one operand on its right. 
Consequently, the operator negates the value or expression on its right to return 
opposite Boolean value.  Table 11.5 gives a summary of the three operators.

Operator Name Description Example (A=10, B=20)

&& AND Checks if two operands or 
expressions are true, if one is false it 
returns false.

A<5&&	 B>17;	 returns	
false

|| OR Checks if one of the operand or 
expressions is true, if either is true it 
returns true.

A<5||	B>17;	returns	true

! NOT Unary operator that negates its 
operand or expression. If true, it 
returns false.

!(A>=B);	returns	true

Table 11.5: Logical operators



209

Expressions and Operators in C++ Language

Activity 11.5: Logical operators
Study the following program and determine the output after execution of the 
statements consisting of a mixture of relational and logical expressions. 
#include <iostream>
using namespace std;
int main(){
int x =42, y=7, z=24;
cout<<(x<=35) && (z==24); 
cout<<(x==35) ||(y<10);
cout<<(x>y) && (y<z);
return 0;

11.2.7 Bitwise operators
Unlike	other	operators	mostly	used	to	manipulate	decimal	(base	10)	numbers,	bitwise	
operators are used to manipulate binary numbers.  Table 11.6 gives a summary of  
bitwise	operators	supported	by	C++	namely:	AND	(&)	,	inclusive	OR	(	|	),	exclusive	
OR ( ^ ) one’s complement (~), binary left shift <<, and binary right shift. 

Bitwise 
operator

Name Description Example 

& Bitwise	AND Checks	if	both	A	and	B	
are true to return true. If 
either or both are false, the 
expression returns false 
(0).

If	A=	1,	B=0	then	
A&B	returns 0 

| Bitwise OR Checks	if	either	A	or	B	is	
true to return true. If both 
are false, the expression 
returns	false	(0).

If	A=	1,	B=0	then	A|B	
returns 1

^ Bitwise XOR Checks	if	either	A	or	B	
is true to return true. If 
both are true or false, the 
expression returns false 
(0).

If	A=	0,	B=1	then	A^B	
returns 1

~ One’s 
complement

Unary	inversion	of	0’s	to	
1	and	1’s	to	0s	in	a	binary	
number.  

If	A=	1,	B=0	then	~A	
returns 0, ~B returns 1

Table 11.6: Bitwise operators (continued next page)



210

Expressions and Operators in C++ Language

<< Bitwise left 
shift

The operator shifts the bits 
of an expression left by the 
number	of	bits	specified.

If	A=00001110	then 
A<<2 returns 00111000

>> Bitwise right 
shift

The operator shifts the 
bits of an expression right 
by the number of bits 
specified.

If	A=00111000	then 
A>>2	returns 	00001110

Table 11.6: Bitwise operators

To illustrate how the operators &, | and ̂  are used, we take two variables p and q.  The 
columns p&q, p|q, and p^q in Table 11.7 shows the result of binary three expressions:

p q p&q p|q p˄q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Table 11.7: Bitwise operations
To	apply	Bitwise	operators	on	decimal	numbers,	each	number	must	first	be	converted	
into	binary	form.	For	example,	assuming	two		variables	A	and	B	have	60	and	13	
respectively,	we	 perform	 binary	AND,	 inclusive	OR,	 exclusive	OR	 and	 one’s	
complement as follows:
A	=	00111100		 A&B	=	00001100	 A|B	=	00111101
B	=	00001101		 A^B	=	00110001	 ~A	=	11000011

 Activity 11.6: Bitwise operators
1. Using C++ expressions, distinguish between logical operators, and bitwise 

operators	for	AND,	OR	and	NOT.
2.	 Study	the	table	11.8	below	and	state	the	values	returned	by	evaluating	binary	

expressions p&q, p|q and p^q.  
p q p&q p|q p˄q
0 0
0 1
1 1
1 0

Table 11.8: Bitwise operations



211

Expressions and Operators in C++ Language

11.2.8 Conditional/Ternary Operator
The	conditional	operator	represented	by	a	question	marks	and	colon	(?:)	is	the	only	
ternary operator in C++ that takes three operands. The operator evaluates an expression 
returning	a	value	if	the	expression	after	(?)	is	true,	or	the	expression	following	(:)	if	
the condition  returns false. The general format of the statement is:
condition ? result1 : result 2;

If	condition	on	the	left	of		(?)	sign	is	true,	the	expression	returns	result	1,	otherwise	if	
the	condition	returns	false,	the	expressions	returns	result	2.	For	example,	the	following	
statement	displays	10,	because	7	is	not	less	than	5;

 cout<< 7 < 5 ? 4 : 10; //displays 10

NB: The conditional operator and the IF...ELSE selection works exactly the same. 
The only advantage is shortened code hence saving compile time.

Activity 11.7: Conditional operators
Identify the value displayed on screen after evaluating by the the following 
expressions: 
 cout<<7==5?4:3;

 cout<<7>=5+2?4:3;

 cout<<5>3?a:b;

 cout<<a>b?a:b;

11.2.9 Miscellaneous Operators
C++ supports other miscellaneous operators such as sizeof, cast [( )], comma [,], 
address of [&], and scope resolution operator [::]. 

11.2.9.1 The size of operator
The sizeof operator is an inbuilt function that accepts one parameter and returns the 
size in bytes. For example, the following statement assigns 8 to memsize because a 
double has 8 bytes:
 memsize = sizeof (double);

11.2.9.2 Address of operator [&]
The address of (&) operator is said to be overloaded operator because it can be used 
for	more	than	one	operations.	When	applied	on	binary	operands,	it	is	interpreted	by	
the	compiler	as		a	bitwise	&	(AND)	operator.	But	when	the	symbol	is	followed	by	
a variable as shown in the following statement, it returns memory address allocated 
to the variable: 
 int location = &distance;



212

Expressions and Operators in C++ Language
The statement assigns memory address of distance to location which can be formatted  
and displayed in hexadecimal format as follows:

 cout<<setbase(16)<<location;

11.2.9.3 Cast [( )] operator
Type casting operator represented with brackets () converts (casts) a value from one 
data type to another. This is achieved by preceding the expression to be converted 
by the new type enclosed between parentheses (()) or using functional notation. For 
example,	if	distance	is	a	float,	it	can	be	casted	to	an	integer	as	follows:

float distance = 3.14;

approx_dist = (int)distance; //C-type casting 

approx_dist = int(distance); //functional notation

NB: In C++, casting a variable declared as double or float to int results in loss of 
precision due to loss in floating-point part. In the above example, the value 
assigned to approx_distance is 3! 

11.2.9.4 Comma [ , ] operator
The comma (,) operator separates two or more expressions where only one expression 
is expected. The result of the comma-separated list is the value of the last expression. 
For	example,	the	following	expression		assigns	3	to	b	first,	then	assigns	b+2	to	a, so 
that a becomes 5 and b	holds	3:	
 a = (b=3, b+2);

11.2.9.5 Scope resolution [::] operator
The scope resoultion operator represented by two consecutive colons is used to 
identify	and	disambiguate	similar	identifiers	used	in	different	scopes.	The	operator	is	
used to identify a member of a namespace or class. For example, if using namespace 
declaration is omitted in a C++ program, you can use:: to access  cout as follows:

 std::cout<<“I Enjoy Programming!\n”;

11.2.10: Operator precedence in C++
When	writing	complex	expressions	with	several	operands,	we	may	have	some	doubts	
about	which	operand	is	evaluated	first	and	which	later.	In	C++,	the	precedence	rule	is	
an established order in which an expression consisting of mixed operators is executed. 
Just	like	in	BODMAS,	the	order	of	precedence	can	be	changed	by	use	of	parenthesis.	
In summary, Table 11.9 gives precedence of the operators discussed in this section 
in order of the highest to the lowest.



213

Expressions and Operators in C++ Language

Operator Description Precedence Highest

Lowest

* multiplication left to right
/ division

% modulus

+ addition left to right
- subtraction

<< bitwise left shift left to right
>> bitwise right shift

<  relational less than left to right
<= relational less than or equal to

> relational greater than

>= relational greater than or equal to

== relational is equal to left to right
!= relational is not equal to

& bitwise	AND left to right
^ bitwise exclusive OR left to right
| bitwise inclusive OR left to right

&& logical	AND	 left to right
|| logical OR left to right
?:  ternary conditional right to left
= assignment right to left

+= addition assignment

-= subtraction assignment

*=  multiplication assignment

/= division assignment

%= modulus assignment

&= bitwise	AND	assignment

^= bitwise exclusive OR assignment

|= bitwise inclusive OR assignment

, comma left to right
Table 11.9: Precedence in operator precedence in C++



214

Expressions and Operators in C++ Language

Assessment Exercise 11.1
1. Define the following terms as used in C++ programming: 

(a) Expression
(b) Operand 
(c) Operator  

2.	 Giving	example,	differentiate	between	postfix	and	prefix	operators.
3.	 Using	 sample	 codes,	 discuss	 five	main	 categories	 of	 operators	 used	 in	C++	

Programming. 
4. Explain  the design goal that motivated the use of special characters as operators 

in C++ programming language.
5.	 Assuming	y	has	a	value	of	20,	and	x	has	8.	What	would	happen	if	a	programmer	

writes a statement to compare whether y is equal to x but instead writes:
 y = x ;
6.	 Write	the	following	mathematical	expression	as	a	C++	assignment	statement.
 y = ax3 + bx + 7
7.	 Perform	bitwise	AND,	inclusive	OR	and	one’s	complement	on	the	following	

variables:
(a)	 Binary:	p	=1111111,	q	=	110011.
(b)	 Decimal:	x	=	25,	y	=50.
(c)	 Hexadecimal:	m=	DB,	n	=	A2.

8. Between arithmetic, and relational operators, which category has higher 
precedence in C++. Give a table of summary on the order of precedence in the 
two categories. 

11.3 Classication of  C++ Expressions
Depending on the type of operator used on one or more operands, expressions can 
be	 classified	 into	 several	 categories	 based	 on	 complex	 or	 side	 effect.	Remember	
that, an expression is a sequence of operators and operands used for one or more of 
these purposes:
•	 Computing a value from one or more operands.
•	 Generating “side effects” such as modifying variables.
In	C++	programming,	expressions	may	be	classified	into	primary; postfix, unary, 
binary, conditional; constant, and type casting expressions.



215

Expressions and Operators in C++ Language

11.3.1 Primary expressions
A	 primary	 expression	 is	 the	most	 basic	 expression	 from	which	more	 complex	
expressions are built. Therefore, a primary expression can be as simple as having a 
single character or simple increment expression as shown below:
 120; // numeric constant 
 ‘g’; // character constant
 (x + 1 ); //increment expression

11.3.2 Postfix expressions
Postfix	expressions	consist	of	primary	expression	in	which	operators	like	++	follow	
a	primary	expression.	For	example,	if	C=0,	and	index	=1,	the	following	are	postfix	
expressions that increment their values by 1:

 C++; //returns 1, and index++ //returns 2

11.3.3 Unary (Prefix) Expressions 
A	unary	operator	is	placed	on	the	left	of	an	expression	of	only	one	operand.	Such	
operators include address of (&), unary plus(+), unary minus (-), logical not (!), 
bitwise negation [~], increment [++], decrement [--], and sizeof. The following are 
examples of unary expressions.
 --6; //returns 5 

 ++5; //returns 6

 !(101100110); //returns 010011001   
Note that arithmetic signs + and – can be used as unary operators. The result of the 
unary plus operator (+) is the positive value of its operand, while that of unary negation 
operator (–) produces the negative of its operand. For example, if x = 5, then;
 +x; //returns 5; and -x //returns -5

11.3.4 Binary Expressions

Binary operators act on two operands in an expression. The main categories of binary 
operators are multiplicative (*, / and %), additive ( +,-), shift (<<, >>), relational (<, 
>, <=, >=, ==, !=), Bitwise & and |,   logical && and ||, assignment (=) and compound 
assignment, as well as the comma operators. For example, the following are binary 
expressions: 
 sum = x + y; 
 ans =7!= 8; //returns true
 y = a + k * (x * (x + 7));



216

Expressions and Operators in C++ Language

11.3.5 Ternary Expressions
A	conditional	operator	is	a	ternary	operator	that	takes	three	operands.	For	example,	
the sample code below tests if i is greater than j. Since i	has	3	and	j	has	5,	the	first	
condition returns false hence  the program prints  “5 is greater”:
       int i = 3,j = 5;
       cout<<(i>j?i:j)<<“is greater.”;

11.3.6 Constant expressions
Since	a	constant	value	cannot	be	modified,	C++	provides	keyword const to enable 
programmers write expressions that enforce this constraint. The following C++ code 
contains an expression that declares size as a constant. The program then calculates 
and prints the product :
 int main (){
 const double unitcost = 11.0;
 double amount= 0.0;
 int quanitity = 30;
 amount = unitcost * quantity;
 cout<<“Total.”<< amount<<endl;
 return 0;}

11.3.7 Type casting expressions
Type casting expressions are statements with explicit type conversions. By default 
C++	syntax	defines	conversions	between	its	fundamental	types	(int,	char,	float,	double,	
and char). This type of conversion that is automatically handled by the compiler 
is referred to as implicit type conversion. For example, the following assignment 
statements implicitly converts values from one type to another.
 int main (){
 int inum; 
 long lnum1, lnum2;
 lnum1=inum; 
 lnum2=inum * lnum2; 
 return 0;}



217

Expressions and Operators in C++ Language
In	the	following	program,	area	is	converted	from	float	 to	double.	This	 is	because	
the compiler automatically converts area to data type with the highest precision in 
the expression. In this case, the display is 8 bytes for a double instead of the 4 bytes 
used	to	store	float.	
 int main() {
 const double PI = 3.142;
 float area, radius 3.5;
 area = PI * radius*radius;
 cout<<“ Mem Size:”<<sizeof(area)<<endl;
 }

You can also specify type conversions when you need more precise control of the 
conversions applied. This is achieved by using cast operator () within which is the 
type	the	operand	is	to	be	casted	to.	For	example,	the	above	code	can	be	modified	
to force the area to be demoted to an integer value which leads to loss in precision:
 int main() {
 const double PI = 3.142;
 float area, radius 3.5;
 area = int(PI * radius*radius);
 cout<<“Mem Size:”<< sizeof(area)<<endl;
 }

Activity 11.8: Expressions and operators
1. In C++ expressions, operators such as +, and -, can be overloaded such that their 

meanings depend on context of use. Using examples, explain how each of the 
operators can be used in a unary and binary expressions.

2.	 Using	sample	expressions,	differentiate	between	binary	expressions	and	tertiary	
expressions in C++ programming. 

Assessment Exercise 11.2
1. Differentiate between a “statement” and an “expression” as used in programming.
2.	 Using	sample	code,	demonstrate	how	unary	expression	differs	from	binary	and	

unary expressions.
3.	 Identify	the	output	of	the	expression	in	the	following	C++	code	snippet:
 int main (){ 
 int x=10;double y=3.5;
 float product =0.0;
 product = x * y;
 cout<<product<<” “<<sizeof(product);
 return 0;}



218

Expressions and Operators in C++ Language

Unit Test 11 
1. Define the following terms as used in C++ programming: 

(a) Operator precedence.  (b) Self-assigned operator.
2.	 Differentiate	between	prefix	expression	and	postfix	expressions.
3.	 State	two	advantages	of	using	special	keyboard	symbols	as	operators	in	C++	

instead of English keywords.
4. Differentiate between bitwise inclusive ( | ) OR, and  XOR (^).
5. To reference storage of a variable in main memory, two operators, namely size 

of and address of (&) may be used. Using sample code, differentiate between 
the two operators.

6.	 With		aid	of	a	table	on	ASCII	character	set,	write	a	program	that	prints	integer	
equivalent of  alphabetic characters typed in lowercase and uppercase on the 
keyboard. Note that although the declaration should be of type char, the output 
should be of integer type. 

7. Using a table, classify arithmetic, relational, assignments and bitwise operators 
in order of precedence starting with the highest.

8.	 Write	C++	program	 that	 calculates	 and	outputs	 surface	 are	 and	volume	of	 a	
sphere.

9.	 Write	a	C++	program	that	calculates	and	displays	alternative	roots	of	a	quadratic	
equation:

 root = ax2 + bx + c
10.	 Study	the	program	given	below	and	identify	the	correct	output:

#include <iostream>
int main()  {
  using namespace std;
  float num1, num2;
  cout << “Enter first number: “;
  cin >> num1;
  cout << “Enter second number: “;
  cin >> num2;
  cout << “num1 = “ << num1 << “; num2 = “ << num2 << endl;
  cout << “num1 + num2 = “ << num1 + num2 << endl;
  cout << “num1 - num2 = “ << num1 - num2 << endl;
  cout << “num1 * num2 = “ << num1 * num2 << endl;
  cout << “num1 / num2 = “ << num1 / num2 << endl;
  return 0;
} //end main



219

Expressions and Operators in C++ Language

11. Identify synthax errors in the following program and rewrite to make it complete:
#include <iostream>
u#include <iostream>
using namespace std;
int main() {
int dec1 = 2, dec = 4;
double num1 = 2.5, num2 = 5.0;
   cout>>dec1<<“+“<<dec2<<“=“<<dec1+dec2<<end; 
   cout<<num1<<“+“<<num2<<“=“<<num1+num2<<end;
   cout>>dec1<<“-“<<dec2<<“=“<<dec1-dec2<<end; 
   cout<<num1<<“-“<<num2<<“=“<<num1-num2<<end;
   cout>>dec1<<“\“<<dec2<<“=“<<dec1\dec2<<end; 
   cout<<num1<<“\“<<num2<<“=“<<num1\num2<<end;
} //end main



220

Control Statements in C++

Key Unit Competency
By the end of the unit, you should be able to use control statements in C++ program 
to implement branching and iterations.

Unit Outline
•	 Sequence control structures.
•	 Selection statements.
•	 Looping control statements.
•	 Jump control statements.

Introduction
Control structure	refers	to	a	block	of	statements	that	determine	the	flow	of	control,	or	
order	in	which	program	statements	are	executed.	The	flow	of	control	in	a	program	can	
be	examined	at	three	levels	–	expression	level,	statement	level,	and	program	level.	In	
the	previous	unit,	we	examined	flow	of	control	within	expressions,	which	is	governed	
by	precedence	rule.	In	this	unit,	we	move	a	step	higher	by	looking	at	statement	level	
flow	of	control	implemented	using	sequence, selection, and iteration control statements. 
This	unit	serve	as	a	bridge	to	the	next	unit	in	which	we	discuss	the	highest	level	of	
control	among	program	units	known	as	procedures	or	functions.	In	this	unit,	we	begin	
by	reviewing	of	sequence	control	structure	in	which		program	statements	are	executed	
in	the	order	they	appear	on	the	program.	Later,	we	demonstrate	how	to	write	program	
statements	that	alter	the	flow	of	control	using	conditional	logic.

12.1  Sequence Control Structure
Sequence	control	structure	is	a	simple	flow	of	control	in	which	statements	are	executed	
in	the	order	they	are	written.	So	far,	most	of	the	C++	programs	we	have	discussed	are	
sequential	in	that,	statements	are	executed	in	the	order	they	appear	in	the	program.	
For	 example,	 below	 is	 a	 sample	 program	 implemented	 using	 sequence	 control	
structures.	The	program	execution	starts	by	reading	two	numbers	(num1	and	num2),	
and	then	displays	the	value	of	each	number	before	swapping	(interchanging)	them.	
The	last	two	cout	statements	display	the	values	of	num1 and num2	after	swapping	
them	as	shown	on	the	output	screen.		

#include<iostream>
using namespace std;
int main(){
int num1, num2, swap;
cout<<”Enter first number:  “;

CONTROL STATEMENTS IN C++Unit 12



221

Control Statements in C++
cin>>num1;
cout<<”Enter second number:  “;
cin>>num2;
cout<<” Numbers before swapping:  “<<endl;
cout<<”1. First Number =”<<num1<<endl;
cout<<”2. Second Number =”<<num2<<endl;
cout<<”\n”; //insert blank line
swap=num1; //assign value of num1 to swap 
num1=num2; //replace num1 with num2 value
num2=swap;
cout<<” Numbers after swapping:  “<<endl;
cout<<”1. First Number =”<<num1<<endl;
cout<<”2. Second Number =”<<num2<<endl;
 return 0;
}

The	output	screen	shown	in	Fig.	12.1	shows	the	values	of	each	number	before	and	
after	swapping:

Fig. 12.1: Sequence control structure

Activity 12.1: Sequence Control Structure
Consider	the	following	programming	problem:	
Three	integer	values	50,	78,	and	45	are	to	be	placed	in	the	three	variables	namely	
max,	mid,	 and	min.	Write	 a	 sequential	 program	 that	 swaps	 the	 three	numbers	 to	
display them in ascending order.

12.2  Selection Control Structure
Situations	arise	whereby	a	program	need	to	carry	out	a	logical	test,	and	then	take	an	
alternative	action	depending	on	the	outcome	of	Boolean	test.		A	Boolean	test	is	an	
expression	that	uses	relational	operators;	like	=	(equal	to),	>	(greater	than),	<	(less	
than),	>=	(greater	than	or	equal	to)	and	<=	(less	than	or	equal	to)	and	three	logical	
operators	namely	AND,	OR	and	NOT.	For	example,	consider	a	program	to	test	if	x	
is	greater	than	20	(x	>	20).	In	such	a	case,	if	a	user	enters	a	value	of	x,	it	is	compared	



222

Control Statements in C++
against	20	and	the	program	returns	true	or	false	depending	on	the	outcome.	Generally,	
C++ supports four types of selection control statements that includes if, if... else, 
nested	if,	and	switch.	

12.2.1   The if control statement
The	if selection is a control statement that performs an action if the condition is true,  
or	skips	the	action	if	the	condition	is	false.	This	conditional	logic	can	be	implemented	
in	C++	using	the	general	syntax	on	the	left.	This	general	syntax	is	an	implementation	
of	flowchart	section	shown	on	the	right.

false

statements

test 
condition?

true

if (condition) { 
  Statement
}

For	example,	suppose	the	school	administration	decides	to	reward	students	whose	
examination	score	is	80%	and	above.	This	logic	of	if  selection can be implemented 
in	C++	using	the	following	syntax	in	which	the	condition	to	test	if	score	is	greater	
or	equal	to	80	is	enclosed	in	parentheses.
If (score>=80){

cout <<“Reward<endl;
}

To	further	demonstrate	how	the	if	...	selection	works,	the	following	program	prompts	
the	user	to	enter	a	score.	Once	the	statement	is	encountered,	the	score	is	compared	
against	80	in	the	boolean	expression	(score	>=80).	If	score	is	above	0,	the	program	
prints	Excellent	otherwise	nothing	happens.	

 #include <iostream>
using namespace std;
int main() {
   int score;  
   cout << “Enter mean score:”;   
   cin>>score;  
   if (score>= 80) {
     cout<<”Excellent\n”;
   } //end if
return 0;
} 



223

Control Statements in C++

Fig	12.2	shows	the	output	screen	after	running	the	program	

Fig. 12.2: Sample output from if selection

Activity 12.2: if selection statement
Using	C++,	write	a	program	that	prompts	a	user	to	enter	a	student’s	mean	score	in	
Computer	Science.	If	the	score	is	above	50%,	the	program	should	display	“Pass”.

12.2.2  The if… else selection
The	if…else	selection	is	conditional	logic	that	specifies	the	action	to	be	performed	
if	the	condition	is	true,	or	an	alternative	the	action	is	false. In	C++,	if...else	selection	
can	be	represented	using	the	general	syntax	on	the	left.	This	general	syntax	is	an	
implementation	of	flowchart	segment	shown	the	right.
       example

 

false

statement1

test 
condition?

true
statement2

if (condition) { 
  Statement1
}
else {
  Statement2
}

The	following	program		demonstrates	use	of	if..else	by	modifying	the		previous	
program	of	rewarding	students.	If	the	score	is	above	80%,	the	program	displays	
“Reward”	otherwise,	the	message	“No	reward”	is	displayed.		

ifelse
#include <iostream>
using namespace std;
int main() {
int score;  
cout << “Enter mean score:”;   
cin >> score;  
if (score >= 80) {



224

Control Statements in C++

 cout << “Reward\n”;
} //end if
else {
 cout << “No reward\n”;
} //end else
return 0;
} //end main

Fig.	12.3	is	a	sample	display	when	the	program	is	run.

Fig. 12.3: If else statement output

Activity 12.3: if ... else selection statement
The	following	algorithm	represents	a	program	that	prompts	the	user	to	enter	two	numbers	
x	and	y.	The	program	then	divides	x	by	y.	To	avoid	division	by	zero	error,	if	the	value	
of	y	is	0,	the	program	should	display	an	error	message	“Sorry: cannot divide by zero”.   

BEGIN
  PRINT “Enter 2 numbers X and Y”
  READ x, y
 IF y = 0 THEN
    PRINT “Error : Division by zero”
 ELSE
   result = x/y
    PRINT X, Y, Quotient
 END IF
END

12.2.3  Nested if..else control statement
The	nested if…else selection	is	a	conditional	logic	that	tests	for	multiple	alternatives	
by	placing	if…else	statements	within	another	if…else	statement.	The	general	syntax	
of	nested	if	statement	can	be	expressed	as	shown	on	the	left.	This	an	implementation	
of	a	flowchart	segment	shown	on	the	right



225

Control Statements in C++

 

true

statement3

test 
condition?

false

statement2

true
test 

condition?

false

statement2

if (condition) { 
  Statement1
}
else if (condition) {
  Statement2
}
else {
  Statement3
}

For	example,	the	following	program	uses	compound	conditional	logic	in	nested	if	
selection	to	assign	grade	depending	on	average	mark	entered	by	the	user.	

/* program used nested if to assigns grade */
#include <iostream>
using namespace std;
int main() {
int average; char grade;
cout << “Enter examination score:”;
cin>>average;           
if ((average >= 80) && (average <= 100)){

    grade = ‘A’;  
  }
  else if ((average >= 70) && (average <= 79)){
    grade = ‘B’; 
  }
  else if ((average >= 60) && (average <= 69)){
    grade = ‘C’;  
  }
  else if ((average >= 50) && (average <= 59)){
    grade = ‘D’;  
  }
  else {
    grade = ‘E’;  
  }
   cout << “You scored:”<< grade<<endl; 
   return 0;
 }



226

Control Statements in C++

Fig.	12.4	shows	a	sample	output	of	grade	assigned	once	the	user	enters	67	as	the	score.

Fig. 12.4: Sample output from nested if selection

Activity 12.4: Nested if selection statement
In	athletics,	runners	are	awarded	medals	depending	on	position	as	follows:		position	
1:	gold;	 	position	2:	silver	and	position	3:	bronze.	The	rest	of	the	runners	are	not	
awarded	any	medal	but	receives	appreciation	message	saying	“Thank	you	for	your	
participation”.	Using	nested	if...else	statements,	write	a	C++	program	that	determines	
the	medal	to	be	awarded	to	runners	depending	on	time	each	athlete	touches	the	finish	
line.

12.2.4  Switch... case selection
Similar	to	nested	if	selection,	switch...	case	control	statement	is	used	to	choose	from	
several	alternatives.	Within	the	switch	are	actions	(cases)	associated	with	a	constant	
value	that	must	be	evaluated	before	the	statements	within	each	case	are	executed.	
The	syntax	of	the	switch	--	case	selection	is	shown	below	and	is	demonstrated	using	
the	flow	chart	next	to	it:

switch (condition) {
   case constant1:
   statements-1;
   break;
   case constant2:
   statements-2;
   break;
   .
   .
  default:
  default statements;
} 

Flow chartGeneral Syntax

true
case	A comment=Excellent	

comment=Invalid	grade	

true
case	A comment=Excellent	

grade

The	switch	 in	 the	first	 line	 is	a	 reserved	word	 that	evaluates	 the	condition	 in	 the	
parenthesis.	For	example,	in:
 switch (grade);
If	the	value	is	equivalent	to	constant	case	‘A’,	the	program	evaluates	the	statement		
under	case	A	and	exits.	If	the	grade	value	happens	to	be	‘B’	the	next	case	is	evaluated.	



227

Control Statements in C++
If	no	block	under	case		evaluates	to	true,	the	statements	following	default	i.e.	“Invalid	
grade”	is	executed.	The	following	is	a	sample	implementation	of	switch	selection		
that assigns comment based on grade obtained. 

#include <iostream>
using namespace std;
int main() {
char grade; 
string Comment; 
cout <<”Enter Grade\n”; cin>>grade;  
switch (grade) {  
 case ‘A’: 
 Comment=”Excellent!”;
 break; 
 case ‘B’: 
 Comment=”Good”;  
 break;
 case ‘C’: 
 Comment= “Fair”;  
 break;
 case’D’: 
 Comment= “Poor”;  
 break; 
 case ‘E’: 
 Comment= “Fail”;  
 break;
default:
 Comment= “Invalid grade”; 
 break; 
}       
 cout<<”Remark “<< Comment<<endl;
return 0; 
}

The	output	screen	from	the	program	is	shown	in	Fig.	12.5	below.

Fig. 12.5: Switch...case selection



228

Control Statements in C++
Activity 12.5: Switch selection statement

Write	a	C++	program	that	assign	medals	to	athletes	based	on	the	following	conditions;
1.	 If	position	1,	award	Gold
2.		 If	position	2,	award	Silver
3.	 If	position	3,	award	Brown 
4.	 If	the	position	is	not	1,2	and	3,	display	“no	award”

Assessment Exercise 12.1
1.	 Define	the	term	selection	in	relation	to	program	control	structures.
2.	 State	four	types	of	selection	control	statements	used	in	C++.
3.	 Differentiate	between	nested	if	and	switch	selection	statements.
4.	 In	what	circumstance	does	selection	depend	on	decision?
5.	 List	three	factors	you	would	consider	when	choosing	selection	controls	statement		

in C++.
6.	 Write	 a	 program	 that	would	 enable	 the	 user	 to	 enter	 student	marks	 in	 three	

subjects.	The	program	should	calculate	mean	marks	and	determine	whether	the	
student	has	passed	if	the	pass	mark	is	50%.

12.3  Looping Control Statements 
If	a	programming	language	does	not	provide	means	of	repeating	execution	of	program	
statements,	programmers	would	be	required	to	state	every	action	in	sequence,	which	
is	a	waste	of	time	and	memory	space.	Primarily,	C++	provides	three	types	of	looping	
control	statements:	while, do... while, and for. 
The	while and for control statements are pretest types of loop because they test the 
condition	before	executing	statements	within	the	zero	or	more	times.	On	the	other	
hand, the do ... while	loop	is	a	post-test	loop	that	executes	the	body	of	the	loop	at	
least	once	before	testing	the	condition.	Apart	from	the	three	control	statements,	C++	
also	supports	a	special		kind	of	loop	known	as	recursion	discussed	in	the	next	unit	
and	recursive	functions.	

Activity 12.6: Looping control structure
Assume	that	the	school	administration	requires	you	to	write	a	program	that	calculates	
cumulative	sum	and	average	score	of	five	students.	To	calculate	the	sum,	the	program	
repeatedly	reads	each	student	mark,	and	finally	calculates	average	once	the	score	of	
the	last	student	is	entered.	In	groups,	design	an	algorithm	for	solving	the	problem,	
and then implement it using C++ language.

12.3.1  The while loop
The	while	loop	is	used	if	a	condition	has	to	be	met	before	the	statements	within
the	 loop	 are	 executed.	Therefore,	 this	 type	 of	 loop	 uses	 a	 pre-test	 condition	 to	



229

Control Statements in C++
determine	if	whether	are	to	be	executed	zero	or	more	times.	In	general,	the	while	
loop	can	be	represented	as	follows:

 while (x<5){
  x = x + 1;
}

Example
while(condition){
 statements; 
}

General

The	following	program	executes	statements	in	the	while	loop	if	the	value	entered	by	
the	user	is	less	than	one.	For	example,	if	the	number	is	10,	the	list	is	decremented	by	
1	as	long	as	the	condition	(n>0)	remains	true.	The	algorithm	of	the	program	can	be	
represented	using	a	flow	chart	as	shown	next	to	the	program	code.	

#include <iostream>
using namespace std;
int main () {
int number ;
cout << “Enter largest number:”;
cin >> number;
while (number >0) {
  cout <<number <<endl;
  number--;
}
cout << “Fire!\n”;
return 0;
}

number=number-1

number

Start

number>0 number

Fire!

Stop

true

false

Program flow chart

If	the	user	enters	5	as	the	largest	number,	the	sample	output	is	shown	in	Fig.	12.6.

Fig. 12.6: While loop: Writing down

Consider	a	microfinance	known	as	Tusadie	Savings	Society	that	pays	5%	bonus	on	
shares	exceeding	100,000,	and	3%	on	shares	above	50,000.	However,	no	bonus	is	paid	
if	a	member	has	shares	below	50,000.	The	program	below	may	be	used	to	compute	
bonus	for	fifteen	members.



230

Control Statements in C++

#include <iostream>
using namespace std;
 int main() {
 int shares, count; 
 double bonus; 
 double deposit, total;
 count = 0; 
 while (count<3) {                 
  cout << “Enter member’s shares: “;  
  cin >> shares;                  
  if (shares > 100000) {  //calculate bonus
    bonus = shares * 0.05;   
  }
  else if (shares >=10000) {
    bonus = shares * 0.03;  
  }
  else {
    bonus = shares * 0.00;  
  }
   cout<< “Your Bonus is:” <<bonus<< endl;
   count = count+1;
 } //end while loop
 return 0;
}

The	sample	output	shown	in	Fig.	12.7	demonstrates	the	behaviour	of	the	program	
once	the	user	enters	80000,7800	and	12000	as	shares	for	three	members.

Fig. 12.7: While loop: Computing bonus



231

Control Statements in C++
12.3.2  The do... while Loop
The	do ...while loop	is	similar	to	while	loop,	only	that	the	statements	in	the	body	
of	the	loop	are		executed	at	least	once.	This	is	because	the	condition	is	tested	after	
execution	of	the	statements,	granting	at	least	one	execution	of	statement	even	if	is	
the	condition	is	false.	The	general	syntax	of	do...while	loop	is	as	follows:

do{ 
  statements; 
} while(condition);

Example
do {
 cout<< “Genocide Never!;
} while (index <5);

The	following	program	executes	statements	within	the	do	...while	loop	at	least	once	
even	if	the	value	entered	by	the	user	is	less	than	zero.	If	the	number	entered	is	10,	
the	list	is	decremented	by	1	as	long	as	the	condition	(n>0)	remains	true.

#include <iostream>
using namespace std;
int main () {
int number ;
cout << “Enter largest number:”;
cin >> number;
do { //looping construct starts here
  cout <<number <<endl;
  number--;
}
while (number >0); //condition tested here 
cout << “Fire!\n”;
return 0;
}



232

Control Statements in C++
The	 following	flowchart	 shows	 graphical	 representation	 of	 an	 algorithm	used	 to	
create	the	program:

number=number-1

number

Start

number>0

number

Fire!

Stop

true

false

Fig.	12.8	shows	a	sample	output	after	the	user	enters	7	as	the	largest	number.	Note	
that	the	number	is	decremented	after	every	loop	to	1	when	the	alert	Fire	is	printed!

Fig. 12.8: Do while loop output

To	demonstrate	further	how	the	do...while	works,	consider	a	real	case	in	which		gross	
salary of employees of Kigali Bookshop is	based	on	basic	salary,	bonus,	experience	
and	monthly	sales	as	follows:
(a)	 Employees	who	have	worked	for	the	company	for	more	than	10	years	receive	

additional	pay	of	10%.
(b)	 Monthly	bonus	is	at	rate	based	on	monthly	sales	worth	250,000	as	outlined	in	

the	following	table:
Monthly sales Bonus Rate (%)
Above	500	000 15
Between	250	000	and	500	000 10
Below	250	000 5



233

Control Statements in C++
The	following	is		the		program	implemented	using	C++	to	calculate	each	employee’s	gross	
salary	depending	on	years	of	experience	and	sales.

#include <iostream>
using namespace std;
int main() {
double sales,basic_salary, gross_pay, bonus, goodwill;
double experience_rate = 0.1;
int experience;
int count = 0; //initialize count to zero
do {     
   cout << “Enter work experience:”;  
   cin >> experience;               
   cout << “Enter  basic salary: “;  
   cin >> basic_salary; 
   cout << “Enter monthly sales: “;  
   cin >> sales; 
if (experience > 10) { //if experience is over 10 years
  if (sales> 500000) {
    bonus = sales * 0.15;
    goodwill = basic_salary * experience_rate;
    gross_pay = basic_salary + bonus + goodwill;
   } 
  else if (sales >= 250000) {
    bonus = sales * 0.10;
    goodwill = basic_salary * experience_rate;
    gross_pay = basic_salary + bonus + goodwill;
   }  
 else {
    bonus = sales * 0.05;
    goodwill = basic_salary * experience_rate;
    gross_pay = basic_salary + bonus + goodwill;
   }  
}
else {  //if experience is less than 10 years
if (sales> 500000) {
    bonus = sales * 0.15;
    gross_pay = basic_salary + bonus;
   } 
  else if (sales >= 250000) {
    bonus = sales * 0.10;
    gross_pay = basic_salary + bonus;
   }  



234

Control Statements in C++
 else {
    bonus = sales * 0.05;
    gross_pay = basic_salary + bonus;
   }  
}
cout << “Your  bonus is:”<<bonus<<endl;
cout << “Gross salary is:”<<gross_pay<< endl; 
count++; 
}
while (count < 3);
return 0;
}

Fig	12.9	shows	the	output	from	the	program.	Note	that	to	get	the	output,	nested	if	
has	also	been	used	to	test	the	years	of	experience	and	bonus	given.

Fig. 12.9: do...while loop: bonus payment

12.3.3  The for Loop
The	for loop	is	designed	to	perform	a	repetitive	action	with	a	counter	that	is	initialised	
and	increased	after	each	iteration.	The	 for --loop	 is	similar	that	of	the	while	loop	
except	that	the	incrementing	or	decrementing	of	the	counter	is	done	within	the	for	
statements	as	follows:	
 for(initialization; condition; increment){
  statements;
 }
For	example,	the	following	C++	code	snippet	is	for	a	program	that	displays	numbers	
from	0	to	10;	
 for(int index=0; index<=10; index++){
    cout<< index <<endl;
 }



235

Control Statements in C++
The	code	segments	works	as	follows:	
1.	 Declares	and	initialises	index	of	integer	type	to	0.	Most	often,	a	control	can	be		

a	single	character	like	i	or	x.	
2.	 Sets	a	boolean	condition	to	be	checked	e.g.	index <=10.	If	the	value	returned	

is	true,	execution	enters	into	the	body	of	the	loop,	otherwise	the	program	skips	
the loop.

3.	 Executes	the	statements	within	the	loop.	This	can	be	either	a	single	or	a	block	
of statement enclosed in braces { }.

4.	 Increments	the	index	by	1	(index	++)	and	tests	the	condition	again	before	entering	
the	loop.	If	the	value	of	index	is	greater	than	10,	the	program	exits	the	loop.

The	 following	program	demonstrates	 how	 to	use	 the	 for	 loop.	The	program	 lists	
numbers	0	to	10,	followed	by	the	message	“Fire!”.

#include <iostream>
using namespace std;
int main () {
for (int count=1; count <= 10; count++ 
) {
    cout<<count<<endl; //display 1 to 10
    cout<< "Fire!"<<endl;
 } //end for
return 0;
}

The	for	loop	output	shown	in	Fig.	12.10	shows	how	the	value	of	index	is	incremented	
and then printed on the screen.

Fig. 12.10: Program output for loop



236

Control Statements in C++
A	for	loop	can	also	be	used	to	count	downwards	from	the	upper	limit	to	the	lower	
limit	using	the	syntax:
 for(initialization; condition; decrement){
  statements;
 }
For	example,	in	the	previous	program,	the	upper	limit	10	can	be	tested	against	the	
lower	limit	1	print	number	in	descending	order	using	the	following	statements.
 for(index=10; index>=1, index--)
    cout<<index<<endl;
 {
    statements;
 }

12.3.4  Nested Loops
A	loop	inside	another	loop	is	known	as	nested loop.	In	C++,	you	can	insert	any	type	
of	loop	inside	the	body	of	another	loop.	For	example,	you	can	insert	a	for,	while	or	
do-while	loop	inside	another	for	loop	as	shown	in	the	program	segment	below:

In	this	case,	the	inner	loop	is	executed	for	every	execution	of	the	outer	loop.	The	
program	below	accepts	a	character	as	input,	formats	the	characters	into	rows	and	
columns	and	then	displays	the	output	as	shown	in	Fig.	12.11.	
#include <iostream>
using namespace std;
int main(){
  int rows, cols;
  char alphanum;
  cout<<”Enter number of rows:”;
  cin>>rows;
  cout<<”Enter number of columns:”;
  cin>>cols;
  cout<<”Enter a letter or number:”;
  cin>>alphanum;
  for (int i=0;i<rows; i++){
    for(int j = 0;j<cols;j++){
      cout<<alphanum<<”\t”; 
    }
  cout<<”\n”; 
  }//end outer for
return 0;
}//end main

for (int i=0;i<rows; i++){
  for(int j = 0;j<cols;j++)
    cout<<letter;
cout<<"\n";
}//end outer for

true

i<rows i=i+1

true

j<cols

rows,cols,alphanum

j=j+1

i=0

alphanum

j=0

Start

Stop

false

false



237

Control Statements in C++

Fig.	12.11	below	shows	a	sample	output	from	the	program	when	the	user	keys	in	4	
rows,	4	columns	and	a	character	R	as	input.

Fig. 12.11: formatted output ussing nested loop

Assessment Exercise 12.2
1.	 Define	the	term	iteration	control	statements	as	used	in	structured	programming.	
2.	 State	three	types	of	looping	control	statements	used	in	C++	programming.
3.	 Differentiate	between	while	and	do-while	looping	statements.
4.	 List	three	advantages	of	looping	using	looping	control	over	sequential	flow	of	

control.
5.	 Write	 a	 sample	C++	 code	 segment	 that	 demonstrates	 implementation	 of	 the	

following	control	structures:
(a)	 Do...While.		 (b)	 For	loop.

6.	 Write	a	program	that	would	be	used	to	display	odd	integers	between	1	and	200.	

12.4  Jump Control Statements
Sometimes	it	is	desirable	to	exit	or	skip	some	statement	inside	a	selection	or	loop	
construct.	This	is	achieved	in	C++	by	use	of	jump	statements	such	as	break, continue, 
goto, and exit(). 

12.4.1  The break statement
The	break statement	 is	a	keyword	used	 in	 the	while, for, do…while	 and	switch	
control	statements	to	cause	immediate	exit	from	the	body	of	the	loop	or	selection.	
For	example,	once	a	break	statement	is	encountered	in	the	following	loop,		control	
is	transferred	to	immediate	statement	following	the	loop:	
int main(){
int count;
for (count = 1; count <= 10; ++count ) {
 cout << count << “ , “; 
 if ( count == 5 ) 
   break; // skip count if its 5



238

Control Statements in C++

 } //end for loop
cout << “The loop exits at:”<<count<<endl;
 return 0;
} //end main

Fig.	12.12	shows	how	the	break	statement	inside	the	if	conditional	logic	forces	the	
program	to	exit	the	loop	once	5	is	encountered.

Fig. 12.12: Break jump

Activity 12.7: Looping control statements
Write	a	C++	for	a	program	used	to	find	sum	and	average	of	twenty	positive	integers	
entered	by	user.		If	the	input	is	negative,	the	program	should	exit	from	the	loop	and	
display	the	cumulative	and	average.

12.4.2  The continue statement
The Continue statement is used in repetition statements to cause the program to 
skip	the	remaining	statements	in	the	body	of	the	loop	to	test	the	condition.	The	only 
common	thing	between	the	break and continue is that both use if selection to specify 
the	jump	condition.	For	example,	the	program	below	prints	values	between	one	and	
ten	except	5:		

#include <iostream>
using namespace std;
int main(){
int missed;
for (int count = 1; count <= 10; ++count ) {
  if ( count == 5 ) {
    missed = count;
    continue; // skip count if it is 5
  } //end if
cout << count << “, “; //display the list
} //end for
cout << “The loop skips:”<<missed<<endl;
return 0;

} //end main 



239

Control Statements in C++
Fig.	12.14	shows	a	simple	output	in	which	5	is	skipped	in	the	list.	This	is	because	
the	loop	skips	to	test	the	condition	even	if	5	is	encountered.

Fig. 12.14: Continue jump

12.4.3  The goto Statement
The	goto statement	was	used	in	early	days	of	programming	to	specify	the	line	the	
program should jump to. Like many structured programming languages, C++ sparingly 
uses	goto	for	transfer	of	control.		A	goto	jump	in	C++	is	accomplished	by	writing	the	
goto	reserved	word	followed	by	the label	of	destination	statement.	A	label	is	just	a	
name	followed	by	a	colon	(:)	as	follows:
 

To	demonstrate	how	the	goto	statement	works,	the	following	program	segment	uses	
the goto keyword and if selection	to	implement	a	loop.	To	start	with,	the	initial	value	
of	index	(0)	is	tested	against	five	(5).	The	condition	causes	the	goto statement to 
jump to the label	or	exit	the	selection	construct	if	the	value	of	index	is	5.	

#include <iostream>
use namespace std;
int main(){
 int index = 0; 
 label: index ++; //increment index
 cout<<”Current index is:”<<index<<endl;
 if(index < 5){
 goto label; //jump to label
}
cout<< “Last index is:”<<index<<endl;
return 0;
}

badloop: index++
if (index < 5){
  goto badloop;
}



240

Control Statements in C++
Fig.	12.13	 shows	a	 sample	output	 from	 the	program.	Note	 that	value	of	 index	 is	
incremented	by	the	statement	index++

Fig. 12.13: goto jump in C++
Because a goto statements can cause jumps to any location in your program, 
indiscriminate use of the statement can be a source of program bugs that may be 
hard	to	debug.	Our	advice	is	to	use	goto	when	absolutely	necessary	or	completely	
avoid	using	it!	

12.4.4  Exit( ) Statement
The	 exit()	 statement	 is	 an	 in-built	 function	 in	C++	 used	 to	 terminate	 a	 loop	 or	
program	 execution	 prematurely.	 For	 example,	 exit(1)	 statement	 in	 the	 following	
program causes the program to terminate before the statement “You’ll never 
see Me!” is	displayed:

#include <iostream>
using namespace std;
int main(){
  cout<<”This program will Close Now\n”;
  exit(1); //forced premature exit 
  cout<<”You’ll never see Me!”;
return 0;
}//end main

Fig.	12.14	shows	a	sample	output	from	the	program	in	which	the	statement	following	
the	exit()	statement	is	never	displayed!

 

Fig. 12.14: Exit junp statement



241

Control Statements in C++

Activity 12.8: Break, continue and exit()
1.	 Write	a	C++	program	that	tests	if	the	given	number	is	prime	number.	The	logic	

should use a loop and break statements to test the use input.
2.	 Write	 a	 program	 that	 accepts	 numbers	 starting	 from	 zero.	 If	 the	 number	 is	

less	than	zero,	the	program	should	print	an	error	message	and	stop	reading	the	
numbers.	Otherwise,	if	the	number	is	greater	than	100,	the	program	ignores	the	
number	and	executes	the	next	iteration.	

3.	 	Write	a	program	that	accepts	characters	or	special	symbols	as	input	and	formats	
that	output	as	a	pattern	such	as	shown	below:

Assessment Exercise 12.3

1.	 Explain	three	types	of	jump	control	statement	used	to	exit	from	a	loop	or	selection	
statement.

2.	 Explain	why	 it	 is	 not	 good	 programming	 practice	 to	 use	 the	 goto	 control	
statement.

3.	 Differentiate	between	break	and	continue	statements.
4.	 Explain	what	happens	when	an	exit	()	statement	is	used	in	a	program.
5.	 Identify	two	circumstances	in	which	the	exit		()	statement	may	be	used.
6.	 Write	a	program	to	demonstrate	the	use	of	continue	and	go	to	jump	statements.

 

Unit Test 12
1.	 Differentiate	between	if,	and	if..else	statements	in	C++.
2.	 Write	 a	 sample	 program	 showing	 the	 general	 flow	 of	 the	 following	 control	

structures:
(a)	 Nested	for.	 	 	 (b)	 do	...while.

3.	 Using	 a	while	 loop,	write	 a	C++	program	 that	would	 be	 used	 to	 display	 50	
numbers in descending order.

4.	 Write	a	program	that	would	enable	the	user	to	enter	student	marks.	The	program	should	
then determine and display the grade based on grading criteria used by your school.



242

Control Statements in C++

5.	 Write	a	program	in	C++	that	prompts	for	n numbers, accumulate the sum and then 
computes	the	average.	The	program	should	display	sum	and	average	formatted	to	2	
decimal places.

6.	 Write	a	program	that	reads	temperature	in	degree	celsius	at	least	once	a	day	in	every	
week.	The	computer	should	convert	recorded	values	into	Fahrenheit	and	then	calculate	
the	average	weekly	temperature.

7.	 Nkosha	deposited	FRW	2	million	in	a	bank	at	a	fixed	rate	of	8%	per	annum	for	a	period	
of	five	years.	Write	a	program	that	calculates	and	outputs	principal	amount	and	interest	
for	a	period	of	seven	years.	The	program	should	display	amount	rounded	to	nearest	
whole	numbers

8.	 Malaika	took	a	loan	of	FRW	200,000	from	a	commercial	bank	at	12%	interest	payable	
in	four	years.	Write	a	program	that	would	keeps	track	of	monthly	repayments,	and	
interest	after	four	years.	The	program	should	display	amount	payable	in	each	year.

9.	 Although	 the	goto	statement	 is	an	obsolete	control	 in	modern	programming,	 the	
statement	is	sparingly	used	in	some	programming	languages.	Explain	circumstances	
that necessitate its use in C++ programming. 

10.	 Study	and	give	the	output	of	the	following	program.
#include <iostream>
using namespace std;
int main() {
   int size = 8;
   for (int row = 1; row <= size; ++row) {     
      for (int col = 1; col <= size; ++col) { 
         cout << “# “;
   }
   cout << endl;   
   }
   return 0;
} //end main



243

Functions in C++ Programming

Key Unit Competency
By the end of the unit, you should be able to define and use functions in C++ program.

Unit Outline
• Fundamentals of C++ Functions.
• Types of functions.
• User-defined functions.
• Function declaration. 
• Recursive functions

Introduction
Structured programming employs a top-down design approach in which the overall 
program is broken down into separate units called modules, procedures or functions. 
In the previous unit, we have demonstrated how C++ implements structured 
programming using structures called control statements within a function called main. 
In this unit, we demonstrate how a program can further be structured to more than one 
functions. To start with, we review basic concepts of modular programming, followed 
by detailed examination of library and user-defined functions. Finally, we demonstrate 
how C++ supports recursive functions inherent in procedural programming languages. 

13.1  Fundamentals of C++ Functions
Top-down approach in structured programming emphasizes on breaking down a 
program into smaller manageable components known as modules, procedures or 
functions. In C++, the smallest component having independent functionality is 
known as a function. Every C++ program has at least one function called main ( ) 
through which other functions interact with each other directly or indirectly. This 
interaction is made possible through function calls and parameter passing  discussed 
later in this unit.

13.1.1  Features of C++ Functions 
Like in other structured programming languages, the following are characteristics 
of C++ functions:
• A function is a complete sub-program in itself that may contain input, processing 

and output logic.
• A function is designed to perform a well defined task.
• A function can be compiled, tested and debugged separately without the 

intervention of other functions.

FUNCTIONS IN C++ 
PROGRAMMINGUnit 13



244

Functions in C++ Programming
• A function has only one entry and one exit point.
•  A function can interact with other functions using a mechanism known as function 

call and parameter passing.
• A function is designed in such a manner that it can be used with different programs 

or software system.
• The calling function is suspended during the execution of the called function. 

This implies that there is only one function in execution at any given time.
• Control is always returned to the caller when the function execution terminates.

13.1.2  Benefits of using Function 
Structured i:e modular programs have several benefits over non-modular programs 
(monolithic). Some of these benefits include:
• A structured program is easier to understand and test because it is made up of 

smaller manageable sub-programs than monolithic programs.
• It is easier to modify a structured program by adding or replacing some functions 

without affecting the entire program.
• Programmers productivity is increased, because each program function can be 

developed separately by several programmers.
• Structured approach to designing programs enhance the readability of a program.
• Functions can be saved as library functions to be used in other programs hence 

saving development time and cost.

13.1.3  Limitations of using Functions
Although benefits of structured programming outways those of monolithic 
programming, the following are disadvantages associated with this approach:
• Structured programs need more memory space and extra time for execution. 

Because some functions repeat the task performed by other functions.
• Integration of various functions into a single program may be difficult because 

different people working on different modules may not use the same style.
• Testing and debugging of separate functions may be time consuming, thus reducing 

efficiency of a program.
• Global sharing of data by multiple functions is dangerous because  one function 

can modify a global variable in a way that is invisible to another function. 

13.2  Types of Functions
Functions may be classified into two categories namely: Library or (built-in)functions 
and user-defined functions. Library function are compiled and put in C++ library to 
simplify programming task while user-defined function are  the functions that we write 
to create a modular program. 

13.2.1  Library functions
So far, we have been writing programs by first including (importing) functions from 
C++ Standard Library. C++ Standard Library provides a collection of predefined 



245

Functions in C++ Programming

functions for common input and output manipulation, calculations, error checking 
and many other useful operations. To use a library function, we first include its 
header file, then use a function that passes list of arguments from the calling portion 
of the program. For example, to find the square root of a number, we use square root 
function sqrt() as follows:
 root = sqrt(16); 

The function sqrt() evaluates the square root of 16 and returns 4 which is then assigned 
to the root. In this section, we demonstrate how to use  mathematical, string and 
character manipulation functions.   

13.2.1.1 Math Functions
The C++ Library provides a collection of Math functions used to perform mathematical 
and trigonometric computations. For example, to  raise 5 to power 3, we use the pow() 
function as follows: 
 power = pow(5,3);//returns 125

Table 13.1 enumerates frequently used functions that require inclusion or importing  
of <cmath> or <math.h> header file using #include directive.

Function Description Example

ceil(x) rounds x to the smallest integer ceil(9.2) is 10.0. ceil (.9.8) is .9.0

cos(x) cosine of x (x in radians) cos(0.0) is 1.0

expl(x) exponential function exp(1.0) is 2.718282

fabs(x) absolute value of x fabs(5.0) is 5.0. fabs(.8.76) is 8.76

floor(x) rounds x to the largest integer not greater 
than x

floor (9.2) is 9.0. floor(.9.8) is 10.0

fmod(x,y) remainder of x/y as a floating point fmod(2.6. 1.2) is 0.2

log(x) natural logarithm of x (base e) log(2.718282) is 1.0

log10(x) logarithm of x (base 10) log10(100.0) is 2.0

pow(x,y) x raised to power y (x,y) pow(2.7) is 128

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0

sqrt(x) square root of x (where x is a non negative 
value)

sqrt(9.0) is 3.0

tan(x) tangent of x (x in radians) tan(0.0) is 0

Table 13.1: Math library functions
The program below uses two functions i.e. sqrt() and pow() to calculate hypotenuse 
of a right angled triangle: using the following expression:

a2 + b2hypo =



246

Functions in C++ Programming
#include <iostream>
#include <cmath>
using namespace std;
int main(){
int a, b;   //declare sides of triangle
double hyp;   //declare hypotenuse 
cout << “Enter first side (a) :”;// input message
cin >> a; // read a from keyboard
cout << “Enter second side (b):”;
cin >> b; // read b from keyboard
hyp = sqrt((a * a) + (b * b)); //compute hyp
cout << “Hypotenuse is:”<< hyp << endl;
return 0;
}

The illustration of Fig 13.1 shows the output after running the program.

Fig. 13.1: maths function program output
NB:  To use the sqrt() function in the assignment statement, you must include <math> 
preprocessor directive as shown in the program.

13.2.1.2  Character Functions
Although a computer is a numerical machine, most often, data entered into a computer 
consist of numbers, characters and strings. The underlying fact is that characters 
are treated as integers. The C++ Library has in-built functions used to manipulate 
characters. The functions can be  accessed by including <cctype>  header file. For 
example, to  convert a character c from  uppercase to lower case, we use the following 
statement: 

For example, the program below uses tolower() function to convert a character from 
uppercase to lowercase.

#include <iostream>
#include <cctype>
using namespace std;

letter = tolower(c)



247

Functions in C++ Programming
int main(){
char letter, small;     
cout << “Enter letters A-Z in uppercase:”;
cin >> letter; // read a from keyboard
small = tolower(letter);
cout << letter<<”lowercase is:”<<small<< endl;
return 0;
}
Fig. 13.2 shows a sample output once the user enters H as the input. The character 
is converted to uppercase. 

Fig. 13.2: Character functions sample output

Table 13.2 below gives a summary of frequently used character manipulation functions 
accessible by including <cctype> header file. 

Function Description Example

isdigit(c) Check whether c is a numeric digit isdigit(‘5’)//returns 1

isalpha(c) Check whether c is a letter isalpha(‘5’)//returns 0

isupper(c) Check whether c is in uppercase isupper(‘x’)//returns 0

tolower(c) Converts c to lowercase tolower(‘R’)//returns r

toupper(c) Converts c to uppercase toupper(‘r’)//returns R

Table 13.2: Character library functions
The following program demonstrates how digital() and alpha() functions are used to 
test whether the user input is a letter or a number.

#include <iostream>
using namespace std;
int main(){
char grade;     
cout << “Enter letters or number:”;
cin >> grade; // read a from keyboard
if (isdigit(grade)){
 cout<<”The entry”<<grade<<”is number”<<endl;
}



248

Functions in C++ Programming
else if(isalpha(grade)){
 cout<<”The entry grade is”<<grade<<endl;
}
else {
 cout<<grade<<”may be a symbol”<<endl;   
}
return 0;
}
The output after entering a letter and a numeric value is shown in Fig.13.3 below:

Fig. 13.3:  Sample output from character functions

13.2.1.3  String Functions
The string-handling library provides many useful functions for manipulating string 
data, comparing strings, searching strings for characters and substrings. To use 
the string manipulation functions, you must include the <cstring> header file.  For 
example, the following statement returns the number of characters in “My House” 
string:

#include <iostream>

using namespace std;

int main(){

int count=0;

count = strlen(“My House”);//

cout <<”Number of characters are: “<<count<<endl;

return 0;

}

The sample output shown in Fig. 13.4 demonstrates how strlen() counts the number of 
characters in My House string.

count_char = strlen(hello)//returns 5



249

Functions in C++ Programming

Fig. 13.4: Sample output from strong functions
NB: The output shows that the number of characters are 8 because the space between 
My and House is also counted as a character.

Table 13.3 below presents some common string manipulation functions supported by 
C++.

Function Description Example

strcat(c) Concatenates two springs strcat(x,y) append y to x 

strcmp(c) Compares two strings strcmp(“he”,“se”) //return 0

strlen () Counts the number of non-whitespace 
characters in a string

strlen(‘him’)// returns 3

strcpy() Copies the second string to first string strcpy(y,x); copy x to y

Table 13.3: String library functions

Activity 13.1: Library functions
In groups, review at least two programming languages installed on computers in the 
computer lab. Perform the following tasks:
1. Identify at least ten math library functions and use an example to explain how 

each function works.
2. Bisangwa took a loan of 400 000 FRW from a local bank at annual interest rate 

of 12% . Assuming the loan should be paid in 4 years time, write a C++ program 
that makes use of library functions to compute monthly loan repayment.

13.2.2  User-defined Functions
We create user-defined functions to modularize a program or make it available in 
C++ Library for use by other programmers. Creating user-defined functions require 
that you declare the function name, return type, and list of arguments. After the 
declaration, you can then define the function body by enclosing its statements in { 
} braces as follows:  

 type fun_name(arg1,arg2,...){ 

  statements 

 }



250

Functions in C++ Programming
For example:

int fun_add(int a, int b){

int sum;

sum =x +y;

return sum;

}

Explanation

• In the general syntax, type is the data type to be returned by the function. For 
example, in our previous examples, we have seen that main() returns int type.

• func_name is the identifier by which it will be possible to call the function. For 
example, main() with brackets indicates that it is a function. 

• arg-list is a list of parameters also known as arguments that serves as placeholders 
for actual data to be received from another function. Arguments are separated 
by commas, with each comma-separated list consisting of data type followed by 
arguments e.g., int a. In our previous examples, main() with empty parenthesis list 
indicates that it does not receive arguments. 

• statements is the function’s body that consists of a block of statements enclosed 
in { } braces. The statements include local variables, executable statements, and 
optional return statement. For example, main has the last statement as “return 0”.

When a function is called by another  function, execution is transferred to the function 
until the return statement or end of function is encountered. To demonstrate how 
functions work, the following program calculates the sum of two numbers received 
from the main function:

/*this program consists of two function:

main and addition */

#include <iostream>

using namespace std;

//addtion function calculates sum 

int addition (int a, int b){

int sum;

sum=a+b;

return sum;

}



251

Functions in C++ Programming
//program execution starts here!

int main (){

int total=0,x=5, y=7;

total = addition (x,y);

cout<< “The sum is:”<<total<<endl;

return 0;

}

Fig. 13.5 shows a sample output from the program. Note that the screen does not 
explicitly show how the function was called.

Fig. 13.5: Sample output from user-defined functions

The following is a brief description about how the above program works:
• The execution environment in most cases in an operating system starts by calling 

the main () function. 
• The main function has three variables sum, x and y that are initialized to 0, 5 

and 7 respectively. 
• The next statement is referred to as function call that transfers control to a function 

named addition. The x and y inside parentheses are called actual arguments 
because they hold assigned values 5 and 7.

• The two values of x and y are “sent”, (passed) to a function called addition 
through a process known as “parameter passing”. Note that the data type and 
order in which the values are received should match that of the function call as 
illustrated below:

total = addition (x, y);

int addition (int a, int b); receiving arguments

passing arguments

12 5 7

• The control is passed to the addition function, arguments a and b known as formal 
parameters received from main(), i.e., 5 and 7 are assigned to as a and b follows:
int a = 5, int b = 7;

• The two values are summed up and assigned to a variable (sum) in the addition 
function as follows:
sum=a+b;//5+7



252

Functions in C++ Programming

• The statement return sum returns as a value of 12 and transfers control back to the 
next statement following the function call in the main function. Note that the return 
statement can be a value or an expression that returns a value such as:
return (sum=a+b);

• Finally, the main function prints the value received from addition function. Note 
the value has been assigned to total that is specific to main, hence referred to as 
local variable.  

Activity 13.2: User-defined functions
1. Study the code snippet shown below and identify the function’s list of parameters, 

return type and the value returned by the maximum function:
 double maximum( double x, double y, double z ){
 double maxiValue = x; //assume x is maximum
 if ( y > maxiValue)
 maxiValue = y; // make y the new maximum
 if ( z > maxiValue)
 maxiValue = z; // make z the new 
 maximum
 return maxiValue;
 } // end function
2. Write a complete program in which the maximum function is called flow the 

main ();
3. Write a program that computes area of a rectangle in a function called rect_area. 

The rectangle then returns the calculated area to the main function. 

13.3  Function declaration
C++ requires that a function be defined before being called by the main () function 
or any other function. For example, addition function in our previous example comes 
before main. However, if you do not want to fully implement a function, you can 
first declare it and implement it later. To declare a function without implementing 
the body, write the function return type, name and parameter list followed by a 
semicolon at the end of the statement. The portion of a function that includes only 
the function name and list of arguments is called a function signature or prototype. 
For example, the following statement is a sample declaration for a function named 
maximum that takes 3 parameters.

 double maximum(double x,double y,double z);



253

Functions in C++ Programming

Activity 13.3: Functions declaration
1. Explain the purpose of each of the following statements:

(i)  void maximum(int,int,int);
(ii) cout<< maximum(6,7,0);

2. Write a program that receives marks for three subjects: Mathematics, Computer  
Science and Physics/Economics. The program should pass received parameters 
to a function called calculator(). Once the calculator() function computes the 
mean score, the value is returned to a grader() function that determines mean 
grade as follows:
• 80 - 100 A 
• 65 - 79 B
• 50 - 64 C 
• Below 50 F

13.3.1 Function Return Type and Arguments
We have seen that declaration of a function consists of  return type, function name and 
a list of parameters. The return type and argument list can be of the following type:
•	 Primary data type – a function can return data types such as int, double, float, 

char and bool.
•	 Complex data types - a function can receive or return composite data structures 

like arrays, records (struct), linked list and string:
•	 Void type – this is a special type, which means a function does not return any value. 

In C++, empty parenthesis also implies that the function takes void argument list. 

13.3.1.1  Functions with arguments and return type
A function can receive at least one argument and return a single value to the caller. 
For example, the following printreport() function takes two parameters of int types, 
computes quotient, and returns a value of double type: 
double printreport(int x,int y){ 
 return = x/y;
}

13.3.1.2  Functions with no arguments and no return type
The keyword void may be used to specify that a function neither receives arguments 
nor returns a value. For example, the printreport() function below does not receive 
arguments and returns void: 
void printreport(void) { 
 int x = 5, y =10;
 cout<<”Quotient is”<<x/y; 
}



254

Functions in C++ Programming
13.3.1.3  Functions with arguments and no return type
A function can receive one or more arguments and return nothing. For example, the 
following printreport() used void to explicitly declare that the function takes two 
arguments but returns void: 
void printreport(int, int) { 
 cout<<”Quotient is”<<x/y; 
}

13.3.1.4  Functions with return type and no arguments
A function that receives nothing can be defined in a manner that it returns a value to 
the caller. For example, the printreport() function below does not receive arguments 
but returns void: 
double printreport(void) { 
 int x = 5, y =10;
 return x/y; 
}

Activity 13.4: Function return type and arguments
1. Explain what happens if the return type is not explicitly declared, but the argument 

list is a mixture of types as shown below. 

 caculator(int x, int y, float z){
   return(x+y+z) 
 } 

2. Modify the calculator program created in Activity 13.5 to include a void function 
named printGrade that prints Average Mark and grade received from the grader() 
function

13.3.2  Scope of Variables and Constants
The scope specifies where a variable and a constant can be referenced in a program. 
Scope of a variable can be either of global or local scope. Global identifiers can 
be referenced throughout a program, while local identifiers can only be referenced 
within the body of a function. Formal parameters are treated as local variables used 
exactly as if they had been declared in the function body. The following program 
demonstrates how to use global and local variables.
#include <iostream>
using namespace std;
const int k =32; //global constant
float cel; //global variable
float Converter(float); //function declaration



255

Functions in C++ Programming
int main(){
float fahr; 
cout<<”Enter temperature in fahrenheit:”;
cin>>fahr;
cel = Converter(fahr);//function call
cout<< “Display temp in celsius:”<<cel<< endl;
} //end main
//function definition 
float Converter(float fer){
cel = ((fer - k) * 5) / 9;
return cel;
} 

Fig. 13.6 below shows the output after the user keys in a value for degress fahrenheit:

Fig. 13.6: Scope of variables and constants

Global variables are dangerous because they are shared data hence one function can 
change a variable in a way that is invisible to another function. This sharing can 
cause logic errors due to bugs that are very difficult to find.

13.3.3  Parameter Passing
Parameter passing serves as the communication mechanism between two functions. 
Once a call statement is encountered, the caller function passes actual parameters 
to the function being called. For example, the program below has a call statement;
z=addition (x,y) that passes actual parameters 5 and 3 to addition function.
#include<iostream>
using namespace std;
int addition (int a, int b) {
return a+b;
}
int main (){
int x=5, y=3, sum;
sum = addition ( x , y ); //pass copies
cout<<”The total is”<<sum<<endl;
return 0;
}



256

Functions in C++ Programming
The output after running the program is shown in Fig. 13.7 below:

Fig. 13.7: Sample output for parameter passing

In this case, once the values of x and y are passed to addition function, they are 
assigned to a and b.

Activity 13.5: Parameter passing
1. Write a function named distance that calculates the distance between two points 

on a cartesian plane (x1, y1) and (x2, y2). All formal parameters  and the return 
value should be of type double.

2. Determine whether the following program segments contain errors. For possible 
error(s), explain how it can be corrected. 

 void printResults( int x, int y ) {
 cout << “The sum is “ << x + y << ‘\n’;
 return x + y;

 }

Assessment Exercise 13.1
1. Differentiate between definition prototype and function declaration.
2. State five advantages and three disadvantages of using functions.
3. State five common characteristics of a function.
4. Using Math library functions, write the following equation as a C++ expression: 

y = ax3 + bx2 + cx +d.
5. Using examples, explain four functions that you can use to manipulate characters 

and strings.
6. Differentiate between void data type and empty parameter list.   
7. Differentiate between global and local identifiers. Explain why it is undesirable 

to use global variables.
8. Using examples, differentiate between pass-by-value and pass-by-reference as 

used in structured programming.
9. Janet deposited 400,000 in her savings account. The amount deposited earns 

interest at 3% annually. Write a program that has a function called calculator 
that receives deposit and years from main() to calculate amount and accrued 
interest after n years. Note that interest rate should be global constant of double 
type. 



257

Functions in C++ Programming

13.4  Recursive Functions
Some problems solved recursively are usually those in which you act on data and 
then act on the results the same way. Recursion is the process of repeating items in 
similar manner meaning that a recursive function is a function that calls itself in a 
similar manner. Such functions are useful in solving problems that are recursive in 
nature such as factorial, greatest common divisor (GCD) and fibonacci series. 

Activity 13.6: Recursive functions
1. Using your knowledge in Mathematics, demonstrate how you would compute 

factorial of integer numbers like 20!
2. Using a tree diagram, demonstrate how you would recursively determine the 

greatest common divisor (GCD) of two numbers, say, 420 and 42.

To demonstrate how recursive functions work. Let’s consider a mathematical problem 
of finding factorial of a non-negative integer n, written as n! In order for the recursion 
to terminate, the iterations must eventually converge to a base case such as 1 in n. For 
example, 5! is the product  of 5 * 4 * 3 * 2 * 1, which terminates at 1 to return 120. 
Omitting the base case, or writing the recursion step incorrectly so that it does not 
converge on the base case, causes “infinite” recursion analogous to infinite loop in a 
looping control structures. The following program implements a recursive function 
called factorial.
#include <iostream>
using namespace std;
long factorial (long n){
if (n > 1)
return (n * factorial (n-1));
else return 1;
}
int main () {
long number;
cout << “Please type a number: “;
cin >> number;
cout<< number << “! = “ <<factorial(number);
return 0;
}

Fig. 13.8 shows a sample output after running the program.

Fig. 13.8: Sample output from recursive function



258

Functions in C++ Programming

Explanation 
1. The execution starts with the main function that prompts the user to type a 

number.
2. Once the number is entered, the function call factorial(number) in the last cout 

statement transfers control to the factorial function.
3. The factorial function receives the parameter and assigns it to n.
4. The factorial recursively calls itself in the statement factorial(n-1) until the base 

value -1 is reached.
5. The iteration stops and results displayed on the screen.

Let us consider another mathematical problem of generating Fibonacci series. In 
Fibonacci series, the next number is the sum of the previous two Fibonacci numbers 
as shown below:

0,1,1,2,3,5,8,13,21,…

This fibonacci series can be generated and displayed on th sreen by the following 
program:
#include<iostream>
using namespace std;
int fibonacci(int n){
    if((n==1)||(n==0))    {
        return(n);
    }
    else {
        return(fibonacci(n-1)+fibonacci(n-2));
    }
}
int main(){
    int n,i=0;
     cout<<”IEnter number of terms for Fibonacci Series:”;
    cin>>n;
    cout<<”The is the Fibonnaci Series”;
    while(i<n) {
    cout<<” “<<fibonacci(i);
    i++;
 }
return 0;
}



259

Functions in C++ Programming
Fig 13.9 shows the output screen of the program that prints a fobinacci series of natual 
numbers 0 to 12.

Fig. 13.9: Fibonacci series using recursive function

13.4.1 Recursion vs iteration
• Iteration explicitly uses a repetition structure while recursion achieves repetition 

through repeated function calls. 
• Both iteration and recursion involve a termination test: iteration terminates when 

the loop–continuation condition fails; recursion terminates when a base case is 
recognized. 

• Iteration with counter-controlled repetition and recursion gradually approach 
termination:

• Iteration modifies a counter until the counter assumes a value that makes the 
loop-continuation condition to fail; recursion produces simpler versions of the 
original problem until the base case is reached. 

• Both iteration and recursion can occur infinitely: An infinite loop occurs with 
iteration if the loop-continuation test never becomes false; infinite recursion 
occurs if the recursion step does not reduce the problem during each recursive 
call in a manner that converges on the base case.

• Unlike iteration, recursive functions can be expensive in terms of processor time 
and memory space. This is because each recursive call causes another copy of 
the function to be created. 

Activity 13.7: Recursive functions
1. Implement a modular program for calculating  Fibonacci series for nth term 

received from main() function.
2. The greatest common divisors of two natural numbers can be easily determined 

recursively. Write a program for finding GCD of two natural numbers p and q 
using the following function definition:

 int gcd(int p, int q) {
    if (q == 0)
    return p;
    else
    return Gcd(q, p % q);
 }  



260

Functions in C++ Programming

Assessment Exercise 13.2
1. Define the following terms: 

(a) Recursion 
(b) Recursive function

2. Differentiate between recursion and looping control statement.
3. Paul wrote a program that has factorial recursive function. However, after running 

the program, it was not terminating.
(a) What type of bug is making the program not to terminate?
(b) Advise Paul on how to eliminate the bug.

5. Explain why it is not advisable to use recursive functions if a problem can be 
solved using iterations.

6. Using an example, explain how a program would recursively find greatest 
common divisor of two natural numbers p and q.

Unit Test 13
1. Explain the following concepts as used in C++ programming:

(a) Functions  
(b) Arguments
(c) Parameter passing

2. Differentiate between library functions and user-defined functions.
3. Demonstrate how you would use library functions to compute volume of a sphere.
4. Helen wrote a modular program for finding the volume of a cube. Though the 

program was running, the calc_volume function was returning void causing 
unexpected output in the main function.
(a) What type of bug is making the program return invalid results?
(b) Advise Helen on how to eliminate the bug

5. Explain why parameter passing is an important concept in modular programming.
6. Global sharing of variables is one of the major reason for paradigm shift to object 

oriented programming. Explain why.
7. Write a program that uses recursion to output fibonacci series from the first fifty 

natural numbers. 
8. Write a program that reads temperature Celsius in the main function. The 

parameters is passed a function called calc_cel that returns double to a void 
function that displays the value of temperature in degrees Fahrenheit.

9. Jack deposits 20,000 FRW in a bank at an interest rate of 10% per annum. At the 
end of each year, the interest earned is added to the deposit and the new amount 
becomes the deposit for that year. Write menu-driven program that would be 
used to track interest over a period of five years.The program should output 
interest and principal amount accumalated in each year.



261

Functions in C++ Programming

10. Study and give the output of the following program.
#include <iostream>
using namespace std;
int result;
int compare(int num1, int num2);
int main () {
 int a = 120;int b = 121;
 result= compare(a, b);
 cout << “The result is: “ << result<<endl;
return 0;
}
int compare (int num1, int num2) {
   if (num1 > num2)
      result = num1;
   else
      result = num2;
   return result; 
}



262

Arrays in C++ Programming

Key Unit Competency
By the end of this unit, you should be able to use arrays and strings in a C++ program.

Unit Outline
•	 One-dimensional Arrays.
•	 Creating one-dimensional Arrays.
•	 Accessing Array Elements.
•	 Array of characters

Introduction
This unit builds on earlier concepts on one-dimensional arrays, variables, data types 
and	control	structures.	More	specifically,	this	unit	demonstrates	how	to	create	and	
manipulate one-dimensional arrays. 
We	start	by	demonstrating	how	to	create	and	manipulate	one-dimensional	array	of	
numeric	elements.	Later,	we	demonstrate	how	to	create	one-dimensional	array	of	
characters	also	known	as	strings.

14.1 One-dimensional Array
An array is a series of elements having the same name and data type placed in 
contiguous memory locations. To create an array in C++, you need to consider the 
following:
•	 Type	of	elements:	The elements in an array must be of the same type. Some of the 

valid types stored in an array include primary data types (e.g. int, float, double, 
and char), and compound types such as string.  

•	 Array	size:	Because arrays occupy space in memory, you must specify the number 
of elements beforehand so that the compiler sets aside enough memory space. 

•	 Dimensions: Arrays can have any number of dimensions although it is likely 
that	most	of	the	arrays	you	create	will	be	of	one	or	two	dimensions.	To	access	
elements in an array,  you must indicate its position using a subscript (index) for 
each of its dimensions.

14.2 Creating One-dimensional Array
In	this	section,	we	demonstrate	how	to	create	one-dimensional	array	of	ten	integers	
named	house.	The	house	array	is	first	initialised	to	10	values	to	be	stored	in	each	
element.   

ARRAYS IN C++ 
PROGRAMMINGUnit 14



263

Arrays in C++ Programming
#include <iostream>
using namespace std;
int main(){
int house[10] = {165, 150, 219,300,220,450,60,80,55,172};
for (int i = 0; i<10; i++){
cout<< i+1<<”: “<<house[i]<< endl;
}//end for loop
return 0;
}

Fig.	4.1	shows	a	sample	output	after	running	the	program.	Note	that	the	ten	elements	
are	listed	from	1	to	10.

Fig.	14.1:	Array	of	inlegers	sample	program	output

14.2.1 Declaration of Array

Declaring an array is similar to declaration of simple data types only that square [] 
are used to instruct the computer to reserve enough memory locations to store array 
elements.	The	general	syntax	of	declaring	a	one-dimensional	array	is:

	 type array name[number of elements]; 

Where type	refers	to	data	type	to	be	stored	in	the	array,	followed	by	the	array	name	
and	 number	 of	 elements.	 For	 example,	 the	 follow	 array	 named	 house	 stores	 10	
elements		of	integer	type:
 int house[10]; 

Once you declare house array, the computer sets aside memory locations (addresses) 
for	storing	ten	integer	values	such	as	34,20,45,87,92,21,42,56,12	and	15.	



264

Arrays in C++ Programming

Activity 14.1: Declaration of arrays
1.	 Study	 the	 following	 graphical	 representations	 of	 one-dimensional	 array	 and	

answer	the	questions	that	follow:

POINTS 20 -3 4 12 10 20
INDEX 0 1 2 3 4 5

TEMPERATURE 5.1 -25.9 30.0 200.8 10.90 7.65
INDEX 0 1 2 3 4 5

Table	14.1:	Numeric	Arrays
(a) Determine each array name, data type and number of elements stored in 

each array.
(b)	 Using	C++,	write	 declaration	 statement	 that	 sets	 the	 array	 elements	 to	

appropriate data type.
2.	 A	bus	has	purchased	a	computer	for	its	new	automated	reservations	system.	You	

are	requested	to	program	the	new	system	that	assigns	seats	to	passengers	for	
each	trip.	Using	one	dimensional	arrays,	design	and	write	a	program	in	c++	that	
assigns	30	seats	as	an	array	of	integers.	The	output	from	the	program	should	be	
the	subscript	and	number,	eg:		

	 	 	 	 	 	 1.		 001
	 	 	 	 	 	 2.		 002
      3.		 003
      ·      .      .
	 	 	 	 	 								30.	 030

14.2.2 Initialisation of arrays
Array initialization refers to assigning elements to default values at compile time. In 
C++, elements of an array can be initialised  during array declaration by assigning 
the array to list of comma-separated values enclosed in {}braces. For example, the 
house	array	in	our	example	initialises	the	array	as	follows:		

int house[10]={165,150,219,300,220,450,60,80,55,172};

If	there	are	fewer	initialisers	than	the	number	of	elements,	the	remaining	elements	
are automatically initialised to zero. For example, the elements of the house array 
could	have	been	initialized	to	zero	as	follows:
 int house[10] = {165,150};

The	statement	initialises	the	first	two	element	to	165	and	150,	and	the		remaining	
eight	elements	are	initialised	to	two	values	followed	by	zeros	as	follows:
 house[10] = {165,150,0,0,0,0,0,0,0,0};



265

Arrays in C++ Programming

It is important to note that, declaration of an array does not automatically initialise 
elements to zero. To automatically initialise all elements to zero, use empty braces 
or	initialise	at	least	the	first	element	to	zero	as	follows:
	 int house[10]={0};
If the array size is omitted in the square bracket but elements initialised using 
comma-separated list of initialisers, the compiler assigns the array size enough to 
hold	the	number	of	elements	in	the	list.	For	example,	the	definition	below	creates	a	
five-element	array:
 int apartment[]={1,2,3,4,5};

Activity 14.2: Initialising an array
1.	 Demonstrate	how	to	initialise	an	array	named	product	to	the	following	list	of		

numbers:	21,32,43,54,65,76,87,88,99,200.
2.	 Explain	whether	the	following	array	initialisation	causes	syntax	error:	
 double product[8]={32,27,64,18,95,14};
3.	 Study	the	program	below	and	explain	line-by-line	how	the	program	works	to	

provide desired output.
 #include <iostream>
 using namespace std;
 int scores[] = {36,25,78,40,55,91};
 int n,result=0;
 //use sizeof to determine no. of elements  
 int size = sizeof(scores)/sizeof(int);
 int main (){
 for ( n=0 ; n<size; n++ ){
 result += scores[n];
 }
 cout<<”Sum of”<<size<<”scores is:”;
 cout<<result<<endl;
 return 0;
 }
Compare	your	output	with	sample	screen	shown	on	Fig.	14.2	below:

Fig.	14.2:	Initialised	array	sum	of	scores



266

Arrays in C++ Programming

14.3 Accessing Array Elements
In	one-dimensional	arrays,	each	element	can	be	accessed	using	subscript	which	is	
usually an offset	of	1	from	the	number	of	elements	using	the	following	general	syntax:
 name[n-1];
The subscript n-1 is an offset of n elements because in C++, subscripts counts from 
0.	For	example,	to	access	the	fifth	element	in	the	house	array	that	has	50	elements,	
use	the	following	syntax:	
	 house[4];
The	most	convenient	way	to	access	multiple	elements	of	an	array	is	to	use	the	for 
loop	to	be	demonstrated	later.	The	reason	why	for	loop	is	desirable	is	because	the	
number	of	elements	is	known	beforehand.		

14.3.1 Reading values into Array Elements
To	read	values	into	a	specific	element	of	an	array	,	use	the	following	syntax:
 cin>>name[n-1];

The statement uses the cin object to accept user input and stores the value into the 
element	specified	by	n-1	offset.	For	example,	the	following	statement	prompts	the	
user	to	enter		a	value	that	is	stored	into	the	fifth	element:	
 cin>>house[4];

Instead of reading one element at a time, you can populate multiple array elements 
using the for loop. For example, to read multiple values into house array, use the for	
loop	as	follows:			
#include<iostream>
using namespace std;
int main(){
int house[10] = {};
//use for loop to read values into house array
for (int i = 0; i<10; i++){
cout<<”Please enter house No:”<<i+1<<endl;
cin>>house[i];
}//end reading
return 0;
}



267

Arrays in C++ Programming

The	program	shown	above	populates	the	10	elements	of	the	house	array	as	shown	
in	Fig.	14.3.	

Fig.	14.3:	Reading	values	into	an	array
The loop intialises the control variable i to zero and loops until it is nine. The cout 
statement	prints	the	statement	“Please	enter	house	no:”,	which	is	followed	by	i+1	to	
start	counting	from	1.				

14.3.2 Writing values from Array Elements
Similar to the syntax of reading values into array elements, you can display a single 
value	from	array	using	the	cout	object	as	follows:
 cout<<name[n-1]
For	example,	the	following	statement	may	be	used	to	displays	the	fifth	element	from	
the	house	array:	
 cout<<house[4];
To display multiple values from array elements, use the cout object and the for loop. 
For	example,	the	following	for	loop	displays	values	from	the	house	array:	
 for(int i=0; i<10;i++){
     cout<<i+1<<”:“<<house[i]<< endl;
 }

The	 following	 program	 is	 a	modification	 of	 the	 code	 listing	 in	 activity	 14.2	 to	
demonstrate	how	to	read	and	write	values	from	the	array	named	house:	
#include<iostream>
using namespace std;
int main(){
int house[10] = {};



268

Arrays in C++ Programming

//use for loop to read values into house array
for (int i = 0; i<10; i++){
cout<<”Please enter house No:”<<i+1<<endl;
cin>>house[i];
}//end reading
//use for loop to print house array 
for (int i = 0; i<10; i++){
cout<< i+1<<”: “<<house[i]<< endl;
}//end printing
return 0;
}
Fig.	14.4	shows	an	illustration	of	the	program	after	running	it.	The	first	part	denotes	
the	read	operation	while	the	second	part	displays	the	values.

Fig.	14.4:	Sample	read	and	write	output	from	array



269

Arrays in C++ Programming

Activity 14.3: Reading and writing array elements
Thirty	students	were	asked	to	rate	the	quality	of	the	food	in	the	student	cafeteria	on	a	
scale	of	1	to	5	(1=poor,	2=fair,	3=neutral,	4	=good,	and	5=excellent). Write a C++ 
program	that	stores	45	responses	into	one-dimensional	array	and	give	a	summary	of	
each case in terms of count and percentage.

Assessment Exercise 14.1
1.	 Differentiate	between	one-dimensional	array	and	multi-dimensional	array.
2. Declare	a	one-dimensional	array	that	represents	a	99-element	floating	point	array	

called	cashflow.
3. Assuming	the	array	in	2	above	is	implemented	using	C++,	what	are	the	first	and	

last elements in the array?
4. The	 following	 is	a	 list	of	numbers	 representing	customers	waiting	 to	board	a	

25-seater	bus	that	serve	between	Huye	and	Kigali:64,	25,69,	67,	80	and	85.	
(a)	 Define	an	array	named	Passenger initialized to false if a seat is empty.
(b) Write a sample code that initializes to zero all the elements of Passenger 

array in question 4 above.
(c)	 Assuming	the	array	is	implemented	in	C++,	write	a	program	that	would	be	

used	to	read	and	display	ticket	numbers	for	25	elements	of	fully	booked	
bus.

5.	 Write a C++ program  that converts a decimal number to binary form. Store the 
binary digits in an array and correctly displays the binary number.

6.	 Study	the	following	code	fragments	and	identify	possible	errors.		In	each	case,	
explain	the	consequences	of	not	correcting	the	error(s):

      a. Assume that: int box[ 10 ] = { };
for ( int i = 0; i <= 10; ++i )
box[ i ] = 1;

Assume that: int ax[ 3 ];
cout << ax[ 1 ] << “ “ << ax[ 2 ] << “ “ << ax[ 3 ];

b.



270

Arrays in C++ Programming

7.	 Study	the	following	program	and	give	the	output	produced	after	running	it:
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main() {
const int SIZE =7;
int marks[] = {74, 43, 58, 60, 90, 64, 70};
int sum = 0;
int sum_squared = 0;
double mean, stdDev;
   for (int i = 0; i < SIZE; ++i) {
      sum += marks[i];
      sum_squared += marks[i]*marks[i];
   }
mean = (double)sum/SIZE;
stdDev = sqrt((double)sum_squared/SIZE - mean*mean);
cout << fixed << “Mean is “ << setprecision(2) << mean 
<< endl;
cout << fixed << “Std deviation:” << setprecision(3) << 
stdDev << endl;
return 0;
}//end main

      
8.	 Identify	and	correct	syntax	error(s)	in	the	following	program.
#include <iostream>
using namespace std;
int main (){
const int SIZE = 5;
int  a[SIZE], b[SIZE],C[SIZE] ;      
for (index = 0; index < MAX; index++) {
  cout << “Enter elements for array [a]: “;
  cin >>a[index];
 } 
 for (index = 0; index < MAX_ARRAY; index++){
 cout << “Enter elements for array [b]: “;
 cin >>b[index];
 }
 for (index = 0; index < MAX; index++) {
     c[index] = a[index]+ b[index];
}



271

Arrays in C++ Programming

 for (index = 0; index < MAX; index++)  {
 cout << “array a is “ << a[index] << endl;
 cout << “array b is “ << b[index] << endl;
 cout << “array c is “ << c[index] << endl;
 }
   return 0;
} //end main

      
14.4 Array of Characters
To easily handle strings, C++ Standard	Library implements string data type that is 
very useful in handling strings of characters. Because a string is made up of a group 
of	characters,	we	can	also	represent	them	as	arrays	of	char	elements	using	the	syntax:
   char name[elements];
For	example,	to	declare	an	array	of	characters	called	greetings,	use	the	following	
syntax:
 char Greeting[10];
It	is	important	to	note	that	an	array	has	few	characters	elements	than	its	size	because	
the last element must store a special character signals end of the string.This special 
character	denoted	by	‘\0’	(backslash	and	zero)	is	called	null	character. 
The	program	below	shows	how	to	create	an	array	of	character	named	Greeting.	
#include <iostream>
using namespace std;
int main(){
char Greeting[30];
cout << “Greet someone:”;
cin.get(Greeting, 30); //enter 29 characters
cout << “Greetings:”<<Greeting<< endl;
return 0;
}

Fig.	14.5	shows	a	sample	output	after	running	the	program:

Fig.	14.5:	Array	of	characters



272

Arrays in C++ Programming

The program uses cin and get() function separated by a period to read characters and 
store	a	string	of	29	characters.	Note	that	in	this	case,	the	30th element is reserved for 
the	null	terminator	\0	that	denotes	the	end	of	a	string.	

14.4.1 Initialisation of Strings 
Similar	to	the	syntax	of	initialising	array	of	numbers,	we	can	initialise	an	array	of	
characters	with	 some	 predetermined	 sequence	 of	 characters	within	 {}	 braces	 as	
follows:

 char name[elements]={.,.,.,’\0’};

The dots in this case represents comma-separated characters enclosed in single quotes, 
and	a	null	character	toward	the	end.	For	example,	the	following	definition	initialises	
the	Greeting	array	with	“hello”	string:

 char Greeting[6]={`H’,`e’,`l’,`l’,`o’,`\0’};

Note	that,	although	Hello	string	has	five	characters,	the	sixth	element	is	used	to	hold	
`\0’	that	signals	end	of	the	string.	However,	instead	of	initialising	an	array	with	
comma-separated characters in {} braces, you can declare and initializse a string as 
follows:		

 char Greeting[]=“Hello”;

Note	that,	the	size	of	Greeting	array	is	determined	by “Hello” enclosed in double 
quotes on the right. This type of initialisation does not require use of a null character 
because C++ compiler inserts it automatically.

Activity 14.4: Initialising strings
Study	the	following	graphical	representations	of	one-dimensional	array	of	characters	
and	answer	the	questions	that	follow:
VALUE Box	50,	Kigali Box	30,	Butare Box	24,	Kibuye Box	7,	Cyangugu
INDEX 0 1 2 3

Table	14.2:	Array	of	characters
1.	 Determine the array name, data type and number of valid elements stored in the 

array.
2. Using	C++,	write	declaration	statement	that	assigns	the	array	elements	to	values	

shown	in	the	illustration.

14.4.2 Reading and Displaying Strings 
The cin object consists of special function such as get() used to read a valid sequence 
of null-terminated	characters	from	the	input	stream.	Normally,	cout	statement	and	
string library functions may be used to display a string, substring or characters. Like 



273

Arrays in C++ Programming

the Greeting	array	discussed	earlier,	the	following	program	declares	a	string	called	
buffer	that	has	a	maximum	of	79	characters:	
#include <iostream>
using namespace std;
int main(){
char buffer[80];
cout << “Enter a string:”;
cin.get(buffer, 79); //enter 79 characters
cout << “String you typed is:”<<buffer<< endl;
return 0;
}
A	sample	output	after	running	the	program	is	shown	in	Fig.	14.6	below

Fig.	14.6:	Sample	output	from	string	input

Note	that	the	statement;	
 cin.get(buffer,79);
means	 that	 the	 get()	 function	 of	 cin	 object	 takes	 two	 parameters,	 i.e.,	 the	 array	
and number of characters in the array. The array called buffer declared in line 4 is 
passed	in	as	the	first	argument	while	79	is	the	second	argument	that	determines	the	
maximum	number	of	characters	to	be	read.	In	this	case,	it	must	be	79	to	allow	for	
the	null	 terminator.	 In	addition	 to	 functions	associated	with	cin and cout objects, 
you	may	also	use	library	functions	shown	in	Table	14.3	below	to	manipulate	strings.		

Function Description Example
strcat( ) Concatenates	two	strings strcat(x, y) append y to x

strcmp( ) Compares	two	strings strcmp(“he”,”se”)	//return	0

strlen( ) Counts	 the	number	of	 non	white	 space	
characters in a string

strlen(‘him’)	//returns	3

strcpy( ) Copies	the	second	string	to	first	string strcpy(y,	x);	copy	x	to	y

Table	14.3:	String	library	functions



274

Arrays in C++ Programming

The	program	below	demonstrates	use	of	 the	 two	library	function	namely	strcpy() 
and strlen().
#include <iostream>
#include <cstring>
using namespace std;
int main() {
char String1[] = “Love your neighbour”;
char String2[80]= “Promote Peace”;
cout<< “String2 before copying: “ << String2 << endl;
strcpy(String2,String1);
cout<< “String1 is: “ << String1 << endl;
cout<< “String2 after copying: “ << String2 <<endl;
cout<< “String2 has: “ <<strlen (String2)<< “characters\n”;
return 0;
}
Fig.	14.7	shows	a	sample	output	from	the	program	that	copies	and	counts	the	number	
of characters in a string.

Fig.	14.7:	Output	from	string	functions

Explanation
1.	 This	program	declares	and	initializes	two	strings	namely	String1	and	string	2.	

String1	can	hold	any	number	of	character	because	the	number	of	elements	is	
not	defined	while	String2		can	hold	a	string	of	80	characters	including	the	null	
terminator. 

2. Once the program is executed, original value of String2, i.e., Promote Peace is 
displayed. The statement strcpy(String2,String1)  replaces the first parameter 
(String2)	with	e	second	parameter	(String1),	hence	replacing	“Promote	Peace”	
with	“Love	your	neighbour”.

3.	 The	new	value	after	replacing	original	String2	with	String1	is	displayed	as	shown	
in	Fig.	14.8

4.	 The	strlen()	function	returns	the	total	number	of	character	i.e	19	including	spaces	
in String2.



275

Arrays in C++ Programming

Activity 14.5: String functions
•	 Identify C++ library functions used to manipulate strings such as counting number 

of characters, concatenating and copying.
•	 Write a program that uses string concatenation function to combine greetings 

and your name strings. 

Assessment Exercise 14.2
1.	 Explain	the	purpose	of	null	character	‘\0’	in	regard	to	array	of	characters.
2. Declare	a	one-dimensional	array	of	characters	that	would	be	used	to	store	names	

of	major	towns	and	cities	in	Rwanda.
3. Assuming the array in 2 above is implemented using C++, represent graphically 

how	a	string	“Cyangugu”	will	be	stored	in	the	array	of	characters.
4. The	following	is	a	list	of	numbers	representing	customers	waiting	to	be	served	in	

a	banks:	Ann,	Ben,Helen,	Paul,	Joy	and	Ken.	Create	an	array	named	Customers	
initialized using the names.

5.	 Write	a		program	that	would	be	used	in	reading	and	writing	the	elements	into	an	
array.

6.	 Differentiate	between	the	following	string	initialization	statements:

Unit Test 14
1.	 Differentiate	between	array	declaration	and	array	initialization.
2.	 Explain	at	least	two	reasons	that	would	necessitate	the	use	of	for	loop	in	one-

dimensional arrays. 
3.	 State	three	factors	you	would	considered	when	creating	a	one-dimensional	array.
4.	 In	C++,	it	is	possible	to	read	and	display	elements	past	the	end	of	the	array.	How	

can such a bug be detected and corrected?  
5.	 Explain	why	 storage	 of	 characters	 array	 is	 different	 from	 storage	 of	 numeric	

elements in an array.
6.	 Differentiate	between	a	null	character	and	null	value	as	used	in	arrays.
7.	 Using	a	sample	program,	demonstrate	how	you	would	use	the	get()	function	to	

read a string in as an array of characters. The output from the program should be 
displayed on the screen.

8.	 Differentiate	between	strcpy	()	and	strncpy()	library	functions	used	to	manipulate	
strings. 

char greet[]={‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};
char greet[]=“Hello”;



276

Arrays in C++ Programming

9.	 Write	a	c++	program	that	prompts	the	usr	to	enter	his	or	her	last	name.	the	program	
should then display the name and the number of characters that makes up that 
name.

10.	The	figure	below	shows	faces	of	six-sided	die	with	each	side	marked	with	dots	
representing	each	face	1.	To	generate	random	numbers,	a	player	rolls	a	single	die	
600	times	and	the	frequency	of	each	face	is	recorded	in	an	array.	Write	a	C++	
program	that	would	be	used	to	output	frequency	of	each	face	in	a	one-dimensional	
array.

   

11.	Give	the	output	produced	by	the	following	program:
#include <iostream>
#include <cstring>    
using namespace std;
 
int main() {
   char msg []= “Hello World!”;
   char msg1[] =”Computer Science”; 
   string msg2;
   cout << msg << endl;
   cout << strlen(msg) << endl;  
   cout << msg1[3] << endl;  
   msg2= strcat(msg,msg1);     
   cout << msg2 << endl; 
   cout << strcat(msg1, “ Study”) << endl;            
} //end main

  



Key Competency
By the end of this unit, you should be able to use operating systems.

Unit Outline
•	 Definition of operating system.
•	 Functions of operating systems.
•	 Desirable characteristics of operating  systems.
•	 Components of operating system.
•	 Common operating systems
•	 Smart phone operating systems
•	 History of operating systems
•	 Types of operating systems
•	 Basic MS-DOS commands and its main features

Introduction
This	unit	gives	a	broader	view	of	the	operating	system	by	defining	what	it	is,	giving	
its functions in the computer and its characteristics. The components of the operating 
system and some of the common operating systems are explained. Finally, the unit 
gives you the history of computer operating systems.

15.1  Definition of operating system

 Activity 15.1:Research work
Group work: 
Consider the following scenarios and answer the questions that follow: 
1. On a busy construction site, many activities need to be accomplished. For 

example, we need workers and machines who will dig trenches, those who dress 
the stones, others who bend and position steel rods, concrete mixers etc. 
(a) What will happen if all these activities are not properly planned and 

controlled?
(b) Who normally makes sure that the work is going on according to plan?

2. Imagine a football match or any other ball game. What would happen if:
(a) There is no referee?
(b) The referee is biased?

3. What role does the referee play in such games?
Now after the above discussions, access the internet and do some research about the 
operating	system.	Make	brief	notes	about	its	definition,	its	importance	etc.	and	select	
one of you to give a presentation to the class. 
An operating system consists of a set of complex programs that work together to 

INTRODUCTION TO 
OPERATING SYSTEMSUnit 15

277

Introduction to Operating Systems



control the operation of a computer by managing computer hardware and software 
resources. It controls execution of user programs called applications and provides 
an interface between the applications and the computer hardware.
Without	 the	 operating	 system,	 user	 applications	would	 find	 it	 difficult	 to	 run	 on	
the computer because they would need to have lower level programming to access 
the hardware resources of the computer. However, the operating system masks this 
complexity and enables user applications to easily access computing resources. Figure 
15.1 below shows the role that the operating system plays in a computer.

 

Application software sends 
user requests to OS

User x

x

x

x

x

x

x x

x

x
x

x xx

x
x

x

x

OS communicates 
directly to hardware

Hardware
CPU, RAM etc

Figure 15.1: The positioning of the operating system in the computer 
In essence, computers have two modes of operation: the user mode and the kernel 
mode. The operating system is the most important software that runs on the computer. 
It runs in what we call the kernel mode as a supervisor of all other programs (user 
applications) on the computer. 

Activity 15.2: Operating system components
Pair Work:
In light of the knowledge that you already have, study Figure 15.2 below and describe 
the various components that are represented in the computing machine. How do the 
components interact with each other?

Figure 15.2: The operating system components running on hardware

278

Introduction to Operating Systems



The hardware of the computer consists of the hardware logic e.g. circuit chips that can 
be manipulated using special manufacturer low level software routines. The hardware 
is made up of the system unit, mouse, screen, keyboard etc. After the hardware, we 
have the kernel mode of the operating system. 
The operating system runs in kernel mode. The part of the operating system that runs 
in this mode is called the kernel, which has routines that respond to user requests. 
When a user places a request (issues a command) through the shell, eg. a read/write 
request,	the	relevant	routine	in	the	kernel	passes	the	request	to	the	firmware	which	
in turn instructs the hardware to perform the task.
The part of the operating system that displays an interface to the user is called the 
operating system shell. Together with user applications, it runs in user mode, on top 
of the kernel. The user applications or the users interact with the shell which in turn 
talks to the kernel. Users run applications to accomplish various tasks.  

15.2  Functions of operating systems
The operating system is a resource manager. All the functions it performs are aimed 
at	efficiently	and	effectively	managing	the	resources	of	the	computing	machine.	Let	
us look at some of the functions of an operating systems.

15.2.1  Job scheduling 
The operating system kernel schedules the use of resources. Scheduling determines 
which task will use what resource in the computer a particular time. Some tasks will 
be given priority over others due to the nature of request. Scheduling is achieved 
through a process called interrupt handling i.e. a program that requires to use a 
resource sends a special request called an interrupt to the operating system. After 
examining the interrupts received, the operating system decides which task would 
be given priority. Therefore an interrupt is a special request made by running tasks 
or processes to the operating system requesting for a particular needed resource.

15.2.2  Resource control and allocation 
The operating system maintains a set of queues made up of the processes waiting 
for a particular resource. Using the round robin technique or any other criteria, each 
process on the queue is given access to a resource in turns. A round robin technique 
is whereby each running task is allocated a particular resource for use in equal time 
intervals following a particular order. When the interval expires, the task releases 
the resource and waits behind the queue again for its chance to come round again.

15.2.3  Input/output management: 
The operating system uses special software called device drivers to manage and 
communicate with input/output devices such as keyboard, mouse, display, sound 
output devices, printers and scanners. It controls how the computer receives input 
from the user and how it gives output to the user. 

279

Introduction to Operating Systems



15.2.4  Memory management 
The operating system divides the main memory into partitions. Each partition is 
allocated to a task or process that is running in memory. For example, if you are 
running a word processor application, it will be allocated memory by the operating 
system (O/S). The O/S then protects that allocated memory from other applications 
to	avoid	conflicts	that	can	arise	if	two	or	more	processes	lay	claim	to	the	same.

15.2.5  Error handling 
The operating system performs error checking on hardware, software and data. It 
will always display error or exception messages in case they happen. It may suggest 
solutions	to	problems	that	are	identified.	

15.2.6  Job sequencing/process management 
The operating system arranges tasks to be processed in a particular order and clocks 
them in and out of the processor. A task is also called a process in the operating system. 
When a user for example, starts a word processor, it becomes a running process.

15.2.7  Security
Modern operating systems implement security policies such that unauthorised users 
cannot get access to a computer or network resource easily. The most basic security 
mechanism is the user name and password required during system log on.

15.2.8  File management
The	operating	system	organises	how	files	and	folders	are	stored	and	accessed	on	the	
storage	media.	It	creates	a	file	system	i.e.	a	root	directory	which	contains	all	files	
and	folders.	Each	folder	or	file	created	can	be	accessed	through	a	direct	path	from	
the	root	directory	to	 its	 location	in	the	file	system.	The	file	system	format	 is	also	
created by the operating system e.g. Windows has the File Allocation Tables (FAT), 
New Technology File System (NTFS) etc. UNIX has the Unix File System (UFS).

15.3  Desirable characteristics of operating systems

Activity 15.3: Research work
Groupwork: 
Read the magazines/articles provided by the teacher covering the characteristics of an 
operating system. Access the website suggested by the teacher and do some research. 
Note down the characteristics that seem to be key i.e. those that many authors seem 
to agree on. Use a search engine to search for more information on the same.
Compile a two page report in readiness for a class discussion that will be facilitated 
by the teacher.
The operating system of any computer has to have certain key characteristics in order 
for it to function properly and satisfy the requirements of the users and application 
programs. These characteristics include but are not limited to the following: 

280

Introduction to Operating Systems



15.3.1  Efficiency
An	efficient	operating	system	achieves	high	throughput	and	low	average	turnaround	
time.	An	 efficient	 operating	 system	 ensures	 equitable	management	 of	 resources,	
conflict	resolution	(to	avoid	deadlocks),	quick	response	time	etc.
Throughput means the ability to schedule and manage user requests as fast as possible 
in terms of resource allocation and task accomplishment. The operating system being 
the supervisor and manager of all the computing resources has to make sure that 
the scarce resources of the computer like processor time, memory and input/output 
devices	are	used	efficiently.	

15.3.2  Robustness
A robust operating system is fault tolerant and reliable —the system will not fail due 
to isolated application or hardware errors, and if it fails, it does so safely. During 
exceptions, the operating system must minimise loss of data and prevent damage to 
system hardware. Such an operating system will provide services to each application 
unless the hardware it relies on fails.

15.3.3  Scalability
A scalable operating system is able to support addition of more resources. If an 
operating system is not scalable, then it will quickly reach a point where additional 
resources will not be fully utilized. A scalable operating system can readily adjust its 
degree of handling resources e.g. if more memory, input/output devices or processor 
speed is added, it should scale to accommodate the new capabilities. In multi-processor 
systems, addition of more processors and hard disks should not cause the operating 
system to crash. 

15.3.4  Extensibility
An extensible operating system will adapt well to new technologies and provide 
capabilities to extend the operating system to perform tasks beyond its original 
design. This means that the architecture of the operating system need to be open to 
future improvement or enhancement.

15.3.5  Portability
A portable operating system is designed such that it can operate on many hardware 
platforms	and	configurations.	Application	portability	 is	also	important,	because	it	
is costly to develop applications, so the same application should run on a variety of 
hardware	configurations	to	reduce	development	costs.	The	operating	system	is	crucial	
to achieving this kind of portability.

15.3.6  Security
A secure operating system prevents users and software from accessing services and 

281

Introduction to Operating Systems



resources without authorization. Protection refers to the mechanisms that implement 
the system’s security policy.

15.3.7  Usability and Interactivity
An interactive operating system allows applications to respond quickly to user actions, 
or	events.	Users	find	it	intuitive	to	use	through	good	user	friendly	interfaces.

15.4  Components of operating systems

Activity 15.4: Research work on operating system
Using	a	search	engine,	find	out	the	meaning	of	organization	chart.	How	is	it	structured?	
Using the knowledge you have acquired, analyse the organizational chart of your 
school. In case there is none, you will have to create one. Answer the following 
questions:
1. What structure does the chart take e.g. hierarchical, flat etc.
2. Why is it important for some elements to be at a higher level than others?
3. What do you think is meant by “line of control” or “line of command?”
4. In terms of authority, which level has the most power?
5. In terms of day to day running of the organization which level does the most 

work?
An	operating	system	is	made	up	of	several	components.	Each	component	has	a	specific	
function or role that it should plays. The main components of an operating system are:

15.4.1  Kernel 
This is the central part of the operating system which consists of the core routines 
that manage input/output requests from user applications, the central processing 
unit and memory. It receives the instructions and converts them into data processing 
instructions for the central processing unit to execute. Figure 15.3 below depicts how 
a kernel interacts with various components of the computer.
 

Figure 15.3: Operating system kernel

282

Introduction to Operating Systems



15.4.2  Shell
An operating system shell is a user interface that enables the user to interact with and 
access the services offered by the operating system. The user gives commands to the 
operating system through its shell. There are various types of shells:
(a) Command line shells: the user types commands at the prompt.
(b) Menu driven shells: the user selects commands from menus.
(c) Graphical user interface shells: the user selects  graphical menus and icons.
Examples of command line operating systems are UNIX and Disk Operating System 
(DOS). Examples of menu driven operating systems are the DOS shell. Finally, 
examples	of	graphical	user	interface	(GUI)	operating	system	are	Linux	and	Microsoft	
Windows.  

15.4.3  File system
The	file	system	refers	to	the	way	that	data	is	organised	and	accessed	by	the	operating	
system. The operating system hides all the complexities of various devices to the user 
and	presents	a	simple	interface	for	accessing	and	utilising	resources	(a	file	system).
The most common way of organising data is setting up a directory structure on 
any accessible resource be it a hard disk, network drive or removable media in a 
hierarchical manner (Figure 15.4). The hierarchy starts with a root object then moving 
down to the branches. The data is usually organised into three levels:
(a) Drive: a drive is a logical storage location for files and folders. It is usually 

associated to a physical storage device or location e.g. drive C: for the hard disk 
drive. The root directory is created in a drive and is denoted by a backslash (\). 

(b) Folders: a folder is a storage location of related files. Folders are created in the 
main directory forming a hierarchical tree structure.

(c) Files: a file is a storage location of related records.
A computer tree is usually an up-side-down one with the root being at the top and 
the	folders	and	files	branching	off	below	the	root	(Figure	15.4).
 

File 3 File 1

SubfolderSubfolderSubfolderSubfolder

Folder 1 Folder 2 Folder 3

C:\> Root Drive(C:) and Root directory (\)

4321

File 2

Figure 15.4: Operating system file system structure

283

Introduction to Operating Systems



The tree structure makes sure that there is a clear path from the root to any of the 
folders	or	files	in	the	file	system.	
Each	operating	system	has	its	own	signature	file	system	data	format.	For	example,	
Windows	has	file	systems	like	File	Allocation	Tables	(FAT32),	Extended	FAT	(FAT64)	
and New Technology File System (NTFS). Unix on the other hand has what we call 
the Unix File System (UFS) also called the Berkeley Fast File System (FFS). Each 
file	system	has	its	own	way	of	coding	and	decoding	its	data	when	writing	or	reading	
to a storage device.  

15.4.4  System resources
The operating system supervises the use of scarce system resources. Scarce because 
every application on the computer competes to use these resources. The O/S being the 
supervisor	brings	sanity	in	an	environment	that	can	easily	degenerate	into	conflicts	
and deadlocks as various applications compete for the scarce resources. A deadlock 
is a situation where two or more processes needing the same resources each happen 
to hold onto one of the resources as they wait for each other to release the other 
resource. Such processes would freeze in waiting mode and non would proceed with 
the processing. These resources are:
1. The processor: processor time is one of the most sought after resources in the 

computer. Each executing task needs the attention of the processor in order for 
its requests to be executed. Scheduling makes sure that CPU time is equitably 
and efficiently distributed to various tasks.

2. Memory: this is also a scarce resource. each executing task requires memory. 
There is never enough memory especially in todays computing machines that 
run heavy multimedia applications. The memory must be properly managed to 
enforce mutual exclusion hence avoiding two or more tasks interfering with each 
other. each task should be allocated a protected memory address that cannot be 
used by any other task at the time of running.

3. Input/Output devices (I/O): these are critical to the smooth running of the 
computer. All running tasks require input of data or output of processed data. The 
I/O devices are therefore very important system resources. Efficient management  
of I/O improves the performance of the computer e.g. do not allocate I/O devices 
to idle tasks, give them to running tasks instead.

15.5  Common operating systems

15.5.1  MS-DOS
MS-DOS	 stands	 for	Microsoft	Disk	 operating	System.	 It	was	 first	 developed	 by	
Microsoft Corporation, USA. Although virtually obsolete today, MS-DOS is a 
command line operating system that was developed to manage disks on a personal 
computer. The user issues commands at the shell prompt and the operating system 
reads and executes them. MS-DOS formed the foundation of today’s Microsoft 
Windows.
You can use some MS-DOS commands by opening the command prompt in windows 
i.e. On the Start menu, All Programs menu, point to Accessories then click Command 

284

Introduction to Operating Systems



Prompt 
The command prompt window will pops up (Figure 15.5) in which you can type 
DOS commands like:

 
Figure 15.5: The Command Prompt window

Activity 15.5: Dos commands
Individual Work: Use the following commands. After typing each command at the 
prompt (C:/>) press the enter key. What do you observe?
1. Dir : the Dir command displays the contents of the current folder
2. cls : the cls command clears the screen
3. cd.. : move one directory lower in the directory tree
4.	 md	Life	 :	make	a	directory	called	Life	
5.	 cd	Life	 :	move	one	directory	higher	to	the	directory	called	Life
6.	 cd\	 :	move	to	the	root	directory	
Search for other DOS commands on the website suggested by the teacher and use them.

15.5.2  UNIX 
It	was	first	developed	at	the	Bell	Labs	research	center	in	the	USA	in	the	1970s	by	
Ken Thompson. UNIX is a multitasking operating system which can support many 
users simultaneously. It is ideal in environments where service providers maintain 
centralised	resources	e.g.	servers,	internet	connections,	file	servers	etc.	for	access	by	
many users. UNIX can run on servers, desktops and even laptops. 
Because of its open source nature, many different groups have made contributions to 
improve it resulting in many versions of UNIX e.g. Sun Solaris UNIX and MacOS X. 
Because of its high security architecture, it has been the operating system of choice 
for many internet servers and servers for big organisations.

285

Introduction to Operating Systems



15.5.3  LINUX

Activity 15.6: Linux shell commands
Start	the	computer	running	Linux.	Read	the	manual	/	handout	provided	to	you	by	
the	teacher	to	help	you	navigate	the	Linux	environment.	What	version	of	Linux	are	
you using? Open the shell and then do the following:
Follow	the	teachers	instructions	to	use	the	following	Linux	commands	in	the	
Linux	shell.	Linux	and	unix	share	commands.
1. ls : What happens? This command should list the files in the current directory.
2. ls –l: What happens? You should see your files listed in the long format.
3.	 emacs	Life:	What	happens?	This	command	should	create	a	file	named	Life	and	

enable you to edit it in a text editor.
4. cp Life Life1:	copies	the	file	Life	and	saves	the	copy	as	Life	1
5. rm Life:	remove	the	file	named	Life	from	this	directory
6.	 wc Life1:	tell	you	how	many	words	and	characters	are	in	the	file	Life1
Access	the	website	suggested	to	you	by	the	teacher	to	find	out	more	about	UNIX	
commands and use them to perform tasks.

Linux	is	a	UNIX	compatible	operating	system.	It	was	developed	by	Linus	Tovalds	at	
the University of Helsinki, Finland. It has a graphical user interface (GUI) hence has 
become very popular among both individual and corporate users. You can use UNIX 
commands	on	Linux	if	you	open	the	command	shell.	Linux	has	spread	its	wings	for	
use not only on servers, and personal computers but also on portable devices like 
mobile	phones,	tablets	etc.	Figure	15.6	below	shows	a	Linux	desktop.

 

Figure 15.6: The Linux desktop

286

Introduction to Operating Systems



There	are	many	versions	of	Linux	including	 	Ubuntu,	SUSE	and	Red	Hat	Linux.	
Linux	 is	 structured	 into	 two	major	 sections:	 the	user	mode	and	 the	kernel	mode.	
each	of	these	modes	has	various	modules	which	perform	specific	tasks	e.g.	the	user	
mode has the windowing system, graphics module etc. while the kernel has memory 
management, processing schedule etc. 

15.5.4  MAC OS
Mac OS or Macintosh Operating system is a series of graphical user interface–based 
operating systems developed by Apple Inc. for their Macintosh line of computer 
systems. It is Mac OS which popularized the concept of graphical user interface on 
computers. Indeed, Mac OS to date even with all its variants on mobile devices leads 
in graphical user interface technology. That is why most publishing and multimedia 
firms	prefer	working	in	the	Mac	OS	environment.	The	last	Mac	OS	was	Version	9.	
In	2012,	Macintosh	developed	Mac	Operating	System	X	(Mac	OS	X)	where	X	is	the	
latest version build number. OS X is different from earlier versions of Mac OS because 
it	is	based	on	UNIX	platform.	One	of	the	latest	OS	X	is	OS	10	(simply	referred	to	as	
System	10	among	users).	Figure	15.7	below	shows	an	Mac	OS	10	desktop.	
 

Figure 15.7: Apple Macintosh operating system desktop

15.5.5  Microsoft windows
The Microsoft Windows family of operating systems originated as a graphical layer 
shell on top of the older MS-DOS environment for the IBM PC. Modern versions are 
divided into three main families: Windows NT, Windows Embedded and Windows 
Phone. Each family targets a certain market segment. The market segments targeted 
are:
1. Windows NT: servers, personal computers and laptops.
2. Windows Embedded: for devices that have limited computing resources e.g. 

mobile phones, motor vehicle controllers etc.
3. Windows Phone: for smartphones. 

287

Introduction to Operating Systems



The	latest	Microsoft	Windows	platforms	are	Windows	7,	8	and	Windows	10.	Windows	
10	seeks	to	provide	a	unified	operating	system	architecture	for	all	devices	be	they	
mobile	phones,	computers,	tablets	etc.	for	easy	interoperability.	Figure	15.8	shows	
a	picture	of		Microsoft	Windows	10	desktop.
 

Figure 15.8: Windows 10 desktop

15.6  Smartphone operating systems

Activity 15.7: Working with smart phone
Groupwork: 
Take	the	mobile	phone	provided	to	you	by	the	teacher.	Investigate	its	specifications	
as directed by the teacher e.g.
1. Find out the operating system it uses and the version.
2. Investigate the applications that it has.
3. How different is this phone from the normal phones?
4. What are the specifications for: 

(a) RAM and internal memory size
(b) Processor type and speed
(c) Camera resolution in pixels
(d) Screen resolution and size
(e)	 Internet	access	rate	i.e.	Edge,	1G,	2G,	3G,	LTE	etc.
(f)	 Applications	it	can	support	e.g.	mobile	office,	games,	social	media	etc.	

Draw	a	specifications	table	capturing	all	these	information	and	present	it	in	a	class	
discussion hosted by the teacher.

A smartphone or smart phone is an advanced mobile phone which has characteristics 
of a powerful computer. A typical smartphone has a powerful processor, large memory, 
powerful camera, touch large screen, fast internet access, many applications, an 
operating system etc. They typically combine the features of a mobile phone with 
a computer. Most smart phones were initially designed for high end or power users 

288

Introduction to Operating Systems



whose needs go beyond simple calling, texting and low quality pictures. Such users 
require powerful phones in order to capture high resolution images, take minutes in 
meetings, link to work emails etc:
Therefore, due to the complexity of tasks that smartphones need to handle, they 
require an operating system. The key leading operating systems for smartphones in 
the world today are Android, Apple’s iOS and Windows Phone. We are going to look 
at these and a few others.

15.6.1  Android operating system

Activity 15.8: Working with android phone
Groupwork: Take the Android phone provided to you by the teacher. Learn how to 
do the following as instructed by the teacher:
1. Unlock the screen
2. To check the android version running on the phone
3. To download applications from the app store.
4. To view the phones specifications.
5. To  access the messages, contacts and call activity log.
6. To play movies and view pictures.
7. To capture pictures and movies.
8. To send and receive messages, pictures and movies on social networks.
9. To access Mobile Office if it is present.

Android is developed by Google in collaboration with Open Handset Alliance (OHA) 
to	run	on	Linux	kernel	and	provide	an	open	platform	for	all	types	of	mobile	phone	
architectures.	Since	its	inception	in	2005,	android	has	taken	the	mobile	device	platform	
by storm. Many phone and tablet manufacturers around the world today produce 
Android compatible devices.
Due to its open nature, Android has attracted many mobile app developers who access 
the mobile hardware and develop intuitive applications, interfaces etc. Because of 
this, Android users have access to millions of free applications and resources. 
Although we are not discussing the architecture, it is worthwhile to note the three tier 
arrangement of application framework, libraries and the kernel. Apart from running 
on	Linux,	it	has	a	GUI,	web	browser,	and	millions	of	applications	developed	by	an	
ever	growing	forum	of	developers	worldwide.	Figure	15.9	shows	an	Android	phone.

289

Introduction to Operating Systems



 Figure 15.9: An Android phone
  

15.6.2  Apple operating systems

Activity 15.9 : Working with apple phone
Groupwork: 
Take the Apple phone provided to you by the teacher. If the phone is not physically 
present,	search	for	 iPhone	on	 the	 internet	 to	view	the	pictures	and	specifications.	
Learn	how	to	do	the	following	instructed	by	the	teacher:
1. Unlock the screen
2. To check the iOS version running on the phone
3. To download applications from the Apple app store.
4. To view the phones specifications.
5. To  access the messages, contacts and call activity log.
6.	 To	play	movies	and	view	pictures.
7.	 To	capture	pictures	and	movies.
8.	 To	send	and	receive	messages,	pictures	and	movies	on	social	networks.
9.	 To	access	Mobile	Office	if	it	is	present.

Apple’s iOS is proprietary and runs on Apple iPhones, iPads, and iPods only. A 
special version of iOS powers the Apple smart watch too. It is a multi-touch and 
multi-tasking operating system for mobile devices. It enables the user to tap and 
touch	the	screen	as	a	means	of	communicating	with	the	device.	Figure	15.10	below	
shows the picture of an iPhone.

290

Introduction to Operating Systems



 

Figure 15.10: An iPhone running iOS

15.6.3  Windows phone operating system

Activity 15.10 : Working with Windows phone

Groupwork: 
Take the windows phone provided to you by the teacher. If the phone is not 
physically present, search for windows phone on the internet to view the pictures 
and	specifications.	Learn	how	to	do	the	following	instructed	by	the	teacher:
1. Unlock the screen
2. To check the Windows version running on the phone
3. To download applications from the Microsoft app store.
4. To view the phones specifications.
5. To  access the messages, contacts and call activity log.
6.	 To	play	movies	and	view	pictures.
7.	 To	capture	pictures	and	movies.
8.	 To	send	and	receive	messages,	pictures	and	movies	on	social	networks.
9.	 To	access	Mobile	Office	if	it	is	present.

The Windows Phone operating system was designed to run on smart phones. It came 
after	windows	mobile.	The	 latest	 is	Windows	10	which	was	 released	early	2015.
With	this	operating	system,	the	phone	can	interoperate	with	all	other	Windows	10	
devices	like	tablets,	laptops	and	computers	on	the	universal	Windows	10	platform.	
Figure 15.11 shows a Windows phone. It can support windows based applications 
like	Mobile	Office.

291

Introduction to Operating Systems



 

Figure 15.11: A Windows phone

15.6.4  BADA operating system
Bada is a mobile phone operating system and a smartphone platform that was 
developed by Samsung Electronics. Bada supports wide range of devices, but it gained 
more popularity with high end devices such as Wave II and Wave. Samsung stopped 
supporting	Bada	in	2013.	Figure	15.12	shows	a	Samsung	Wave	phone.

 Figure 15.12: Samsung Wave phone

15.6.5  Palm Operating systems

Activity 15.11 : Working with Palm Operating Systems
Group work: 
Take the PDA provided to you by the teacher. If the phone is not physically present, 
search	for	windows	phone	on	the	internet	to	view	the	pictures	and	specifications.	
Learn	how	to	do	the	following	instructed	by	the	teacher:
1. Unlock the screen
2. To check the POS version running on the phone
3. To download applications from the Microsoft app store.
4. To view the phones specifications.
5. To  access the messages, contacts and call activity log.

292

Introduction to Operating Systems



6.	 To	play	movies	and	view	pictures.
7.	 To	capture	pictures	and	movies.
8.	 To	send	and	receive	messages,	pictures	and	movies	on	social	networks.
9.	 To	access	Mobile	Office	if	it	is	present.

Palm operating system also called Garnet OS was developed by Palm, Inc. It has a 
touch	screen	oriented	graphical	user	interface	and	specifically	targeted	Palm	personal	
digital assistants (PDA’s). Figure 15.13 shows a PDA running Palm OS. 
 

Figure 15.13: Palm OS running on a PDA 

15.6.6  Blackberry operating systems
BlackBerry	 operating	 system	was	 developed	 by	Blackberry	Limited,	 a	Canadian	
company for its Blackberry line of mobile phones. Blackberry targeted corporate 
customers and could support many corporate applications like corporate email, remote 
data entry and other applications. Currently, Blackberries market share has greatly 
declined due to competition from other smart phones.     

15.6.7  Difference between computer operating systems, firmware, mobile 
phone operating system.
There are a lot of details involved in computer OS design, but one prominent fact 
is that computer operating systems were not really designed for mobile devices that 
have limited hardware and processing facilities. Instead, they evolved, and were 
understood, as part of a wired system, most commonly, as parts of a single physical 
machine.	As	such,	developers	and	engineers	focused	a	lot	on	of	technical	specifics	
related to items like boot protocols, program threads, multiple process handling, CPU 
operation, and other elements of the traditional OS.
The mobile operating system is a newer concept. In many ways, the mobile OS has 
built on what the computer OS has accomplished but with resource constraints in 
mind. In fact, many modern developers working with mobile operating systems tend 
to	borrow	much	from	computer	OS	but	find	themselves	in	the	following	dilemma:
1. The screen of the mobile phone is smaller by far to that of the computer.

293

Introduction to Operating Systems



2. The processor of the mobile phone is far much less powerful than that of the 
computer though this gap is being bridged rapidly.

3. The I/O devices on mobile phones are greatly limited unlike those on the 
computer.

It is evident from the point above that the design and development of mobile phone 
operating systems will be different and geared towards the following:
1. Support for touch screens or limited keypads instead of keyboards.
2. Support for small size screens instead of large ones.
3. Support for lower memories.
4. Support for lower processing speeds.

15.7  History of computer operating systems

Activity 15.12:Research on historical development of operating systems
Groupwork: 
Access the website suggested to you by the teacher and do research on the historical 
development of operating systems.

The historical development of computer operating systems can be divided into 
generations. As computing technology evolved so did the operating systems. 

15.7.1 The 1940’s to 1955: First Generations
The earliest electronic digital computers had no operating systems. A human operator 
would enter instructions mechanically, one bit at time using rows of mechanical 
switches. It means the computer program was purely in machine language. The 
computers themselves we made of vacuum tubes and or relays. Programming 
languages were unknown therefore there was no operating system or let us say a 
mechanical human operated system was in force. 

15.7.2 The 1955 – 65: Second Generation
Transistors	were	 introduced	in	early	1950’s	 to	become	a	game	changer.	This	saw	
the	age	of	the	first	mainframe	computers.	A	computer	program	could	be	written	on	
paper (using FORTRAN or an assembler language) then it could be punched into 
cards. The cards could then run batch processes on the mainframes. General Motors 
Research	Laboratories	implemented	the	first	operating	systems	in	early	1950’s	for	
their	IBM	701	computer.	The	system	ran	one	job	at	a	time	i.e.	batch	processing	was	
common since tasks were piled and submitted in groups or batches. Figure 15.14 
below shows how punched cards looked like:

294

Introduction to Operating Systems



 
Figure 15.14: A punched card compared to a modern microchip 

15.7.3  The 1965 – 80: Third Generation
Computing	technology	evolved	into	two	different	branches	in	the	60’s:
1.	 Powerful	word-oriented	scientific	supercomputers	designed	for	science		 	
 and mathematics.
2. Character computers for use in commercial environments e.g. banking sector. 
IBM combined the two concepts as integrated circuits started to take root. Operating 
systems became a bit more complex with spooling (which stands for Simultaneous 
Peripheral	Operation	On	Line)	 i.e.	 jobs	were	 copied	 onto	 the	 hard	 disk	 and	 the	
computer could now read the next job from there instead of from a tape drive or 
punched card. 
MIT	developed	the	first	Compatible	Time	Sharing	System	(CTSS)	in	the	60s.	The	
success	of	CTSS	encouraged		Bell	labs	and	General	electric	to	develop	MULTICS	
(MULTiplexed	Information	and	Computing	Service)	which	could	support	many	tasks	
simultaneously.  

15.7.4  Fourth Generation
With	the	development	of	large	scale	integrated	(LSI)	circuit	chips,	computer	memory	
and processor chips that could be programmed became a possibility. Microprocessor 
technology evolved to the point that it became possible to build desktop computers 
as	powerful	as	the	mainframes	of	the	1970s.	
The fourth generation operating systems of today are so advanced that they can 
support	automation,	multiprogramming,	artificial	intelligence	etc.	Modern	operating	
systems run on all forms of platforms and can support many types of applications 
and processes.

295

Introduction to Operating Systems



15.8  Types of operating systems

Activity 15.13: Types of operating systems
Study the magazines/books/handouts provided by the teacher. Note down the types 
of operating systems and their characteristics.

Operating systems can be categorized as follows:

15.8.1  Batch
Batch processing mode involves collecting data over a period of time. Processing of 
that data is carried out from the beginning to the end without user intervention. Once 
the processing begins, the user cannot interact with the running process. However, in 
case a process stalls, it is possible to switch to the next available batch job.

Advantages
(a) Simple to run and operate.
(b) The CPU is not overloaded.

Disadvantages 
(a) There is lack of interaction between the user and job during the job processing 

cycle.
(b)	 Low	efficiency	i.e.	the	CPU	mostly	idle	due	to	the	low	input/output	speed.
(c) Prioritisation of tasks within a batch is impossible.
(d) A big task holds onto resource for long denying other tasks until it processes.

15.8.2  Network operating systems 
A network operating system runs on a centralised computer called a server. A server 
listens to user requests on the network in order to respond service them. It offers 
services	such	as	shared	file	resources	and	printers.	The	server	manages	important	
functions like data, users and their network privileges, security, applications and 
printer usage etc. 

Advantages
(a) Centralized focal point of network administration services reduces effort and 

makes the server highly reliable.
(b) Network security is managed from the server hence policies are easily enforced.
(c) Easy upgrades to new hardware and software technologies.
(d) Remote administration of the server is possible.

Disadvantages
(a) Server provides a single point of failure. Redundancy required to avoid this 

weakness.

296

Introduction to Operating Systems



(b) The server’s initial and running costs are high.
(c) Regular maintenance and updates are required.

15.8.3  Multiuser or Time Sharing operating system
A multi-user operating system allows many different tasks to appear as if they are 
running at the same time. Each task is allocated a slice of the CPU time in a round 
robin manner. This type of processing is good because the CPU capacity is utilised 
efficiently	and	the	user	experiences	better	response	time	from	the	system.

Advantages
(a) Quick response time.
(b) Reduces CPU’s idle time.

Disadvantages 
(a) Complex implementation algorithms are need.
(b) The security and integrity of tasks running simultaneously in memory is difficult 

to implement i.e. tasks can interfere with each others resources.

15.8.4  Distributed operating systems
A distributed operating system is a single operating system that manages resources 
on more than one computer system. Computers are linked together and communicate 
with one another using high speed media make them behave like a single computer 
Distributed systems provide the illusion that multiple computers are a single powerful 
computer, so that a process can access all of the system’s resources regardless of 
their location.

Advantages
(a) Sharing of resources across the distributed system.
(b) Elimination of the single point of failure problem i.e. if one computer fails, a 

user can access resources through another working one.
(c)	 Load	balancing	across	the	distributed	system	means	faster	processing.

Disadvantages
(a) Complex to set up and maintain.
(b) Keeping global synchronised time across the distributed system is not an easy 

time.

15.8.5  Real time systems
In real time systems, user requests are received, processed and a response sent to the 
user within a specified time interval. Processing in real time systems happens online 
without unnecessary delays.
The time taken by the system to respond to an input request is called the response 
time. The response time should be small i.e. between 10 to 100 ms in order for the user 

297

Introduction to Operating Systems



to keep track of the current session.

Advantages
(a) Immediate response to user requests.
(b) Direct interaction between the user and the system.
(c) Delivers critical services to the user.

Disadvantages
(a) Expensive to set up, monitor and maintain.
(b) Complex to set up and run.  

15.9  Basic MS DOS commands and its main features
Below is a listing of each of the MS-DOS commands currently listed on Computer 
Hope and a brief explanation about each command. This list contains every command 
ever made available, which means not all the commands are going to work with your 
version of MS-DOS.

15.9.1  Starting DOS

Activity 15.14: How to learn and use MS-DOS
Follow the instructions detailed below to learn and use MS-DOS:
You can start DOS program as mentioned earlier. The symbol C:\> with a blinking 
cursor	after	it	is	called	the	command	prompt	or	DOS	prompt.	The	flashing	underscore	
next to the command prompt is called the cursor. 
The cursor shows where the command you type will appear. The DOS commands are 
usually	typed	after	this	prompt.	In	DOS	a	filename	consist	of	a	filename	an	extension,	
the	filename	should	not	exceed	eight	characters	and	the	extension	must	not	exceed	
three characters.

15.9.2  How are files named?
While newer versions of DOS support longer filenames, the standard DOS filename 
format remains: 1-8 letter name, period, 3 letter extension eg: 
  PROGRAM.EXE 
  DATA.DAT 
  LETTER.DOC 
The	extension	to	a	file’s	name	is	there	to	allow	files	of	a	similar	type	to	be	grouped	
together.	 i.e.	 all	word	 processor	 files	might	 have	 the	 extension	 .DOC,	while	 all	
picture	files	might	have	the	extension.	PIC	While	these	extensions	can	be	specified	
by the user, many programs have used them to differentiate between formats, and so 
they have gradually become standardized. For example you would expect a “.TXT” 
file	to	be	a	file	containing	unformatted	text,	or	a	“.BMP”	file	to	be	in	a	bit	mapped	
graphics	file	format.	

298

Introduction to Operating Systems



To	completely	specify	a	file	on	your	computer	you	must	specify	its	drive	and	directory	
path,	and	its	filename.	However	a	file	does	not	always	have	to	be	specified	in	this	
complete	form:	If	it	is	in	the	current	directory,	then	you	can	just	enter	its	filename.
If your command prompt does not look like the example above, type the following 
at the command prompt, and then press ENTER: 

cd \ 

DIR	-		Displays	directory	of	files	and	directories	stored	on	disk.	In	addition	to	files	
and directories, DIR also displays both the volume name and amount of free storage 
space	on	the	disk	(if	there	are	files	stored	in	the	current	directory).	Note	that	both	of	
these	are	for	the	entire	DISK,	not	just	for	the	path	you	specified.
The DIR command is also useful if you want to know what directories have been 
created	on	the	specified	disk.	The	directories	will	be	displayed	along	with	the	files	
on	the	disk.	They	can	be	identified	by	the	DIR	label	that	follows	the	directory	name.
Wildcard characters (? and *) can be used to specify groups of files.
To	list	files	in	C:
 C :\> DIR
DIR has two options; /W or /P. /W (wide) causes the directory to be displayed 
horizontally	across	the	screen.	/P	pauses	the	directory	listing	once	the	screen	is	filled.
To view the contents of a directory in wide format
 Dir /w 
To view the contents of a directory one screen at a time
 Dir /p 
To	display	only	files	with	the.	TXT	filename	extension	on	the	current	drive	that	begin	
with the letters FIL, enter 
	 dir	fil*.TXT
To	display	only	files	on	drive	C	that	have	no	filename	extension,	enter
	 dir	c:*.		
This form of the DIR	command	will	also	display	directories.	They	can	be	identified	
by the DIR label that follows the directory name.

15.9.3 Creating a directory
To create and named FRUIT
 MD fruit  
To change to the new FRUIT directory, type the following at the command prompt: 
 CD fruit  
The command prompt should now look like the following: 
 C:\FRUIT>

299

Introduction to Operating Systems



To create and work with a directory named ORANGES

Type the following at the command prompt: 
 MD ORANGES
To	confirm	that	you	successfully	created	the	ORANGES directory, type the following 
at the command prompt: 
 DIR
The ORANGES directory is a subdirectory of the FRUIT directory. A subdirectory is 
a directory within another directory. Subdirectories are useful if you want to further 
subdivide information. 
1. To change to the ORANGES directory, type the following at the command 

prompt:
 cd ORANGES
 The command prompt should now look like the following: 
 C:\FRUIT\ ORANGES >
2. To switch back to the FRUIT directory, type the following: 
 cd ..
 The command prompt should now look like the following: 
 C:\FRUIT>
To	Copy	the	file	“letter.txt”	to	a	file	called	“letter.bak”. (Creates “letter.bak” if it 
does not exist, and overwrites it if it does).
 COPY letter.txt letter.bak [
To	Copy	any	file	with	an	extension	PIC,	in	the	PICTURES	directory	on	the	flash	disk	
of drive E: to the root directory of the hard disk.
 COPY	E:\pictures\*.pic	C:\ 

15.9.4  Creating files
Use	the	copy	con	command	e.g.	to	create	a	file	called	colors	with	red,	green,	blue	
and orange as the data items;
 Copy con color.txt
 Red
 Green
 Blue
 Orange
Then press ctrl+z to terminate
DOS gives you a message that 1 File(s) has been copied

15.9.4.1 Copying files
To	copy	one	file	to	another	use	the	COPY command type the following

300

Introduction to Operating Systems



Copy color.txtcolor2.txtand press enter

15.9.4.2 Type a File with DOS
If	you	need	to	check	the	contents	of	a	particular	file	or	any	DOS	file,	you	will	need	
to use the TYPE command.
Type color2.txt and press return.
DOS	prints	the	contents	of	the	file.

15.9.4.3 Rename a File
To rename color2.txt to sales.txt
rencolor2.txt sales.txt and press return.

15.9.4.4 Rename a Group of Files
With the wildcard character *, you can also use the RENAME command to change 
a	group	of	files.
	To	rename	all	files	with	a	.txt	to	have	a	.bob	type	
Ren	*.txt	*.bob	and press return.

15.9.4.5 Format a Flash Disk
Usually	a	flash	disk	comes	blank.	Before	using	it	you	may	need	to	format	it.	Formatting	
can be used to check for bad area on the disk and remove all the data on the disk. 
Formatting destroys all information on a drive and thus you should never format C:  
unless under instructions.
At the C:\> prompt type: format e: if e is the flash disk drive letter.

15.9.4.6 Diskcopy Command
The Diskcopy command was designed to help a person to make an exact copy of a 
floppy	disk.	However,	floppy	disks	have	become	obsolete. The command cannot be 
used on hard disk drives. It was designed for removable disks only. 
To make an exact copy of a disk in drive E: on a disk in drive F:, the two disks need to 
be	of	the	same	size	and	have	the	same	file	system.	The	command	is	issued	as	followed:		
Diskcopy E: F: <press enter key>
At	the	end	of	the	Diskcopy	operation,	an	exit	code	of	0	may	be	displayed	to	show	
that the operation was successful.

15.9.4.7 CHKDSK
Checks	a	disk	and	provides	a	file	and	memory	status	report.	Provides	information	on	
the	space	used,	space	available,	bad	sectors	if	any	etc.	to	fix	errors	using	CHKDSK	
type CHKDSK/F.

301

Introduction to Operating Systems



15.9.4.8 Scandisk
Start the Microsoft ScanDisk program which is a disk analysis and repair tool used to 
check	a	drive	for	errors	and	correct	any	problems	that	it	finds.	Is	a	preferred	method	
for	fixing	drive	problems.

15.9.4.9 Copying a File from the Hard Drive to a Flash Disk
C:/>	Copy	<insert	filename	here>	E: and press return.

Unit Test 15
1. What is the major difference between an application software and the operating 

system.
2. Draw a diagram representing the role of the operating system in the computer.
3. The_____ is the user level component of the operating system and it displays 

the _____ to the user where______ can be given.
4. The operating system runs in ______ mode.
5. Describe five functions of the operating system.
6.	 Explain	five	characteristics	of	a	good	operating	system.
7.	 Write	brief	statements	about	the	following:

(a) Command line shells.
(b) Menu driven shells.
(c) GUI shells.

8.	 Draw	the	structure	of	a	file	system	and	describe	it.
9.	 Define	the	following:	File,	Folder,	Drive,	Directory.
10.	 How	important	are	the	following	to	the	computer:

(a) Processor (b) Memory (c) I/O devices
11. Write brief notes about the following:

(a)	 UNIX	operating	system.	 (b)	 Linux	operating	system.
(c) Windows operating system. (d) Mac OS X operating system.

12. Describe a smartphone.
13. Justify the reason why smartphones need an operating system.
14. Compare and contrast a computer operating system and that of a mobile phone.
15. Briefly describe the following:

(a) Android. (b) iOS.

302

Introduction to Operating Systems



303

Html-based Web Development

Key Unit Competency
By the end of the unit, you should be able to build standard compliant web pages 
using HTML.

Unit Outline
•	 Fundamentals of World Wide Web
•	 HTML syntax and structure
•	 HTML Elements
•	 Introdcution to XHTML
•	 Designing HTML pages
•	 Introduction to HTML5
•	 Migration from HTML to HTML5

Introduction
Over the past three decades, large corporations, medium-sized and small-scale 
business organizations have been using website to communicate company information, 
manage their projects and transact on a paperless environment. Furthermore, people 
who didn’t know what the Internet was several years ago are now reconnecting with 
their friends and family members on social media such as Facebook. It is now a fact 
that web technologies are no longer a reserve of business entities but for each one 
of us in the society. In this unit, we will begin by reviewing basic concepts relating 
to world wide web. Later, we take you step-by-step on how to develop and publish 
websites using HTML4, XHTML and HTML5. 

Activity 16.1: Evolution of HTML
In groups, discuss and write an essay on how the Internet and World Wide Web 
(WWW) evolved from just a Project to  the current trends seen today in Web 2.0.  
Why  is Tim-Berners Lee credited with the Invention of the WWW and the language 
used to develop the web pages? 

16.1  Fundamentals of World Wide Web
World wide web is an internet-based system or platform that allows hypertext 
documents to be interconnected by hyperlinks. A hyperlink is a word or phrase a user 
can click to move from one website or webpage to another. Website simply referred 
to as Web resides on one or more computers, referred to as web servers. Hypertext 
enables you to read and navigate text and visual information in a nonlinear way based 
on what you want to read next. The idea behind hypertext is that instead of reading 
text in a linear structure like in a book, you can easily jump from one point to another 
based on interests. The Web is cross platform because a user can access it on various 
devices such as desktop computers, tablets and mobile phones. 

HTML-BASED WEB 
DEVELOPMENT Unit 16



304

Html-based Web Development

16.1.1  Hypertext Markup Language
Hypertext Markup Language (HTML) refers to a language used to structure hypertext 
(web) documents for presentation on the World Wide Web. Unlike programming 
languages like C++, HTML is not a programming language but can be thought of 
as a presentation language used to instruct the browser on how to present text and 
multimedia content on the Web.

16.1.2  Evolution of HTML
The HTML was invented by Tim-Berners Lee, the founder of world wide web. Lee’s 
original HTML version was based on a more complicated document processing 
language known as Standard Generalized Markup Language (SGML). Soon, Lee 
released different versions of HTML causing incompatibilities between different 
developers using different versions. This led to:
1. A consortium known as World Wide Web Consortium (W3C) was    
 established to standardize HTML. 
2.	 The	first	standard	version	of	HTML	that	was	developed	and	maintained		 	
	 by	W3C	was	HTML	2.0	released	in	1995.	It	specifies	a	set	of	tags	that	must		
 be supported by all browsers.
3. In 1996, release of HTML 3.2 standard then later HTML 4.0 in 1997. 
4. Most web browsers today support a more strict variation of HTML known  
 as Extensible Hypertext Markup Language (XHTML) that supports mobile  
 web applications too.
5. Today, we have HTML5 which many browsers and developers are using to  
 develop web applications.

Activity 16.2: Evolution of HTML
In groups, research on the internet the history of SGML in terms of the inventor, 
purpose, and syntax of the language.

16.2  HTML Syntax and Structure
HTML	tags	are	used	 to	define	a	set	of	common	web	page	features	such	as	 titles,	
paragraphs, and lists, tables, forms, images and multimedia. Below is a sample HTML 
code that creates a blank web page. Using the basic code below, you can add more 
and more features as you insert text and pictures. Notice that every tag has a start 
tag e.g. <tagname> and an end tag e.g. </tagname>. 
<html>
<head>
<title></title>
</head>
<body>
</body>
</html>



305

Html-based Web Development
To create this sample of HTML document, proceed as follows:
1. In Microsoft Windows, open Notepad by clicking All Programs, Accessories 

and then click Notepad.
2. Write or the HTML code above. To avoid syntax error, make use correct 

punctuations and tags.  
3. To save the file, on the file menu, select Save As command to display the Save 

As dialog box.
4. In the file name box, type the name of the file with htm or html extension such 

as MyWebsite.html, and then select All files from Save as type dropdown list.
Once	you	finish	creating	the	web	page,	you	may	need	to	view	it	in	a	browser	such	as	
Explorer, Mozilla, Chrome or Safari. For example, to view mywebsite.html, proceed 
as follows: 
1. Start your favourite browser and look for a menu or command button labeled 

Open or Open File. Alternatively, in Windows, press Ctrl+O to display the Open 
dialog box.

2. Select the drive or folder in which the html page was saved. 
3. Double click the file to open it in your browser. The browser displays the web 

page as shown in Fig. 16.1. 

Fig. 16.1: Sample web page

16.2.1  Types of HTML elements
HTML has different elements that perform different functions. The three most 
common elements are:
1. Structural elements.
2. Presentational elements.
3. Hypertext.
Let us look at each of these and examples of elements under each.



306

Html-based Web Development
Structural elements
A structural element is one that is used to describe the structure of a web page content 
i.e. the way the content is displayed on the page relative to each other conveys a 
particular	meaning	to	the	user.	For	example,	content	under	a	heading	h1	(first	level	
heading) would be considered as more important than content under a lower heading 
level e.g. h2 (second level heading). Similarly, content within the same list block will 
be considered as similar e.g. a list of towns within Rwanda etc.
1. <title>...</title>	 :	identifies	the	title	section	of	a	document.
2. <h1>...</h1>  : structures heading levels i.e. h1, h2, h3 . . h6.
3. <table>...</table> : structures the document section using tables.
4. <ul>...</ul>  : unordered (bulleted) list
5. <Div>...</Div>  : divides a document into sections.

Presentation (style) elements
Presentational elements are used to specify the web page style or how the content will 
be displayed on the page e.g. font size, color, margins, borders, layout etc. Examples 
of presentation elements are:
1. <b>...</b>  : bolds text.
2. <style=“ ”> 	 :	specifies	styles	e.g.	background	color,	font	family	etc.
3. <i>...</i>  : makes the font be displayed in italics
4. <sub>...</sub>  : subscript

Hypertext
The content on a web page is usually created and presented in the browser using a  
special format called hypertext. Different hypertext pages are linked together using 
hyperlinks. A hyperlink is special text or an image that the user can click on in order 
to jump to another section on the same page or to a different web page. One such 
element is the anchor written as <a> that makes text or image clickable. Once the 
user clicks the hyperlink, the web page pointed to is loaded e.g.
<a href=“ ”> </a> : a hyperlink. 
            

16.2.2  DOCTYPE and HTML Versions
The	<!DOCTYPE>	declaration	is	the	first	line	in	an	html	document	placed	before	
the <html> tag to help a browser to interpret the version of HTML used. These 
interpretations are found in the *.dtd	file.	The	<!DOCTYPE>	statement	must	be	
exact in spelling and case in order to have the desired effect.



307

Html-based Web Development
HTML versions
HTML	can	be	classified	into	various	versions	depending	since	the	first	version	dubbed	
HTML 1.0 was released in 1991 by Tim Berners-Lee.   Each version has a DOCTYPE 
used by a web browser to identify the version of HTML your document is using. In 
this	section,	we	highlight	four	official	set	of	HTML	standard	released	since	1994.

1. HTML 2.0 standard was released in 1994 by the HTML Working group lead by 
Tim Berners-Lee and Dan Connolly. The following DOCTYPE tells the browser 
to	interpret	the	document	using	HTML	2.0	specification:	

 <!DOCTYPE html PUBLIC “-//IETF//DTD HTML 2.0//EN”> 

2. HTML 3.2: This standard was released in 1997 amidst competition by Microsoft 
and Netscape Communications control of the Internet.   The HTML 3.2  DOCTYPE 
is written as:

 <!DOCTYPE html PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>

3. HTML 4.0:		HTML	3.2	was	enhanced	by	W3C	into	HTML	4.0	specification	that	
was	published	late	in	1997	and.	The	standard	was	finally	approved	as	HTML	4.01	
with the following three DOCTYPE declarations: 

•	 The	following	HTML	4.01	DOCTYPE	declaration	is	used	for	documents	that	use	
frameset element to divide a document page into partitions known as frames:  

 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset// 
 EN” “http://www.w3.org/TR/html4/frameset.dtd”>. 

•	 The	HTML	4.01	 Strict	 declaration	 that	 emphasizes	 on	 structure	 rather	 than	
formatting of HTML document. This means that elements and attributes such 
as font used for presentation are not supported: The following is DOCTYPE 
declaration for HTML 4.01 strict:  

 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0//EN”   
 “http://www.w3.org/TR/REC-html40/strict.dtd”>

•	 Unlike	HTML 4.01 Strict, HTML4.01 transitional supports both structural and 
presentational elements and attributes. The following is DOCTYPE declaration 
for HTML 4.01 transitional:  

 <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0    
 Transitional// EN” “http://www.w3.org/TR/REC-html40/  
 loose.dtd”> 



308

Html-based Web Development

4. HTML 5 is the latest W3C standard that was published in 2014. The standard 
deprecates presentation tags and attributes used in HTML 4 as discussed later. 
Unlike HTML 4 DOCTYPE declaration that DTD, HTML5 uses the following 
simple DOCTYPE: 

 <!DOCTYPE HTML> 

16.3  HTML Elements

16.3.1  Tags and Attributes
HTML tags are used to mark up the start and end of an element. The general format 
of a tag is tagname enclosed in a pair of less than and greater than symbols (< >) 
as follows:

<tagname> e.g. <title>

The opening tag e.g. <title> “turns on” the element while the closing tag such as    
</title> turns it off. Through the unit, we provide adequate activities that will help 
you learn more about opening and closing tags. For example, to instruct a browser to 
present text as a paragraph, use the <p>  opening and </p> closing tags as follows:

<p>This is a new paragraph separated from others by a blank 
line</p>

An attribute	is	used	to	define	the	property	or	characteristics	of	an	element	inside	the	
element’s opening tag. All attributes are made up of two parts: name and value. For 
example, a paragraph may be right aligned using align attribute as follows:

<p align=”left”>This is left aligned</p>

In this section, we use basic example to describe commom tages used in HTML4. 

Activity 16.3: HTML elements and attributes
To create an HTML document, use a text editor or commercial tools such as Adobe 
Dreamweaver. Download and install Free HTML editors for Windows, Linux or 
Macintosh Operating Systems. Once you install your favourite editor, write the 
following	HTML	code	and	save	the	file	as	mypage.html.

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>



309

Html-based Web Development

<div>

  <p>some content comes here...</p>

</div>

<div>

  <p>some other content comes here...</p>

</div>

</body>

</html>

In the following subsection, we highlight common HTML tages used to create a web 
page illustrated by this basic code.

16.3.1.1  <html> 
The	<html>	tag	is	the	first	page	structure	tag	that	indicates	that	the	content	of	the	page	
conforms	to	HTML	specifications.	Thus,	<html>	serves	as	a	container	for	all	the	the	
the other tags that make up a web page. Always remember to close the element tag 
with </html> tag as shown in the following HTML code. 

Fig. 16.2 shows how the HTML page is displayed on the browser.

<!DOCTYPE html>

<html>

...your web page...

</html>

Fig. 16.2: HTML structure tag

16.3.1.2   <head> 
The <head> tag is a container for other tags that contain information about the web 
page itself. This type of information that is not intended for the user is referred to as 
metadata.	Generally,	only	a	few	tags	are	used	in	the	<head>	section	to	define	title,	



310

Html-based Web Development

and information about the web page (metadata) and. Never put any content intended 
to be displayed on the web page in the header tags. Here’s a typical example of how 
you should structure the <head> element: 

<!DOCTYPE html><html>
<head>

<title>Welcome to My First Website </title>

</head>

...your page...

</html>

16.3.1.3  <title> 
The <title>  element is placed within the <head> to describe the content of the web 
page	on	the	browser’s	title	bar.	The	text	defined	in	the	title	is	stored	in	as	a	bookmark	
making it easier for a search engine such as Google to display your page in the results 
page.  

16.3.1.4 <body>
The <body> tag marks the actual content of your web page. This includes text, images, 
hyperlinks, video and any other type of content intended for the visitors of a website. 
The following is a skeleton web page showing how to use the opening<body>  and 
closing </body> tags:

<!DOCTYPE html>

<html>

  <head>

  <title> Welcome to My First Website </title>

  </head>

  <body>

 ...your content...

 </body>

</html>



311

Html-based Web Development
Fig. 16.3 shows how the sample page appears when displayed on a browser. Note that 
the title welcome to ... is displayed on the title bar of the browser. The only content 
in the body section is ... your content...

Fig. 16.3: Body tag

16.3.1.5  Heading tags
Heading	tags	are	used	in	the	body	section	to	define	section	headings	that	stand	out	
from the rest of text. HTML provided six levels of section headings - <h1>, <h2>, 
<h3>, <h4>, <h5>, and <h6>. Note that the size of the heading reduces progressively 
with h1 being the largest while h6 is the smallest. By default, when headings are 
displayed, the browser adds one line before and one line after that heading. The 
general syntax of heading element is:

<headlevel> tex</heading level>

For example to display Breaking News as heading using the following syntax:
<h1> Breaking News! </h1>

The following HTML document displays the six heading levels (h1 to h6) 

<!DOCTYPE html>

<html>

<head>

<title>Heading Example</title>

</head>

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

<h4>This is heading 4</h4>

<h5>This is heading 5</h5>

<h6>This is heading 6</h6>

</body>

</html>



312

Html-based Web Development
Fig. 16.4 Shows how the headings appear when displayed on a browser such as 
chrome or Mozilla Firefox.

Fig. 16.4: Heading levels

16.3.1.6 Paragraphs
The <p> tag offers a way to structure your text into paragraphs that are seperated 
from each other by a blank line. To add several paragraphs, each of the paragraph 
should be enclosed between the opening <p> and closing </p> tag.  For example:

<!DOCTYPE html>
<html>
<head>
<title>Sample Paragraphs</title>
</head>
<body>
<p>This is the first paragraph of text.</p>
<p> This is the second paragraph of text.</p>
<p> This is the third paragraph of text.</p>
</body>
</html>



313

Html-based Web Development

Fig. 16.5 Shows how the paragraphs are displayed on the browser. By default, 
paragraphs are separated by blank lines.

Fig. 16.5: Paragraph tag

16.3.1.7 Comments
Comments are used to explain parts of HTML statement especially in complex 
documents to increase readability. They help other web developers understand the code 
even	in	future	in	case	of	modification.	If	used,	comments	are	ignored	by	a	browser	
when the page is displayed. To indicate that a statement is a comment, enclose it 
within <!-- …--> tags. For example, the following statements are interpreted by the 
browser as comments hence they are not displayed on the screen. 

<!-- This is a comment -->

<!-- Rewrite this section with humor -->

<!-- Please answer all questions in this section -->

Having looked the syntax of HTML 4, Table 16.1 gives quick overview of some of 
the elements discussed in this section.
  
Tags Description
<html> </html> Marks the start and end of the entire HTML page.
<head> </head> Marks the start and end of head or prologue of a web page.
<title> </title> Marks the start and end of the page title displayed on the 

browser’s title bar.
<body> </body> Marks the start and end of the web page content to be 

displayed on the web page.



314

Html-based Web Development

<h1> </h1> Marks	the	start	and	end	of	first-level	heading.
<p> … </p> Marks the start and end of a paragraph.
<!-- comment --> Indicates the text within the tag is a comment and should 

not be displayed on the browser.

Table 16.1: Basic HTML elements

Activity 16.4: HTML tags
1. Using heading and paragraph elements create a page that briefly describes topics 

that you would like to cover in your personal website, also known as a blog. The 
website should contain information such as brief description about yourself, 
academic profile, and career aspirations in separate paragraphs. 

2. Explain what happens if you insert a blank line between the paragraphs but enclose 
the paragraphs within a single <p> ..</p> pair. 

16.4  Introduction to XHTML
As earlier mentioned another markup language is known as Extensible Markup 
Language (XML). The letter X in XHTML stands for extensible which means that 
an	XHTML	developer	can	define	new	elements.
Although XHTML and HTML 4.01 are almost same in terms of elements, the main 
difference	between	the	two	is	that	XHTML	has	strict	rules	for	defining	document	
structure. The following are some of the differences between the XHTML 1.1 and 
HTML 4.01 standard:
•	 Unlike HTML 4, XHTML is case sensitive, hence all tags must be in lower case 

e.g. <html>, <body>, <div>, <p>, <b> etc. No upper case or mixed case is allowed. 
•	 Each tag must have a closing tag e.g. <div>  </div> , <li>  </li>.
•	 Unlike in HTML standard in which you can define an attribute and leave it blank, 

in XHTML each attribute must have a value. 
Throughout the remaining part of this unit, we adhere to basic XHTML rules but 
base our examples on HTML 4.01 standard. To take care of both standards, we use 
HTML without the version number to stand for this hybrid approach.

16.4.1  XHTML syntax and structure
XHTML	standard	contains	doctype	and	elements	used	to	define	various	parts	of	a	
webpage. The following is a general structure of an XHTML document: 
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN”



315

Html-based Web Development
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>

<head>

<title>Sample XHTML Document</title>

</head>

<body>

<p> The content to be viewed comes here...</p>
</body>
</html>

The above HTML page when viewed on a web browser appears as shown in Fig. 
16.6 shown below.

Fig. 16.6: XHTML structure

In	 the	 following	 subsection,	we	 briefly	 discuss	 some	 of	 the	 features	 of	XHTML	
starting with DOCTYPE declaration.

16.4.2  DOCTYPE and XHTML Versions
Based on <!DOCTYPE> declarations, there are four versions of XHTML i.e. versions 
1.0	Strict,	1.0	Transitional,	1.0	Frameset,	and	1.1.	declarations	must	be	on	the	first	
line of the page.

1. XHTML 1.0 Strict:

Contains all HTML elements and attributes. However, it does not include 
presentational or deprecated elements (like font) and framesets are not allowed. Tags 
must  be written as well-formed XML. It is declared as: 
 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” 

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>



316

Html-based Web Development
2. XHTML 1.0 Transitional:

Contains all HTML elements and attributes, including presentational and deprecated 
elements (like font) but framesets are not allowed. Tags must  be written as well-
formed XML. It is declared as: 

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” 
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3. XHTML 1.0 Frameset:

It allows framesets element to partition web page into columns. It is declared as: 

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN” 

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

3. XHTML 1.1:

Equivalent to XHTML 1.0 Strict, but allows you to add modules e.g. different language  
support modules etc. It is declared as:

 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN” 
 “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

16.4.3  XHTML elements and attributes
Observe the following rules when using XHTML:
1. Write a DOCTYPE declaration at the start of the XHTML document.
2. All elements and attributes should be written in lower case e.g <body>.
3. Each opening tag must have an equivalent closing tag.
4. Nest all the tags properly.
5. Attribute values must be enclosed in quote marks e.g. <td rowspan = “3”>.

6. Elements such as <b> and <i> have been replaced by <strong> and <em>  
respectively. 

16.4.4  XHTML entities
An	entity	can	be	defined	as	a	special	character	or	symbol	which	may	not	be	readily	
available on the keyboard e.g. numeric, latin and special characters that can be 
embedded on a web page using character entity references. The references have 
both a numeric value as well as a named value. You can use either as summarised 
in the table below: 
Numeric value Named value Display Description
&amp; &#38; & ampersand
&copy; &#169; c Copyright



317

Html-based Web Development

&gt; &#62; > greater than
&lt; &#60; < less than
&quot; &#34; ” quotation mark
&nbsp; &#160; non-breaking space
Numeric value Named value Display Description
&emsp; &#8195; em space
&frac12; &#189; 1/2 fraction one half
&frac14; &#188; 1/4 fraction a quater
&frac14; $#732; ~ small tilde

Table 16.2: XHTML Entities

Activity 16.5: XHTML entities and page codes
Use the entities in Table 16.2 to do the following:
1. Insert the copyright symbol on a web page
2. Display: y > x on a web page
3. Display: 1/2 + 1/4 = 3/4 on a web page.
4. Most web browsers have a way of letting users view the HTML source of a web 

page. Demonstrate how you would display the source code of a REB home in 
Firefox, Windows Explorer, Chrome, Safari and Opera. Identify some similarities 
between the source code of viewed pages and the one you created in activity 
16.3 in terms of organization and tags used.

Assessment Exercise 16.1
1.  Write the following acronyms in full:

(a) HTML
(b) XHTML

2. Differentiate between an HTML tag and HTML element.
3. Using examples, illustrate how the following HTML tags are used:  

(a) Title
(b) Body
(c) Paragraph
(d) Heading

4. Using an example, describe the general structure of an HTML page.   
5. Explain the importance of using HTML comments in a web page.  
6. Why should DOCTYPE appear at the start of every HTML page. 
7. Describe the steps you would follow to create a website.
8. List three software tools you can use to create a web page.
9. Write the entity that would display a copyright symbol on the screen.



318

Html-based Web Development

16.5  Designing HTML pages
In this section, we demonstrate how to design and present content in the body element 
using ordered lists, unordered list, image, hyperlink, and table elements. 

Activity 16.6: Designing HTML page
In groups, discuss how you can add different types of web content such as text, tables, 
forms, and images, audio and video clips. Explain how you would preview each of 
the content separately in a web browser.

16.5.1  Ordered and Unordered Lists
HTML offers web developers with elements for displaying information in numbered  
or bulleted list. HTML supports three types of lists namely ordered list, unordered 
list, and definition list. The three are different in that: 
• Ordered <ol> list is a container for enumerated items ordered using numbers 

such as 1, 2,3. 
• Unordered list <ul> is a collection of related items that have no special order 

or sequence.
• Definition list <dl>	is	used	for	definitions	such	as	glossaries	that	pair	each	label	

with some kind of description.
The	three	list	elements	consist	of	nested	tags	that	define	the	type	of	list.

16.5.1.1  Creating ordered list
Ordered lists are lists in which each item is numbered or labelled with a counter such 
as alphabetic letters or roman numerals. It is advisable to create numbered lists only 
when the order or sequence of items on the list is relevant. To create an ordered list, 
use the <ol>...</ol> tags within which you include one or more  <li>...</li> (list item) 
tags as shown in the following HTML document. 
<!DOCTYPE html>
<html>

<head>

<title>Numbered List</title>

</head>

<body>

<ol >

<li>Boot-up the Computer</li>

<li>Insert System DVD</li>

<li>Run the Setup Wizard </li>

<li>Restart the Computer</li>

</ol>

</body>

</html>



319

Html-based Web Development
Fig. 16.7 shows the list of four items after displaying the page on a browser.

Fig. 16.7: An ordered list 
You can customize the numbering style of an ordered list using the type attributes 
as follows:
<ol type = “counter-type”>....</ol>; 
Example
<ol type = “a”> ...</ol>

Activity 16.7: Ordered list
Suppose that you wanted three items in a list of ingredients to be in roman i, ii, iii 
instead of  the default 1, 2, and 3. Modify the HTML document for Fig. 16.5 to display 
the items in roman numerals starting from  v instead of 5.

16.5.1.2  Creating unordered list
Unordered list is similar to ordered list only that the items are listed using bullets.  
To create unordered list, use <ul>...</ul> instead of <ol>..</ol> element as shown 
in the code below. 

<!DOCTYPE html>
<html>
<head>
<title> Fruits Menu</title>
</head>
<body>
<ul>
<li>Orange</li>
<li>Banana</li>
<li>Guava</li>
<li>Mango</li>
</ul>
</body>
</html>



320

Html-based Web Development
Fig. 16.8 is an example of a bulleted list of four items as displayed on a browser.

Fig. 16.8: Unordered list 
You can customize unordered lists using type attribute and values that denote bullet 
types such as disc, square, or circle. For example, to change the bullets displayed in 
Fig. 16.9 from round to square, use the following syntax:
<ul type = “bullet-type”>....</ul>; 

For example, to display unordered list shown in Fig. 16.7 as a square, bullets, use 
the style attribute as follows:
<ul type = “square”> ..</ul>

Activity 16.8: Ordered list
Suppose you wanted three items in a list of ingredients to be in numbered in Roman 
I, II, III instead of number 1, 2, and 3. Create a webpage with an ordered list of items 
displayed in uppercase Roman numbers I, II, III ...

16.5.2  Creating definition list
A	definition	list	is	used	to	present	a	glossary	of	terms,	or	other	definition	lists	like		
dictionary	and	encyclopedia.	To	create	a	definition	list,	use	<dl>	...	</dl>	element	in	
which you place <dt> ... </dt> to mark up the term and <dd> ... </dd> to mark up 
the	definition	part.	Therefore	a	definition	list	consists	of	the	following	parts:
•	 <dl> - Defines the start of the list
•	 <dt> - A term
•	 <dd> - Term definition
•	 </dl> - Defines the end of the list 

For	example,	the	following	HTML	document	shows	a	definition	list	for	three	terms:	
XTML, HTTP and CSS. 

<!DOCTYPE html>
<html>
<head>
<title>Glossary of Terms </title>



321

Html-based Web Development
</head>
<body>
<dl>
<dt><b>XHTML</b></dt>
<dd>XHTML stands for Extensible Hyper Text Markup Lan-
guage</dd>
<dt><b>HTTP</b></dt>
<dd> HTTP stands for Hyper Text Transfer Protocol</dd>
<dt><b>CSS</b></dt>
<dd>CSS stands for Cascading Style Sheet</dd>
</dl>
</body>
</html>
Fig.	16.9	shows	how	the	definition	list	of	the	code	above	is	displayed	on	a	browser.

Fig. 16.9 Definition list

Activity 16.9: Definition list
Suppose	that	you	want	to	display	10	Glossary	terms	using	the	definition	list	Modify	
the HTML document above to display the terms and their meaning.

16.5.3  Creating nested lists
To create a nested list, put the entire list structure inside another list as shown below:  

 <!DOCTYPE html>
<html>

<head>

 <title>sample Nested List </title>



322

Html-based Web Development
</head>

<body>

 <ol>

 <li>World wide web</li>

 <li>Organization</li>

 <li>Introduction to HTML</li>

<li>

<ul>

 <li>Definition of HTML</li>

<li> HTML Syntax</li>

 <li>Doc structure</li>

 <li>Headings</li>

 <li>Paragraphs</li>

 <li>HTML Comments</li>

 </ul>

</li>

<li>Hyperlinks</li>

<li>Advanced HTML</li>

</ol>

</body>

</html>

Fig. 16.10 shows an illustration of a nested list from the HTML code above.

Fig. 16.10: Nested list of items 



323

Html-based Web Development

16.5.4  Inserting Images and Background
One of the most compelling features of latest HTML standard is the ability to embed 
images that make your website more attractive.  The three types of images supported 
by HTML4 are GIF (Graphics Interchange Format), JPEG (Joint Photographic 
Experts Group) and PNG (Portable Network Graphics). 
To insert an image onto a web page, use the <img> tag; img is an abbreviation of 
the word image. The <img> is an empty tag does not require a corresponding closing 
tag. The general syntax for inserting a graphical object or image is:

<img src=”Image URL” ... attributes-list/>  

The src in	the	img	tag	is	an	important	attribute	that	specifies	the	location	(source)	
or URL of the image you want to insert onto the page. For example, The following 
HTML code displays an image called house: 

<!DOCTYPE html>
<html>
<head>
<title> This is my House </title>
</head>
<body>
<p>This is the house I call My Home</p>
<img src=”house.jpg” alt= My House />
</body>
</html>

Fig. 16.11 shows how the web page looks when displayed on the browser

Fig. 16.11: Nested list of items 



324

Html-based Web Development
NB: use of the alt attribute is a good practice to specify alternate text for an image, 
if the browser cannot display or locate the image.

16.5.4.1  Setting Image size
You can specify the size using width and height attributes. The two attributes sets 
width and height of the image in terms of pixels or percentage of its actual size. For 
example, to set the size of the hows to occupy quarter of the screen, use: 
< img src = “house.gif” width =”25%” height = “25%” alt 
= “House” />

16.5.4.2 Image Alignment
The <img> tag uses the align attribute to align an image on top, bottom, left or right 
of the browser window. For example, to align house.gif on top of the page, use align 
attribute as follows:
<img src = “house.gif” align = “top” alt = “House”/> 

NB: Although some browsers currently support align attribute, it is no longer 
supported in HTML5.

16.5.4.3  Setting page Background Colour 
HTML4 comes with background formatting elements such as color and bgcolor. 
However, since we do not intend to go against current trends in XHTML and HTML5, 
we deliberately avoid using these elements and their attributes. 

Activity 16.10: Embedding images
Using the image tag, embed various images on one of the web pages created earlier. 
How do you insert images from a different location other than your current working 
folder?

16.5.5  Inserting Hyperlinks
A hyperlink is a text, phrase or image that you click to go to another web page or a 
section within the current page. In most browsers, hyperlinks are often in blue and 
underlined. When you move a mouse pointer over a hyperlink, the arrow changes 
to a hand pointing at the link. Clicking the link takes you to a new page or place in 
the current page.

Activity 16.11: Hyperlinks
A hyperlink can be plain text, image or email. In groups, research on the web how 
each of these three types of links can be added on HTML page to direct visitors to a 
section of the same page or another web page.



325

Html-based Web Development
From activity 16.10 you may have observed that hyperlinks allow visitors to navigate 
between web sites by clicking on words, phrases, or images. 

16.5.5.1  Text Hyperlinks
To	create	a	link	in	HTML,	you	need	to	know	the	name	of	the	file	(or	URL	of	the	file	
to which you want to link) and the text that will serve as the clickable hyperlink. 
To create a hyperlink use the anchor element: <a>...</a>. The <a> tag is called an 
anchor tag because it is used to create anchors for hyperlinks. 

16.5.5.2  Linking to a different Page
To create a link to other web pages, user the <a> tag and href hypertext reference 
attribute as shown in the following general syntax: 
<a href=”Document URL”...attributes-list>Clicable Link Text</a>

The href  attribute	is	used	to	specify	the	URL	of	the	file	the	link	points	to.	For	example,	
to open a page with URL “http://www.tutorpoint.edu” use: 
<a href= “www.tutorpoint.edu”>Visit My Online Tutorial</a>

The following code shows how to add text-based hyperlink into a HTML page:
<!DOCTYPE html>
<html>
<head>
<title>Creating Hyperlinks</title>
</head>
<body>
<p>Click following link</p>
<a href=”http://www.tutorpoint.edu” >Visit Tutorial Site</a>
</body>
</html>

Fig. 16.12 shows how the link is displayed on the browser.

Fig. 16.12: Hyperlinks



326

Html-based Web Development
In most browsers, a hyperlink is an underlined text and blue in colour. In our case, 
once the visitor clicks on the link, he or she is taken to the web page of the tutorial  
site as long as it is a valid URL. 

16.5.5.3    Linking to Page Sections
To create a link to a particular section of the same page, we use the name attribute 
of the <a> tag. This is a two-step procedure as follows.
1. Create	a	link	to	the	target	web	page	within	which	you	want	to	visit	a	specific	

section using the following general syntax:
<h2>Link to a Page Section <a name=”sectionname”></a></h2>

2. Create a hyperlink to the named section of the document where you want to visit.

For example, the following HTML code shows how to visit the top section of a 
web page:

<a href=”/html/html_text_links.htm#top”>Go to Top</a> 

16.5.5.4 Image hyperlinks 
To take care of people with special needs, you can also provide an image as a 
hyperlink.	Similar	to	defining	a	text	link,	we	use	anchor	(<a>)	tag	as	follows:
<a href= “www.tutorpoint.edu >
<img src=”/images/logo.png” alt=”Tutorials” border=”0”/> </a>

16.5.6  Using Relative and Absolute URLs
To link web pages that are contained in the same or different locations, we use relative 
or	absolute	URLs.	A	relative	URL	points	to	a	file	depending	on	its	locations	relative	
to	the	current	file.	On	the	other	hand,	absolute	URL	points	to	a	file	depending	on	
actual locations. 

16.5.6.1  Specifying Relative URL
To specify relative URL we use the forward slashes (/) to refer to a directory within 
the current or two dots (..) refer to the directory above the current. Table 16.3 shows 
how	to	use	relative	URL	to	access	flowers.html

Relative pathname Description

href=”flowers.html”	 flowers.html	 is	 located	 in	 the	 current	
directory.



327

Html-based Web Development

href=”files/	flowers.html”	 flowers.html	 is	 located	 in	 the	directory	
called files, and the files directory is 
located in the current directory.

href=”../	flowers.html”	 flowers.html	 is	 located	 in	 the	directory	
one level up from the current parent 
directory.

href=”../../files/	flowers.html”	 flowers.html is located two directory 
levels	up,	in	the	directory	files.

Table 16.3: Relative URL

16.5.6.2  Specifying Absolute URL
Absolute URL points to a page by starting at the top level of directory hierarchy and 
working downwards to the target file. To specify an absolute path, you must start 
with a forward slash as shown in Table 16.4. 

Absolute pathname Description
href=”/u1/html/	flowers.html”	 In	UNIX	flowers.html	 is	 located	 in	 the	

directory /u1/html.
href=”/d:/files/html/	flowers.htm”	 In	Windows	 flowers.htm	 is	 located	 on	

drive	D:	in	the	directory	files/html
href=”/Macintosh%20HD/HTML/ 
flowers.html”	

In MacOS X flowers.html is located 
on the disk Hard Disk 1, in the folder 
HTML.

Table 16.4: Absolute URL

16.5.7  Creating Tables
Tables are used to organize data such as numbers, text, links and images into rows 
and columns. An intersection of a row and a column forms data cell in which table 
data is held as shown in Fig. 16.13. In HTML tables are created using the <table> 
tag which is a container for <tr> (table row) tag used to create rows and <td> (table 
data) tag used to create data cells. Before you create a table such as shown in Fig. 
16.13, consider the following table-features:

•	 Caption:	indicates	the	type	of	data	presented	in	the	table	
•	 Table	headings:	the	row	that	indicate	the	data	displayed	in	each	column
•	 Table	cells	intersection	of	rows	and	columns	in	which	we	insert	data.
•	 Table	data	is	the	data	or	values	in	the	table.



328

Html-based Web Development

Fig. 16.13: Sample HTML table

To create a table, we use the <table>…</table> element within which the following 
elements are nested: 

• <caption>..</caption> used to create the table caption
• <th> ...</th> tag is used to create the table heading
• <tr>...</tr> tag is used to create table rows 
• <td>...</td> tag is used to create data cells

The following HTML code produces the table shown earlier in Fig. 16.13. Notice that 
the table starts with a <table> tag followed by border, cell padding and cell spacing 
attributes and ends with the closing </table> tag.
<!DOCTYPE html>
<html>
<head>
<title>HTML Table Cellpadding</title>
</head>
<body>
<table border=”1” cellpadding=”5” cellspacing=”5”>
<tr>
<th>Employee Name</th>
<th>Department</th>
<th>Salary</th>
</tr>
<tr>
<td>Paul Raman</td>
<td>Marketing </td>
<td>15000</td>
</tr>
<tr>



329

Html-based Web Development
<td>Patricia Nguri</td>
<td>Production</td>
<td>7000</td>
</tr>
</table>
</body>

The	following	are	basic	atributes	used	to	define	or	format	an	HTML	table.

16.5.7.1 Border Attribute
The border attribute takes numeric values that specify thickness of the border that 
surrounds all the table cells. If 0 is used, the border is invisible while. In our example 
above, the statement below create a border of 1 pixel thickness.
 <table border=”1”>

16.5.7.2  Height and Width attributes
To set the size of the table, use width and height attributes. The height and width 
attributes take width or height values in terms of pixels or percentage of the screen. 
For example, the statement below sets the table size to  width of 400 pixels and 
height of 150 pixels.
 <table border=”1” width=”400” height=”150”>

16.5.7.3  Table Caption
The caption tag will serve as a title or explanation for the table and it shows up at the 
top of the table. However, it is important to note that the caption tag is deprecated 
in newer versions of HTML.

Activity 16.12: Tables
In groups, use sample HTMP pages to demonstrate use of the following table features:
•	 The three elements used for separating a table into three sections header, body, 

and footer as shown.
•	 The table attributes such as colspan, rowspan, cellpadding, cellspacing used to 

format table cells.

16.5.8  Creating Forms
You may need to gather information such student’s details and store such information 
in the server. The most common method for gathering such information is by using 
a form. For example, Fig. 16.14 shows a sample HTML form used to collect user 
registration	details	such	as	first	name,	last	name,	nationality	and	phone.	



330

Html-based Web Development

Fig. 16.14: HTML form

When	users	fill	forms	and	clicks	the	submit	button,	the		data	keyed	into	the	form	is	
sent (posted) to the web server for processing or storage into a database. To create 
HTML forms, we use the <form> ... <form> element as follows:
<form action=”Script URL” method=”GET|POST”>
 form elements like input, textarea etc.
</form>

For example, the following HTML code produces the form shown earlier in Fig. 
16.15 in the next section, we discuss other elements and attributes used to format 
HTML forms.

<!DOCTYPE html>

<html>

<head>

<title>Registration Form</title>

</head>

<body>

<h2> <font color=blue>Please Provide Your Registration Details </
font></h2>

<form action= “register.php” method= “get” >

 <p>First Name: <input type= “text” name= “FName” size=”15”> </p>

 <p>Last Name: <input type=”text” name= “lname” size=”15”></p>

 <p>Nationality: <input type=”text” name= “country” size=”25”></p>

 <p>Phone: <input type= “text” name= “phone” size=”15”></p>

 <p><input type=”submit” value=”Submit” name=”button”></p>

 </form>

 </body>

 </html>



331

Html-based Web Development
16.5.8.1  Form Action Attribute
The <form> tag takes several attributes key among them the action and method 
attributes used to accomplish the following:
• Action: This	attribute	is	used	to	specify	the	file	on	the	server	that	receives	data	

from the form for processing. For example, the action attribute in the form tag 
below	specifies	a	file	named	register.php that receives registration details after 
the user clicks the submit button:

 <form action=“register.php”> </form>

16.5.8.2  Form Method Attribute
The Method attribute specifies how the data is to be sent to the web server. The two 
types of methods used are the post and get.
• Get Method: If  a “GET” method is used, the data supplied in the form is appended 

at the end of the URL as shown below:
  www.mamacare.com/?login=joel@email.com&password=yz2345
Note that in this example, using get method in a login form is not recommended 
unauthorized users may see actual username and password. The alternative is to use 
the post method.
• Post Method: Unlike the GET method, post method does not display submitted 

form data on URL because the parameters are passed as body of a HTTP request.

Activity 16.13 Form attributes
In groups, discuss the difference between the post and get methods in terms of how 
the two attributes send data to the back-end server script. Which method is preferred 
for sending sensitive data such as username and password. Defend your argunment 
using sample HTML pages. 

16.5.9 Form Controls
There are different types of form controls that you can use to facilitate data collection 
information using HTML form. The most common controls include:  text, textarea, 
select, radio buttons, checkboxes, file select, command button and reset buttons.  

16.5.9.1 Text input
Input control is used to capture alphanumeric data such as text, password and hidden. 
For	example,	the	following	statement	defines	text	input	for	capturing	username.
<label> Username: 
 <input type=”text” name=”uname” size = “15” /> 
</label>



332

Html-based Web Development
16.5.9.2  Hidden input

Sometimes it is importat to conceal the identity of information entered in the form 
using the input type. This is achieved by use of hidden input type.
To create hidden input, set the input type to hidden as shown below:
 <input type=“hidden” name=“userid” value=“132”/>

16.5.9.3  Textarea
Textarea control is a multi-line text input used when the user is required to give details 
that may be longer than a single sentence. The attributes used with textarea tag are: 
name,	rows,	and	cols.	For	example,	the	following	statement	defines	textarea	named	
comment that has 3 rows and 10 columns:
 <form >
   Comments: <br />
  <textarea rows=”3” cols=”10” name=”comment”>
 </form>

16.5.9.4  Checkbox
Checkbox controls are input type used when more than one option is required to be 
selected from a list of check boxes. However, the input type attribute must be set to 
checkbox value as shown by the following statement:
<form>

<label><input type=”checkbox” name=”subjects” checked=”checked”> 
Computer </label>

<label><input type=”checkbox” name=”subjects” > Physics </
label>

<label><input type=”checkbox” name=”subjects” > Economics</
label>

</form>

16.5.9.5  Select
The select control also known as dropdown box provides the user with various 
options in form of drop down list, from which a user can select one or more options. 
For	example,	the	following	select	defines	a	dropdown	for	selecting	only	one	option:
<select name=”dropdown”>

<option value=”maths” selected>Mathematics</option>

<option value=”computer”>Computer Science</option>

</select>



333

Html-based Web Development

16.5.9.6  Submit and Reset Button
Submit input type used to create a button that automatically submits form data to 
web server. On the other hand, reset is used to refresh (reset)form controls to their 
default values. The following statements creates submit and reset buttons with values 
set to Send and Reset respectively:
<form>
 <input type=”submit” name=”submit” value=”Send” />
 <input type=”reset” name=”reset” value=”Reset” />
</form>

The following is an HTML code that implements input, textarea, checkbox, and 
select elements. 

<!DOCTYPE html>
<html>
<head>
<title> Registration</title>
</head>
<body>
<h3> <font color=blue>Please provide the following
details</font></h3>
<form Action= “register.php” Method= “get” >
First Name: <input type= “text” name= “FName” size=”15”><br/>
Last Name: <input type= “text” name= “lname” size=”15”><br/>
Nationality: <input type=”text” name= “country” 
size=”25”><br/>
Phone: <input type= “text” name= “phone” size=”15”><br/>
<label><input type=”checkbox” name=”subjects” 
checked=”checked”> Computer Science</label><br/>
<label><input type=”checkbox” name=”subjects” > Physics</
label><br/>
<label><input type=”checkbox” name=”subjects” > Economics</
label><br/>
<select name=”dropdown”>
<option value=”maths” selected>Mathematics</option>
<option value=”computer”>Computer Science</option>
</select> <br/>



334

Html-based Web Development

Comments:<br/>
<textarea rows=”3” cols=”10” name=”comment”> </textarea>
<input type=”submit” name=”submit” value=”Send”>
</form>
</body>
</html>

The illustration shown in Fig. 16.15 shows how form controls discussed earlier are 
displayed:

Text area

Check boxes

Select option

Submit button

Input

Fig. 16.15: Detailed HTML form

Activity 16.14:  Form controls
Create a form that contains textarea, password, checkboxes and select, textarea, read-
only controls and radio buttons. Demonstrate how such a form would be used to post 
collected information to a web server for processing and storage. 



335

Html-based Web Development

Assessment Exercise 16.2
1.  State three advantages of using commercial web development tools such as 

Dreamweaver over text editors such as Notepad.
2.  Explain five main features of an HTML form.
3. Explain four types of image formats that can be inserted into a web page.
4.  Giving examples, differentiate between the following features 

(a) Absolute and relative URL.
(b) Post and Get methods..
(c) Tag and attribute.

5.  Outline a step-by-step procedure you would follow to insert the following 
Dreaweaver objects:
(a) Table
(b) Form
(c) Image

6.  Differentiate between GET and POST methods used to senf form content to a 
web server.

16.6  Introduction to HTML5
HTML5	 is	 the	fifth	 revised	 and	 newest	 version	 of	HTML	 standard	 offering	 new	
features that support multimedia content more effectively than ther previous 
versions. In the long run, the new standard is meant to be a replacement for HTML 
4.01, XHTML 1.0, and XHTML. To be supported by majority of browsers, HTML5 
has been developed in collaboration with browser makers. This explains why most 
browsers	are	supporting	the	new	HTML5	specification.	In	comparison	to	HTML4	
and	XHTML,	HTML5	standard	has	adopted	a	flexible	hybrid	approach	by:
•	 Relaxing some of the relaxing some of the rules that were imposed by XHTML 

1.0 version.
•	 Removing elements and attributes deprecated in previous versions of HTML4 

and XHTML.
•	 Removing elements and attributes that had been introduced in previous standards 

but are now superseded by Cascading Style Sheets.
•	 Providing new elements and attributes that allow for backward compatible with 

current and older browsers.

16.6.1  HTML5 Syntax and Structure
HTML5 has a “custom” syntax that is compatible with HTML4 and XHTML  
documents published on the Web. However, the standard does not support most  
SGML-based features inherent in HTML4. In this sections, we discuss some of the 
unique features of HTML5. The code below shows the general syntax of HTML5 
documents.



336

Html-based Web Development

<!DOCTYPE html>
<html>
<head>
<meta charset=”UTF-8”>
<title>Title of the document</title>
</head>
<body>
  Content of the document......
</body>
</html> 

The following is an example of an HTML5 document that further demonstrates 
structural elements of HTML5 like header and footer.

<!DOCTYPE html>
<html>
<head>
<meta charset=”utf-8”>
<title>Tutorial Site</title>
</head>
<body> 
<header role=”banner”>
<h2>Sample of HTML5 Document Structure</h2>
<p>Try this page on Explorer, safari, chrome or Mozila.</p>
</header>
  <footer>
  <p>Visit:<a href=”http://tutorcenter.com/”>HTML5 
Tutorial</a></p>
</footer>
</body>   
</html>



337

Html-based Web Development
Fig. 16.16 Shows the output on the screen once document is loaded on a browser.

Fig. 16.16: HTML5 structure
In the following subsection, we discuss some of the new features of HTML5 such 
as DOCTYPE declaration, elements and attributes. 

16.6.2  HTML5 Doctype
DOCTYPEs in previous HTML versions were longer because HTML4 and XHTML 
required a reference to SGML-based DTD. HTML5 standard is a radical departure 
from SGML restrictions to new features based on cascading style sheet (CSS) and 
Javascript. This is why doctype is a short statement written as:

<!DOCTYPE html>

16.6.3  New HTML5 Elements
Basically HTML5 is about extending HTML4 and XHTML standards with new rich 
elements and attributes while deprecating or removing some. New elements have 
been	introduced	in	HTML	5	to	define	structural	elements,	text-formatting	instructions,	
form controls, input types, and multimedia content. The new HTML5 elements may 
be	classified	into	three	categories	namely:	structural, Input, and media elements.
•	 Structural elements: HTML5 offers new semantic elements used to define the 

structure of a web page. Examples of structural elements include <article>, 
<aside>, <header>, <footer>, <main>, <section>, <summary> and <nav>

•	 Input elements: New input types were introduced to address specific form input 
and formatting requirements for user input such as dates, numbers, and telephone 
numbers. Examples of new input types include color, date, datetime, time, email, 
number, tel, url

•	 Media elements: Due to high demand of multimedia content on the web, WC3 
introduced new set of media elements in HTML5 to handle different media types 
without need for additional plugins such as Adobe flash. New media elements 
include <embed>, <audio>, <source>, <track> and <video>



338

Html-based Web Development
Table 16.18 provides a summary of new structural, input and media element supported 
by the HTML5 standard:

Elements Description

<article> Represents an independent piece of content of a document, such as 
a blog entry or newspaper article

<aside > Represents a piece of content that is slightly related to the rest of the 
web page.

<audio> Defines	an	audio	file.

<datalist> Together with the a new list attribute for input can be used to create 
combo boxes

<details> Represents additional information or controls which the user can 
obtain on demand

<embed> Defines	external	interactive	content	or	such	as	video.

<footer> Represents a footer for a section and can contain information about 
the author, copyright information, et cetera.

<header> Represents a group of introductory or navigational aids.

<track> Defines	tracks	for	video	and	audio	content

<nav> Represents a section of the document intended for navigation.

<progress> Represents a completion of a task, such as downloading or when 
performing a series of expensive operations.

<section> Represents a generic document or application section
<time> Represents a date and/or time.
<video> Defines	video	or	movie	content.

Table 16.5: New HTML5 page

Activity 16.15: HTML 5 elements
In groups search for tutorials on HTML5 and list and new elements supported by 
HTML5. Explain whether the element is structural or media type.

16.6.4  New HTML5 Inputs Types and Restrictions
In HTML4, we discussed some of the input elements that use the type attribute to 
specify the data input such as text and hidden. HTML5 supports new input types for 
forms that are meant to improve user experience and shorten web development time. 
Table 16.6 shows some of the new input types other than text, hidden and password 
used in the previous versions of HTML.



339

Html-based Web Development

Input type Description

datetime Date and time (year, month, day, hour, minute, second, fractions of 
a second) encoded according to ISO 8601 with the time zone set to 
UTC.

datetime-
local

Date and time (year, month, day, hour, minute, second, fractions of 
a second) encoded according to ISO 8601, with no time zone.

date Date (year, month, day) encoded according to ISO 8601

month Date consisting of a year and a month encoded according to ISO 
8601

week Date consisting of  a year and a week number encoded according 
to ISO8601

time Time in hour, minute, seconds, fractional seconds) encoded 
according to ISO8601

number Accepts	only	numerical	values.	The	step	attribute	specifies	the	
precision, defaulting to 1.

range The	range	type	is	used	for	input	fiels	that	should	contain	a	value	
from a range of numbers.

email Accepts only valid email addresses. If you try to submit a simple 
text, it forces to enter only email address in me@example.com 
format

url Accepts only valid URL address values. If you try to submit a 
simple text, it forces you to provide valid URL address in http://
www.example.com format.

Table 16.6: New HTML5 input types

16.6.5  New Input Attributes
The HTML5 input element has several new attributes to specify the form behaviour 
and format. Some of the new attributes used for restricting input include: min, max, 
required, pattern and step. Other attributes used to enhance user input include. Such 
attributes include autocomplete, autofocus, placeholder, formvalidate, list, formaction, 
form method, and formtarget.
To demonstrate how the new input types and attributes are used, below is sample 
HTML5 document used to get text, telephone, e-mail, date, time and numbers. The 
code also shows how to restrict input for the e-mail and range of number:



340

Html-based Web Development
<!DOCTYPE html>
<html lang=”en”>
<head>
<title> New HTML5 input types</title>
<body>
<h1>HTML5 input types test page</h1>
<p>This page contains examples of the new form controls 
that can be used in HTML5.</p>
<form action=”datatype.php” method =”post”>
<p><label for=”text”> Text Element:</label>
<input type=”text” name=”type-text” id=”type-text”></p>
<p><label for=”tel”> Telephone:</label>
<input type=”tel” name=”type-tel” id=”type-tel”></p>
<p><label for=”email”> Email:</label>
<input type=”email” name=”e-mail” id=”e-email” required></p>
<p><label for=”dates”> Date:</label>
<input type=”date” name=”type-date” id=”type-date”></p>
<p><label for=”time”> Time: </label>
<input type=”time” name=”tim” id=”tim”></p>
<p><label for=”number”> Number: </label>
<input type=”number” name=”num” id=”num” min=”0” 
max=”20”></p>
<input type=”submit” value=”Send” name=”button”><br/>
</form>
</body>
</html>



341

Html-based Web Development
Fig. 16.17 shows a sample output from HTML5 code above. Note the restrictions 
placed by HTML5 standard on user input such as email that must be provided and 
range of numbers shown by a dropdown list. 

Table 16.17: New HTML5 Input Types and attributes

Activity 16.16: HTML 5 new input types
The new type called tel in HTML5 expects a telephone number. However, tel does 
not enforce any validation because many telephone numbers are alphanumeric or 
start with a + symbol e.g. +250 252 123 123. 
•	 Research on internet the importance of tel input type.
•	 Explain how the new HTML5 pattern (regexp) attribute can be used to validate 

telephone number input.  

16.7  Migrating from HTML4 to HTML5 
For smooth transition from HTML4 to HTML5, there are a number of design and 
factors to be considered. The two key factors that web developer need to consider 
are use of deprecated elements, and browser support.  



342

Html-based Web Development

16.7.1  Deprecated elements and attribute
Deprecated elements are features that have been rendered obsolete but that browsers 
may continue supporting them. Examples of deprecated features are border attribute 
used with <img/> element and name attribute in the anchor <a> element. Other 
deprecated elements and attributes include: <applet>,  <acronym>, <center>, <font>, 
<noframes>, <command> and <tt>.

16.7.2  Browser support
Browser support is one of the key factors to consider when migrating from HTML4 
to HTML5. Fortunately, since HTML5 became a W3C recommendation in October, 
2014, major browsers like Safari, Chrome, Firefox, Opera and Internet Explorer 9.0 
have started supporting to HTML5 features. Furthermore, most web browsers that 
come pre-installed on mobile phones that run on iOS and Android operating systems 
have support for HTML5 features.

Activity 16.17: Migrating from HTML4 to HTML5
1. HTML5 may be a disruptive technology that will bring most of the sites on the 

web down due to the following issues:
•	 Removal of support for HTML frameset element in HTML5 standard.
•	 Removal of deprecated elements and attributes  supported by earlier versions 

of HTML. 
•	 Tables should not be used to create web page layout. Instead web developers 

are required to use CSS rules
•	 Attributes that let people create those perfectly laid-out tables, like align, 

bgcolor, border, cellpadding, cellspacing, height, nowrap, rules, valign, and 
width are gone.

2. In groups, research on internet the difference between HTML4 and HTML5. 
3. Discuss previous versions of HTML that have been standardized by a consortium 

known as W3C (W3C stands for World Wide  Web Consortium).
4.	 Debate	this	argument	by	support	it	or	giving	justification	why	migrating	from	

HTML4 to HTML5 is a brave decision that should not be held back due to few 
people who are resistant to change!

Assessment Exercise 16.3
1. Define the following terms used in HTML 5:

(a) Deprecated attributes
(b) Pattern
(c) Form validation

2. Distinguish between HTML4 and HTML5 syntax in terms of elements, case 
sensitivity, and input restrictions.



343

Html-based Web Development

3. Identify at least three factors that are making it deficult for older browsers to 
support HTML 5. 

4. Once you have created a website on your local machine, demonstrate how you 
would validate conformity to HTML5 specifications.

Unit Test 16
1. Define the term web server.
2. Differentiate between internet and web.
3. A program, such as Mozilla Firefox that that lets a user display HTML-developed 

web pages is referred to as _________.
4. The two standard languages used to create web pages are_____ and _____.
5. Write sample HTML statements to demonstrate how to insert the following: 

(a) Scrolling images at the top part of a page
(b) An image of a house
(c) Table with 3 rows and 5 columns

6. Explain statement: <form action=“student.php” method=“get”> 
7. Explain at least four types of controls that are used to create a form object.
8. Differentiate between the following terms:

(i) Hypertext and hyperlink
(ii) XHTML and HTML5 standards

9. Giving examples, explain restrictions that were imposed by XHTML that have 
been relaxed in HTML5.

10. Discuss three key factors that a web developer should consider before developing 
a website.

11. Build a static website for your school that consists of five hyperlinked pages 
containing the following information:
(a) Home page – This is the index page containing general information about 

the school.
(b) About page – Contains mission, vision and background (History) of the 

school.
(c) Academic pages – Contains subjects, teachers and school programmes.
(d) Gallery – Contains important photos taken during school events.
(e) Contact page – Contains postal, email, web and mobile phone contacts of 

the school administration.



CASCADING STYLE SHEET

Key Competency
By the end of this unit, you should be able to build standards compliance web pages 
using CSS.

Unit Outline
•	 Definition	of	CSS
•	 HTML	styling	and	disadvantages
•	 Comparison	between	HTML	and	CSS	Styling
•	 CSS	syntax
•	 Adding	CSS	to	web	pages
•	 CSS	Styles
•	 Creating	CSS	pages	from	scratch

Introduction
Cascading	Style	 Sheets	 (CSS)	 uses	 rules	 to	 describe	 to	 the	 browser	 how	HTML	
elements are to be displayed on the screen. We use CSS properties to come up with 
rules	that		format	one	or	many	HTML	pages	all	at	once.	These	properties	generally	
fall into one of two categories:

Presentation 
How	to	control	things	like	the	colour	of	text,	the	fonts	you	want	to	use	and	the	size	
of	those	fonts,	how	to	add	background	colours	to	pages	(or	parts	of	a	page),	and	how	
to	add	background	images.

Layout 
How	to	control	where	the	different	elements	are	positioned	on	the	screen.	You	will	
also	learn	how	to	develop	a	CSS	page	from	scratch.	

17.1 Definition of CSS

Activity 17.1: Research on CSS and HTML
Access	the	website	suggested	to	you	by	the	teacher	and	do	some	research	on	cascading	
style sheets. Find out the following:
1.	 Its	difference	when	compared	to	HTML	which	you	covered	earlier.
2.	 The	advantages	it	offers	to	website	developers.

Unit 17

344

Cascading Style Sheet



CSS	is	a	style	language	that	defines	the	layouts	of	HTML	documents	in	a	more	efficient	
manner.	Unlike	in	HTML	where	we	used	tables	to	define	strict	layouts,	with	CSS	
there	are	no	tables.	Instead	we	define	page	layout	styles	using	rules	that	are	easy	to	
apply across entire websites and that can easily be reused. CSS uses fonts, colors, 
lines,	margins,	height,	width,	background	images,	advanced	positions	etc.	to	define	
neat page layout styles. 
Unlike	some	time	back	when	few	web	browsers	could	understand	CSS	rules,	most	
modern	browsers	support	CSS.	However,	when	developing	CSS	pages,	test	them	in	
different browsers to ensure that they are displaying correctly across board. 

17.2 HTML Styling and disadvantages
HTML	or	Hypertext	Markup	Language	is	the	standard	and	most	basic	language	used	
to	create	web	pages.	It	has	a	very	simple	code	structure	that	makes	it	extremely	user	
friendly,	to	learn	and	use.	It	has	a	few	keywords	(known	as	tags)	that	are	dedicated	to	
formatting	text	i.e.	telling	the	browser	how	to	display	text.	However,	HTML	suffers	
from the following shortcomings:

(a)	 In	formatting,	HTML	is	weak	and	cumbersome.	Repeated	blocks	of	the	same	
code when formatting large documents increases memory usage and slows down 
web page loading time.

(b)	 The	inclusion	of	formatting	text	together	with	page	content	in	the	same	HTML	
file	makes	web	 pages	 to	 be	 inefficient	 and	 lack	 consistency	 throughout	 the	
website.

(c)	 HTML	does	not	enforce	strict	coding	standards.	For	example,	you	can	type	<br>	
without	a	terminating	tag	(i.e.	without	a	terminating	tag	<br/>	).	This	may	lead	
to language misunderstanding and problems when different browsers display 
the same web page differently. 

(d)	 HTML	 is	 static	 in	 nature.	 It	 does	 not	 have	 control	 structures	 like	 other	
programming languages.

(e)	 HTML	becomes	complex	when	used	to	code	large	pages.	

17.2.1 Advantages of CSS
CSS	addresses	the	need	for	functionally	effective	and	efficient	web	designs.	CSS	
has	the	following	advantages:	
(a)	 Improves	Site	Speed:	The	web	pages	and	CSS	stylesheet	are	small	in	size	hence	

it	makes	the	website	to	load	faster	and	have	efficient	utilization	of	bandwidth.
(b) Centralised Format Styling: Changing a global stylesheet affects the entire site. 

Developers	don’t	have	to	individually	change	each	page	in	the	website	separately.	
(c)	 Flexibility:	CSS	can	be	combined	with	a	Content	Management	System	(CMS)	

to create content submission forms that can allow the user to easily select the 
layout of an article on-the-fly without the need for rigorous coding.

(d) Consistency: CSS has inheritance properties that can allow “cascading” of a 

345

Cascading Style Sheet



global stylesheet that can be used to style an entire site. If a situation arises in 
which you need to change styles across the site, simply edit a few rules in the 
global stylesheet.

17.3 Comparison between HTML and CSS styling

HTML CSS
1. Simple structure. Easy to learn. 1. Simple but more effort needed to learn.
2. Formatting repeated on all pages. 2.	All	formatting	rules	held	in	one	stylesheet	file.
3.	HTML	pages	are	heavy	and	load	slowly. 3. CSS pages are light and load faster in browser.
4.	Difficult	to	apply	same	formats	across	web	pages. 4.	Applies	consistent	formats	across	web	pages.
5.	Difficult	to	adapt	pages	to	mobile	displays. 5.	CSS	adapts	pages	to	mobile	devices	easily.

Table 17.1: Comparison between HTML and CSS

We	can	 therefore	 conclude	 that	while	HTML	 is	 a	markup	 language	 for	 building	
hypertext	web	pages,	CSS	is	a	rule	based	language	that	describes	how	various	HTML	
page formats and layouts will be displayed on the screen.

17.4 CSS Syntax
We	create	CSS	rule	following	a	particular	specific	syntax.	The	format	of	a	CSS	rule	
set can be summarised as follows:
1. Start with a selector.	The	selector	points	to	the	HTML	element	you	want	to		
 format. 
2.	 Declaration	block.	It	has	a	property and a value surrounded by curly   
	 brackets.	It	performs	the	actual	formating	of	the	selected	element.	
Figure 17. 1 below summarises this:

Figure 17.1: CSS syntax
In	this	case,	the	rule	specifies	that	all	the	level	1	headings	will	be	pink	in	color	and	
have	a	font	size	of	10.	

17.4.1 CSS selectors
CSS	selectors	are	used	to	point	to	or	find	HTML	elements	based	on	their	defined	
names,	IDs,	attribute,	class	etc.	Without	a	selector,	the	browser	will	not	know	which	
element	to	display	in	a	particular	format.	There	are	several	types	of	selectors:

17.4.1.1 Element selector
It	selects	an	element	based	on	its	known	HTML	name	e.g.	<p>, <h2>	etc.	For	example,	
if	we	wish	the	rtext	in	a	paragraph	to	have	font	size	12	and	be	blue	in	color,	our	CSS	

346

Cascading Style Sheet



syntax	would	be	written	as	follows	below:
 p {

  text-align: center;

  font-size: 12;

  color: blue;

     }

17.4.1.2 The ID selector
The	id	selector	uses	the	id	attribute	in	HTML	to	select	a	particular	element.	When	
creating id elements	in	HTML,	make	each	one	of	them	unique	within	a	page	to	
avoid	reference	conflicts!
An	element	with	a	specific	id is selected by writing a hash (#) character, followed 
by the id of the element.
For	example,	if	we	have	the	HTML	element	with	id=”globe”:
 #globe {

   color: green;

   font-size: 12;

  }

17.4.1.3 The Class selector
The	class	selector	selects	elements	which	are	part	of	a	particular	class	attribute.	Write	
a	period	(.)	followed	by	the	name	of	the	class.	For	example,	if	we	have	a	class	called	
wise in	HTML	e.g.	class=”center” and we want all its elements to be orange 
and center-aligned we proceed as follows:
 .center {

       text-align: center;

       color: orange;

  }

NB:	A	class	name	in	HTML	cannot	start	with	a	number.

17.4.2 CSS grouping selectors
The	grouping	feature	enables	the	CSS	code	to	be	compact	and	reduces	unnecessary	
repetition.	For	example,	you	could	have	CSS	code	which	looks	like	the	one	below:
 h1 {

      text-align: center;

      color: red;

  }

 h3 {

347

Cascading Style Sheet



  text-align: center;

  color: red;

  }

 p {

      text-align: center;

     color: blue;

  }

The	above	code	can	be	grouped	together	as	follows	with	all	the	selectors	typed	on	
the same line:

 h1, h3, p {

  color: blue;    

  text-align: center;

      }

17.4.3 CSS comments
A	comment	is	a	string	of	non-executable	text	included	in	code	as	a	means	of	explaining		
the code. It is helpful when you or someone else edits the source code at a later date.
In	CSS,	a	comment	starts	with	/*	and	ends	with	*/.	A	comment	can	span	more	than	
one	line.	The	example	below	demonstrates	how	comments	are	used:
 h1 {
      font-size: 14;
      /*	This	sets	the	font	size	at	14	*/
      text-align: center;
  }
  /*	This	aligns
	 	 the	text	at	the
	 	 center	*/

17.4.4 CSS units
Measurement	in	CSS	can	be	expressed	using	several	different	units.	There	are	two	
types	of	units	used	to	express	length:
1. Relative length units: they specify a length as compared to another length  
	 e.g.	if			the	font	is	10	points	then	a	length	can	be	expressed	as	two	times	the		
	 current	font	size.
2. Absolute length units:	 these	 lengths	 are	 fixed.	A	 length	 expressed	 in	 any		
	 of	these	will	appear	as	exactly	that	size	e.g.	10cm.

348

Cascading Style Sheet



17.4.4.1 Absolute length units
Unit  Description 
em	 	 Relative	 to	 size	 of	 current	 element	 e.g.	 2em	means	 2	 times	 the	 size		
  of the current font
vw	 	 Relative	to	1%	size	of	current	viewport.	The	viewport	is	the		 	
	 	 browser	window	size.	e.g.	if	the	browser	has	width	50cm	e.g.	
	 	 1vw	=	0.5cm.

17.4.4.2 Relative length units
Unit  Description 
px	 	 Pixel.	1px	=	1/96th	of	1	inch.
pt	 	 Points.	1pt	=	1/72	of	1	inch.
mm	 	 Millimeter	e.g.	1mm.	
NB:	 The	margin,	width,	 padding,	 border	width,	 font-size,	 etc.	 all	 require	 unit	
specifications	when		designing	your	web	page.

Activity 17.2: Creating  simple HTML page 
Open	a	text	editor	and	create	the	following	HTML	page.	Save	your	page	as	First.
css	as	shown	in	Figure	17.2(a).	If	you	are	using	Notepad	in	windows,	select	All	files	
(*.*)	in	the	Save	as	type	box	(Figure	17.2[a])	when	saving	to	avoid	saving	it	as		
First.css.txt

<html>
<head>
<title>This is a basic CSS Page</title>
<style type=“text/css”> 
  .myFirstStyle { 
  font-family: Calibri;
  font-weight: bold;
  color: #FF0000; 
  } 
</style>
</head>
<body>
<p class=“myFirstStyle”> Love, peace and unity among 
citizens is good for national development </p>
</body>
</html>

349

Cascading Style Sheet



You	can	now	open	the	page	in	a	browser.	What	happens?

NB: In	this	example,	.myFirstStyle	is	a	Class.	A	class	is	a	blue	print	on	which	we	
can	define	styles	which	can	be	accessed	and	applied	to	many	different	CSS	sheets.	
You	define	a	style	by	starting	with	a	period	(.)	as	shown	above.	It	defines	a	class	style	
which can be referenced as <p class=”myFirstStyle”>.

17.5 Colors
One	of	the	most	important	formatting	features	in	web	design	and	development	has	
to	do	with	the	right	application	of	color.	Color	can	be	applied	to	text	(font)	or	the	

Figure 17.2(a): Saving a CSS page

Figure 17.2(b): Saved document

350

Cascading Style Sheet



background	of	a	section	or	entire	page.
In	CSS,	color	can	be	specified	in	either	of	three	ways:
1.	 Using	a	valid	color	name	as	a	value	in	a	declaration	e.g.	“red”, “blue”
2.	 Using	a	valid	hexadecimal	(HEX)	value	e.g.	#ff1100, #BB00CC
3.	 Using	the	Red,	Green,	Blue	(RGB)	scheme	e.g.	“rgb(200,1,1)”
Table	17.2	below	shows	the	values	representing	some	of	the	most	common	colors.

17.5.1 Using color names
The	following	pallete	in	Figure	17.3	shows	the	various	colors	and	their	names:

Figure 17.3: Colors and their equivalent names in CSS

17.5.2 Using HEX values
Hexadecimal	values	are	made	of	numbers	that	range	from	0	-	9,	A-F	(where	A	=	10	
and	F=15).	Some	common	HEX	values	are	shown	below	in	Figure	17.4:	

 

Figure 17.4: Colors and their equivalent HEX values in CSS

351

Cascading Style Sheet



17.5.3 Using RGB values
RGB	stands	for	the	three	primary	colors	of	Red,	Green	and	Blue.	By	combining	these	
colors	in	varying	percentages	or	ratios,	 it	 is	possible	to	generate	the	other	colors.	
Each	color	has	an	array	that	ranges	from	0-255.	The	following	are	examples	of	RGB	
colors	that	can	be	generated	using	the	stated	ratios:	Figure	17.5	below	shows	various	
RGB	colors.

 

Figure 17.5: Colors and their equivalent RGB values in CSS
After	briefly	 looking	at	 the	 syntax,	 let	us	now	delve	 into	 the	 specifics	of	how	 to	
include	CSS	in	HTML	pages.

17.6 Adding CSS to web pages

Activity 17.3: CSS coding strategies
Open a web browser. Search for the following information:
1.	 External	CSS
2. Internal CSS
3. Inline CSS
Write	notes	about	each	of	these	topics.	Present	to	the	class	your	findings.

17.6.1 External CSS
An	external	style	sheet	 is	 ideal	when	the	style	is	applied	to	many	pages.	With	an	
external	style	sheet,	you	can	change	the	look	of	an	entire	web	site	by	making	changes	
to	the	CSS	stylesheet	file.	Each	page	must	link	to	the	style	sheet	using	the	<link> 
tag.	The	<link> tag goes inside the head section as shown below: 

352

Cascading Style Sheet



<head>
<link rel=”stylesheet” type=”text/css” href=”ourstyle.
css” />
</head>

An	external	style	sheet	can	be	written	in	any	text	editor.	The	file	should	not	contain	
any html tags.	Your	stylesheet	should	be	saved	with	a	.css	extension.	An	example	
of	a	style	sheet	file	text	is	shown	below:	
 h1 {
    color:blue;
    } 
 P  {
    margin-left:20px;
  color:orange;
    } 
 body {
    background-image:url(“images/homepage.jpg”);
    } 
Do	not	leave	spaces	between	the	property	value	and	the	units	e.g.	should	be:	
 margin-left:20px;
but NOT:
 margin-left: 20px;

Activity 17.4: External CSS example
Create	a	folder	on	the	Desktop	and	name	it	MyCSS.	Type	the	stylesheet	file	text	above	
in	a	blank	Notepad	document.	Save	the	notepad	file	as	external.css in	the	MyCSS	
folder.	Now	open	a	new	Notepad	document	and	type	the	following	HTML	code.	
<!DOCTYPE html>
<html>
<head>
<link rel=“stylesheet” type=“text/css” href=“external.
css”>
</head>
<body>
<h1>Drug abuse and sexual immorality is not good.</h1>
<p>A good citizen pays taxes and avoids corruption.</p>
</body>
</html>
1.	 Save	the	above	code	as	htmlcss.html	in	the	MyCSS	folder.
2.	 Download	a	*.jpg	image	and	save	it	in	the	same	folder	as	the	CSS	and		 	
	 HTML	files.	Rename	it	as	homepage.jpg.

353

Cascading Style Sheet



3.	 Load	your	htmlcss.html file	in	your	localhost	web	server	as	guided	by	
	 the	teacher.	What	happens?		

17.6.2 Internal CSS
An	internal	css	applies	styles	to	a	single	page	or	style	sheet.	An	internal	style	sheet	
should	be	used	when	a	single	document	has	a	unique	style	i.e	a	single	page	has	styles	
that	are	not	needed	on	other	pages.	You	define	internal	styles	in	the	head	section	of	
a	HTML	page,	by	using	the	<style>	tag,	as	shown	in	Fig.	17.6:	

Figure 17.6: Internal css code in a text editor

17.6.3 Inline CSS 
An	inline	style	loses	many	of	the	advantages	of	style	sheets	by	mixing	content	with	
presentation.	Do	not	use	this	method	repeatedly.
To	use	inline	styles,	make	sure	to	use	the	style	attribute	in	the	relevant	tag.	The	style	
attribute	contains	CSS	properties.	The	example	below	shows	thow	he	paragraphs	
color and the left margin can be changed. 

<p style=“color:green;margin-left:10px”>This is a 
paragraph.</p>

354

Cascading Style Sheet



Each	CSS	property	(the	font-size	property	in	this	case)	is	followed	by	a	colon	and	a	
value.	Attribute	style	specifies	the	style	for	an	element.

17.7 CSS styles 

Activity 17.5: Fonts
Pair Work: 
From	you	previous	knowledge	working	with	text	in	other	applications,	answer	the	
following	questions:
1.	 State	four	types	of	fonts	that	you	know.	
2.	 Is	it	possible	to	know	the	font	used	by	looking	at	the	text?	If	so	how?

17.7.1 Fonts 
CSS has two types of font families:
1. Generic font families:	a	group	of	fonts	that	have	a	similar	look	and	feel			
 e.g. Serif, Monospace, Arial etc.
2.  A specific font family:	e.g.	Times	New	Roman,	Courier	New	etc.
The	font	family	in	CSS	is	set	by	specifying	the	font-family property. Sometimes, 
the	browser	may	not	be	able	 to	 support	 the	 font	 specified.	 It	 is	 therefore	wise	 to	
overload	the	font-family property	with	many	font	values	separated	by	commas	
in	order	to	create	a	fall	back	system	i.e.	its	like	telling	the	browser	to	display	using	
the	next	font	specified	if	the	first	cannot	be	found.
If	the	name	of	the	font-family	has	more	than	one	words,	it	must	appear	between	quote		
(“ ”) marks.	The	example	below	illustrates	this	strategy:
 p {
      font-family:“Times New Roman”,Times,serif;
  font-size:12px;
  }

17.7.1.1 Font size
Use the font-size	property	to	set	the	size	of	the	font:
 p {
      font-size:6em;
  }  
 h1{
  font-size:12px;
  }

17.7.1.2 Font style
In CSS font-style	property	is	used	to	display	the	font	either	in	italics	or	not.	The	

355

Cascading Style Sheet



following	example	shows	how	this	property	can	be	used:	
 p.italic {
       font-style:italic; /*display in italics*/
   }  
 p.normal{
   font-style:normal; /*display normal text*/
   }
 p.oblique{
   font-style:oblique; /*similar to italics*/
   }

Activity 17.6: Fonts example
Open	Notepad.	Create	the	following	and	save	it	as	myfonts.css in your folder.
 h1 {

      font-family:Arial, Helvetica, sans-serif;

  color:green;

  }

 h2 {

      font-family:“Times New Roman”;

  }

 h3 {

      font-family:“Courier New”,Courier,monospace;

  color:red;

  }

 h4 {

      font-family:“Times New Roman”;

  font-style:italic;

  color:#00F;

  font-size:30px;

  }

Now	create	a	HTML	file	with	the	following	code	and	save	it	as	myfonts.html.
<!DOCTYPE html>
<html>
<head>
<link rel=“stylesheet” type=“text/css” href=“myfonts.css”>
</head>
<body>

356

Cascading Style Sheet



<h1>Drug abuse and sexual immorality is not good.</h1>
<h2>A good citizen pays taxes and avoids corruption.</h2>
<h3>It is good manners to help the visually challenged 
citizen to cross the road.</h3>
<h4>The girl child should be taken to school just like 
the boy child.</h4>
</body>
</html> 
Now	load	your	web	page	in	your	localhost	server.	
The	result	should	be	as	shown	in	Figure	17.7	below:

Figure 17.7: Fonts in CSS

17.7.2 Margins 

Activity 17.7: Margins
What	is	a	margin?	Why	are	margins	important?

In	CSS,	margins	are	spaces	that	are	generated	around	elements.	The	margin property 
is	used	to	achieve	this	by	specifying	the	size	of	the	white	space	outside the border. 
We	have	the	margin-top, margin left, margin right and margin-
bottom	properties.	The	following	example	shows	how	you	can	apply	this	property	
to set the margind for a <p> element. 
 p {
      margin-top:90px;

357

Cascading Style Sheet



     margin-bottom:80px;
     margin-right:50px;
     margin-left:100px;
 }

Activity 17.8: Margins example
Create	the	following	HTML	page	and	save	it	as	myMargins.html. What type of CSS 
have	we	used?	Load	the	HTML	page	in	your	server.	What	do	you	see?
<!DOCTYPE html>

<html>

<head>

<style>

 p {

      background-color:yellow; }

 p.ex {

      border:2px solid blue;

      margin-top:100px;

      margin-bottom:100px;

      margin-right:150px;

      margin-left:80px;  } 

</style>

</head>

<body>

<h2>Specifying Margins for a Paragraph Element:</h2>

<p>This paragraph has no specified margins.</p>

<p class=“ex”>This paragraph has a border and the margins.</p>

</body>

</html>

 
 

Figure 17.8: Margins

358

Cascading Style Sheet



17.7.3 Display
Elements	in	HTML	can	be	displayed	either	in	block or inline	value	mode	by	default.	
1. Block level element:	an	element	that	displays	in	block	mode	fills	the	entire		
 width of the screen by default and always starts on a new line e.g. the   
 <div>,<form>,<header>,<p>, <h1> etc.
2. Inline level element:	An	inline	element	does	not	start	on	a	new	line.	It		 	
	 takes	only	the	width	that	is	required.	Examples	include	<span>,<a>   
 and <img>

17.7.3.1 Hiding elements
Use the display:none; declaration to hide elements that you wish not to appear 
on the screen e.g. 

Activity 17.9: Hiding elements
Create	the	following	HTML	file	and	run	it	to	see	what	happens:
<!DOCTYPE html>
<html>
<head>
<style>
h1.hide {
    display:none;
}
</style>
</head>
<body>
<h1>This heading will be visible</h1>
<h1 class=“hide”>This heading will be hidden</h1>
</body>
</html>  

17.7.3.2 Overiding default display values
The	<li>	element	creates	a	block	list	by	default.	However,	it	is	possible	to	override	
it	so	that	it	can	can	be	displayed	as	an	inline	element.	One	good	example	is	when	you	
create	menus	at	the	top	of	your	page.	Try	out	the	following	and	load	it	in	your	browser:
<!DOCTYPE html>

<html>

<head>

<style>

li {

359

Cascading Style Sheet



    display: inline;

}

</style>

</head>

<body>

<p>Display a list of links as a horizontal menu:</p>

<ul>

<li><a href=“/myFolder/home.html”>Home</a></li>

<li><a href=“/myFolder/about.html”>About</a></li>

<li><a href=“/myFolder/Services.html”>Services</a></li>

</ul>

</body>

</html>   
If	you	do	this	correctly,	you	should	get	a	web	page	like	the	one	shown	in	Figure	17.9	
below:

Figure 17.9:Inline dispaly of <li> elements

17.7.4 Background 
The	background	of	 a	web	page,	 division	or	 text	 is	 very	 important.	 It	 determines	
the	general	ambience	of	 the	web	page	 to	 the	visitor.	There	are	many	background	
properties.	A	few	of	them	include:
1. background-color:	used	to	set	the	background	color	of	an	element.

 h1 {
      background-color:green;
  }
This	means	all	<h1>	elements	(headings)	will	have	a	green	background.	

360

Cascading Style Sheet



2. background-image:	used	to	set	an	image	as	the	background	of	an		 	
	 element.	If	the	image	is	small,	it	repeats	by	default	until	it	fills	the	space.

 body {
      background-image:url(“flower.gif”);
  }
This	will	apply	the	image	flower.gif to the body section of the web page. In case 
you do not want the image to repeat, then you can modify the CSS rule as follows:

 body {
      background-image:url(“flower.gif”);
  background-repeat:no-repeat;
  }

3. background-attachment:this	 is	 used	 to	 fix	 an	 image	 in	 a	 particular		
 position so that it does not  scroll with the rest of the page.

 body {
      background-image:url(“flower.gif”);
  background-repeat:no-repeat;
  background-position:left top;
  background-attachment:fixed;
  }
NB: It is also possible to use shorthand	to	specify	background	properties.	This	can	
be	achieved	as	shown	below:	
   
body {
 background:#ffffff url(“backg.png”) no-repeat right top;
 }

Activity 17.10: Background example
Create	the	following	HTML	page	and	save	it	as	background.html. Download	an		
image	of	the	flag	of	Rwanda	and	rename	it	as	flag.jpg.	Save	both	in	myFolder.		
<!DOCTYPE html>
<html>
<head> 
<style>
 body {
      background-image:url(“flag.png”);
      background-color:#ffccc0;
  background-repeat:no-repeat;
      background-position:right top;
      margin-right:200px;
      background-attachment:fixed;
  }

361

Cascading Style Sheet



</style>
</head>
<body>
<h1>Hello to All!</h1>
<p>Plese scroll down. Does the image also scroll? </p>
<p>Plese scroll down. Does the image also scroll? </p>
<p>Plese scroll down. Does the image also scroll? </p>
</body>
</html>
NB:	 In	 the	Notepad	 document	 background.html	 that	 you	 create,	make	 sure	 the	
paragraphs starting with <p>	are	many	i.e.	20	and	above	so	as	to	fill	and	overflow	
the web page at runtime. If the web page is not full, scroll bars will not appear hence 
you	will	not	be	able	to	scroll.	The	result	of	this	HTML	code	is	as	shown	in	Figure	
17.10	below:

 

Figure 17.10:Background color and image that is fixed

17.7.5 Positioning 
The	positioning	properties	allow	you	to	position	an	element	on	the	screen.	It	can	
help	you	to	define	which	element	will	be	behind	another,	or	what	should	happen	if	
the content of an element becomes too big.
You	can	position	elements	using	the	top,	bottom,	left,	and	right	properties.	You	must	
set	 the	position	property	before	 this	values	can	work.	They	also	work	differently	
depending	on	the	positioning	method.	There	are	four	different	positioning	methods.	
This	includes:	

17.7.5.1  Static Positioning 
HTML	elements	 have	 static	 positioning.	A	 static	 positioned	 element	 follows	 the	
normal	flow	of	a	page.	Static	positioned	elements	are	not	affected	by	the	top,	bottom,	
left, and right properties of CSS.

17.7.5.2  Fixed Positioning 
An	element	with	fixed	position	is	positioned	stationary	relative	to	the	browser	window.	

362

Cascading Style Sheet



It	does	not	move	even	when	the	window	is	scrolled.	A	CSS	code	extract	that	fixes	an	
element	can	take	the	following	form:	
 p.pos_fixed { /*the paragraph element*/ 

     position:fixed;

     top:40px; 

     right:5px; 

    } 

NB:	Some	browsers	like	Internet	Explorer	support	the	fixed	value	only	if	a	!DOCTYPE	
is	specified.	

17.7.5.3   Relative Positioning 
A	relative	positioned	element	is	positioned	relative	to	its	normal	position.

Example 
 h2.pos_left  { 
    position:relative; 
    left:-20px; 
    } 
 h2.pos_right { 
  position:relative;
   left:20px;
   } 

The	 content	 of	 relatively	 positioned	 elements	 can	 be	moved	 and	 overlap	 other	
elements,	but	the	reserved	space	for	the	element	is	still	preserved	in	the	normal	flow.
Example
 h2.pos_top  { 
  position:relative;
   top:-50px;
    }

Relatively	 positioned	 elements	 are	 often	 used	 as	 container	 blocks	 for	 absolutely	
positioned elements. 

Absolute Positioning 
An	absolute	position	element	is	positioned	relative	to	the	first	parent	element	that	
has	a	position	other	than	static.	If	no	such	element	is	found,	the	containing	block	is	
<html>:

Example 
 h2 {
  position:absolute; 

363

Cascading Style Sheet



  left:100px; 
  top:150px; 
   }
Absolutely	positioned	elements	are	removed	from	the	normal	flow.	The	document	
and	other	elements	behave	like	the	absolutely	positioned	element	does	not	exist.	
Absolutely	positioned	elements	can	overlap	other	elements.	

17.7.6 Floating

Activity 17.11: CSS float property
Fetch some water on a pail or basin. Float some bottletops on the water. try the 
following:
1.	 Arrange	them	to	float	on	a	straight	line	relative	to	each	other.
2. Push them to float to the left or right.
3.	 Is	it	easy	to	have	the	bottletops	maintaining	their	order?

With	CSS	float,	an	element	can	be	pushed	to	the	left	or	right,	allowing	other	elements	
to	wrap	around	 it.	Float	 is	very	often	used	for	 images,	but	 it	 is	also	useful	when	
working	with	layouts.	

17.7.6.1  How Elements Float 
Elements	are	floated	horizontally;	Either	left	or	right	on	the	page,	not	up	or	down.	
A	floated	element	will	move	as	far	to	the	left	or	right	as	it	can.	Usually	this	means	all	
the	way	to	the	left	or	right	of	the	containing	element.	The	elements	after	the	floating	
element	will	flow	around	it.	The	elements	before	the	floating	element	will	not	be	
affected.	If	an	image	is	floated	to	the	right,	a	following	text	flows	around	it,	to	the	left:

Example 
 img { 
  float:right; 
   }

17.7.6.2  Floating Elements Next to Each Other 
If	you	place	several	floating	elements	after	each	other,	they	will	float	next	to	each	
other	if	there	is	room.	Here	we	have	made	an	image	gallery	using	the	float	property:	

Example
 .thumbnail { 
  float:left;
   width:110px;
   height:90px; 
  margin:5px;
  }

364

Cascading Style Sheet



17.7.6.3 Turning off Float - Using Clear
Elements	after	the	floating	element	will	flow	around	it.	To	avoid	this,	use	the	clear	
property.	The	clear	property	specifies	which	sides	of	an	element	other	floating	elements	
are not allowed. 

Add	a	text	line	into	the	image	gallery,	using	the	clear	property:	

Example
 .text_line{ 
  clear:both;
   } 

After	learning	all	the	above	concepts,	it	is	time	for	you	to	do	the	following	Activity	
which will apply the concepts learned.

17.7.7  Padding
In CSS padding	properties	are	used	to	create	or	generate	space	around	content.	This	
is seen as white space between the element content and the element border. When 
you	set	a	padding	value,	it	clears	the	area	around	the	content	within	the	inside	of	the	
margin.	Figure	17.11	below	represents	this	concept	in	a	block	diagram.
    

Figure 17.11: CSS padding

When specifying the padding, we use the following CSS properties:
1. padding-top: specifies	the	top	padding	of	an	element.
2. padding-right:	specifies	the	right	padding	of	an	element.
3. padding-bottom:	specifies	the	bottom	padding	of	an	element.
4. padding-left:	specifies	the	left	padding	of	an	element.
When	specifying	the	padding	value	associated	to	a	particular	property,	you	can	use	
the following units:

365

Cascading Style Sheet



a) length:	you	can	specify	this	by	using	pixels	(px),	points	(pt),	Centimetres	(cm)	
etc.

b) percentage(%):	 it	 specifies	 the	 padding	 space	 in	 terms	 of	 the	width	 of	 the	
containing element.

c) inherit:	specifies	that	the	padding	should	be	inherited	from	a	parent	element.
For	purposes	of	simplicity,	we	shall	demonstrate	how	to	use	the	pixels	to	specify	
the	padding	value.	
Example: If you wish to specify the padding around the element p then do the 
following:

p {
    padding-top: 20px;
    padding-right: 20px;
    padding-bottom: 20px;
    padding-left: 50px;

 }
The	above	CSS	code	can	be	summarised	as:

p {
    padding: 20px 20px 20px 50px;

 }

Activity 17.12: Setting the padding of an element
Open	Notepad	and	type	the	following	text	exactly	the	way	it	is	below:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>
<html>
<head>
<meta http-equiv=”Content-type” content=”text/html; 
charset=UTF-8” />
<title>CSS Padding Example</title>
<meta name=”MSSmartTagsPreventParsing” content=”true” />
<link rel=”stylesheet” type=”text/css” href=”CSSFiles/
padding.css”/>
</head>
<body>
<h2>Applying Padding to an Element in CSS:</h2>

366

Cascading Style Sheet



<p>In this paragraph, NO padding has been applied.</p>
<p class=”one”>In this paragraph, YES padding of 50px left, 
20px right, 20px top and 20px bottom has been applied.</p>
</body>
</html>

Save	the	text	file	as	padding.html in	a	folder	of	your	choice.	In	this	case	we	have	
saved	it	in	the	htdocs	folder	of	the	WAMP	server.	

Now	create	the	following	CSS	file	too	and	save	save	it	as	padding.css in a folder of 
your	choice.	In	this	case,	we	saved	ours	in	a	folder	called	CSSFiles	which	is	within	
htdocs folder.

p.one {
    border:1px solid red;
    background-color:yellow;
    padding:20px 20px 20px 50px;
 }
Now load your padding.html	file	in	your	web	server.	What	do	you	see?	You	should	
get the following result as illustrated by Figure 17.12.

Figure 17.12: Applying padding to a paragraph

367

Cascading Style Sheet



17.7.8  Borders
Using	CSS,	a	border	can	be	specified	around	an	element	like	a	paragraph.	You	specify	
a border using the border-style	property.	The	style	of	the	border	line	can	also	
be	specified	using	various	values	as	follows:
	 • dotted:	defines	a	dotted	border	around	the	specified	element.
	 •		dashed:	defines	a	dashed	border	around	the	specified	element.
	 •		solid:	defines	a	solid	border	around	an	element.	
We	can	define	different	elements	with	different	border	styles	as	follows:
 p.dashed {border-style: dashed;}
 p.dotted {border-style: dotted;}
 p.solid {border-style: solid;}

The	results	of	such	specifications	in	CSS	would	resemble	the	illustrations	in	Figure	
17.13 below:
 

Figure 17.13: Different border styles

Activity 17.13: Setting the padding of an element
Open	Notepad	and	type	the	following	text	exactly	the	way	it	is	below	then	save	the	
file	as	borders.html:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//
EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>
<html>
<head>
<meta http-equiv=”Content-type” content=”text/html; 
charset=UTF-8” />
<title>CSS Padding Example</title>
<meta name=”MSSmartTagsPreventParsing” content=”true” />
<link rel=”stylesheet” type=”text/css” href=”CSSFiles/
borders.css”/>
</head>
<body>
<h2>Applying Borders to an Element in CSS:</h2>

368

Cascading Style Sheet



<p>In this paragraph, NO BORDER has been applied.</p>
<p class=”dashed”>In this paragraph, YES a DASHED border 
is applied.</p>
<p class=”solid”>In this paragraph, YES a SOLID border is 
applied.</p>
<p class=”dotted”>In this paragraph, YES a DOTTED border 
is applied.</p>
</body>
</html>

Now	create	the	following	in	Notepad	too	and	save	it	as	borders.css.	
 p.dashed {border-style: dashed;}
 p.dotted {border-style: dotted;}
 p.solid {border-style: solid;}

After	that	load	the	HTML	file	(borders.html)	in	your	browser.	What	do	you	see?	Your	
results should be similar to what is shown in Fig. 17.14 below:
  

Figure 17.14: Borders in CSS

17.8 Creating a CSS page from Scratch

Activity 17.14: Creating CSS page example
Individual	Work:	Assuming	you	want	to	develop	a	CSS	web	page	which	contains	
information	about	resent	discoveries	in	space	science.	You	are	told	that	the	website	

369

Cascading Style Sheet



should	have	a	layout	similar	 to	Figure	17.15	below.	Follow	the	steps	provided	to	
finally	create	your	page.

 

Figure 17.15 CSS webpage layout

1.	 Start	by	creating	the	following	directory	structure	on	the	desktop	or	any	other	
location	in	your	computer.	If	you	are	using	WAMP	server,	create	it	in	the	www	
folder	because	this	is	the	default	folder	where	Apache	sever	looks	for	websites.

	 Main	Folder:	myFolder
 Subfolders within myFolder -- CSSFiles; Pictures.
2.	 Open	a	text	editor	and	then	create	the	following	basic	HTML	page:
<html>
<head>
<title> Respect for People with Special Needs </title>
</head>
 <body>
 </body>
</html>
Save	the	page	as	index.html in the htdocs directory.

3.	 Looking	at	Figure	17.15,	the	width	of	the	page	is	760	pixels.	We	therefore,	start	
by	creating	a	container	on	 the	page	which	 is	 this	wide.	Let	 the	container	be	
centered on the page. Nothing will float outside this width on the page. Between 
the <body>  </body>	tags	insert	container	creating	text	as	shown	below:	

370

Cascading Style Sheet



<html>
<head>
<title> Respect for People with Special Needs </title>
</head>
<body>
<div id=“help-container”
Welcome to this page. We care for people who have special 
needs like the visually challenged, deaf, dumb and those 
with physical challenges.
</div>
</body>
</html>

A	container	called	help-container	has	now	been	created	by	HTML	on	the	page.	Save	
and	exit.

4.	 Create	a	new	blank	text	file.	Save	it	as	rulestyles.css in the CSSFiles folder. 
Enter	the	following	text	in	the	file	and	save.

 #help-container {
     }
The	#	placed	before	the	ID	tells	the	browser	that	we	are	selecting	a	container	ID	
that	we	have	already	defined.	If	we	were	selecting	a	class	we	would	start	with	a	(.)	
instead	for	example	.help-stars{}	if	such	a	class	did	exist.
We	use	IDs	to	define	elements	that	appear	once	on	a	page.	We	use	classes	for	elements	
that appear many times on a page e.g. font formats.
5.	 To	add	background	color	to	our	container,	we	can	do	the	following:
 #help-container {
          background: blue;
          width: 760px;
    color:white;
    font-size:30px;
    }

6.	 After	saving	(5)	above,	open	index.html	and	modify	it	to	look	as	below	though	
do not include the line numbers.

<!DOCTYPE	html	PUBLIC	“-//W3C//DTD	XHTML	1.0	Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

371

Cascading Style Sheet



1. <html>

2. <head>

3. <meta http-equiv=“Content-type” content=“text/html; 
charset=UTF-8” />

4. <title> We Care for Special People </title>

5. <link rel=“stylesheet” type=“text/css” href=“CSSFiles/
galaxy.css” />

6. <style type=“text/css” media=“all”>@import “CSSFiles/
rulestyles.css”;</style> 

7. </head>

8. <body>

9. <div id=“help-container”>
10. Welcome to this page. We care for people who have special 

needs like the visually challenged, deaf, dumb and those 
with physical challenges.

11. </div>

12. </body>

13. </html>

Explanations:
Line	3:	it	sets	the	parsing	text	format.
Line	5:	it	links	the	HTML	file	to	the	CSS	file	or	style	sheet.
Line	6:	works	the	same	as	line	5.	You	can	do	without	it	if	you	have	line	5.
Line	9:	calls	the	CSS	ID	in	the	div	container.
Line	10:	applies	the	CSS	ID	formats	on	the	text	and	div	container.		
7.	 Start	your	server.	In	the	browser	type:	localhost/htdocs	and	then	press	the	Enter	

key.	You	should	be	able	to	see	the	results	as	shown	in	Figure	17.16	below:

Figure 17.16: CSS page with a <DIV> element which has a blue background. 
8.	 Notice	the	container	seems	to	leave	some	white	space	on	the	left	and	top	of	the	

screen.	We	can	be	able	to	center	 it	on	the	screen	by	using	the	margin	=auto;	
property	in	the	CSS	file.	Here	we	go:

Notice the comma between html and body: it stands for or
 html, body {

372

Cascading Style Sheet



   margin:0;
   padding:0;
   }
 #help-container {
          background:pink;
          margin:auto;
          width:760px;
   }
The	first	three	lines	forces	the	margin	and	padding	to	start	from	0	since	by	default	
html	usually	leaves	space	on	the	left	and	top	of	the	page	as	margins	and	padding.	
If you refresh your web page, you will notice that the container now starts from the 
very	edge.	
9.	 Good.	We	are	now	ready	to	add	the	various	divisions	of	the	page	by	dividing	

the “help-container” in	the	HTML	file.	We	want	to	create	the	layout	in	Figure	
17.1.	So	we	add	new	divs	each	with	its	own	unique	id.	Here	we	go:

  <div id=“help-container”>
  <div id=“menu”>Menu</div>
  <div id=“header”>Header</div>
  <div id=“sidebar-a”>Sidebar A</div>
  <div id=“content”>Content</div>
  <div id=“footer”>Footer</div>
  </div>
If	you	refresh	you	page,	it	should	now	look	as	the	one	in	Figure	17.17.	Notice	that	
the	divs	are	arranged	one	above	another	as	is	the	normal	document	flow.	Using	CSS	
we	are	going	to	specify	a	different	layout.	We	achieve	this	by	going	to	our	CSS	style	
sheet,	removing	the	background	color	from	the	main	container	and	specifying	new	
values	for	all	our	new	divs	separately.		
 

Figure 17.17: A CSS page with the five divs

373

Cascading Style Sheet



NB:	We	deleted	the	text	in	the	help-container	div.	We	also	opened	the	galaxy.css	and	
specified	a	color	for	each	new	div	we	created	in	order	to	get	what	you	see	in	Figure	
17.10.
10.	 Now,	edit	rulestyles.css	to	look	as	below.	We	wish	to	float	some	of	the	<DIV>	

elements to the right or left depending on our design:
1. html, body {
2. margin:0;
3. padding:0;
4. }
5. #help-container {
6. width:760px;
7. margin=auto;
8. }
9. #menu {
10. background-color:orange;
11. height:50px
12. font-size:zem;
13. }
14. #header {
15. background-color:red;
16. height:200px
17. }
18. #sidebar-a {
19. float:right;
20. background-color:blue;
21. width:260px;
22. }
23. #content {
24. float:left;
25. background-color:green;
26. width:500px;
27. }
28. #footer {
29. background-color:orange;
30. width:760px;
31. }

374

Cascading Style Sheet



Let	us	try	to	explain	some	of	the	code	on	the	fly:
•	 Lines	6,21,26,31:	they	set	the	width	of	the	div.
•	 Lines	11,16:	sets	the	height	of	the	div.	Where	no	height	is	specified,	the	div	will	

expand	with	text.
•	 Line	19:	tells	the	sidebar-a	div	to	float	to	the	right.
•	 Line	24:	tells	the	content	div	to	float	to	the	left.	
Save	 the	changes	and	 refresh	your	page.	Your	page	 should	now	 look	 like	Figure	
17.18 below:
 

Figure 17.18: the CSS page with main divs as specified. Notice how Content floats on the 
left and Sidebar A on the right; and how they interleave with one another. Check the code 

that sets this again. 
11. This	layout	looks	okay	for	now	as	long	as	you	have	not	added	text.	Upon	adding	

some	text,	some	misalignments	will	start	to	be	seen.	For	example,	let	us	add	the	
following	text	in	the	content	area:

 <div id=“content”>

How to Help Challenged Citizens
•	 Let	 all	 people	 respect	 the	 visually	 challenged,	 deaf	 and	 dumb	without	

discrimination.
•	 For	citizens	that	don’t	have	limbs,	support	them	physically	when	required	and	

financially to help them purchase prosthetics.
•	 The	education	system	should	provide	special	books	written	in	Braille	to	support	

the	visually	challenged.
</div>
Notice	what	happens	to	the	page	layout	now	as	captured	in	Figure	17.19.

375

Cascading Style Sheet



 

Figure 17.19: Content area with text causes layout problems
Notice	that	the	text	in	the	content	area	does	not	push	the	footer	down	with	it	as	we	
expect.	This	is	because	any	floated	element	in	CSS	cannot	push	the	elements	below	
it.	We	need	to	introduce	the	“clear”	property	in	the	footer	which	will	make	sure	that	
it	is	pushed	down	as	the	elements	above	it	expand.	This	is	how	you	will	do	it:	open	
your	css	style	sheet	then	make	sure	that	the	code	under	footer	looks	as	follows:
 #footer {
   clear:both;
   background-color:orange;
   width:760px;
   }
The	clear	property	will	have	the	effect	on	the	footer	as	captured	in	Figure	17.20.	
refresh your page to see this: 
 

376

Cascading Style Sheet



Figure 17.20: Footer pushed down with text.
12.	 In	some	browsers,	the	boundary	between	the	Content	and	the	Sidebar	A	may	not	

be	as	clearly	defined	as	is	shown	in	Figure	17.7.	Instead,	the	text	of	the	content	
may	flow	into	the	white	space	under	the	blue	Sidebar	A.	If	this	happens,	then	
you	may	need	a	different	means	of	specifying	the	extent	of	the	right	margin	of	
the	Content	relative	to	the	right	margin	of	the	container.

You	will	need	to	use	the	“margin-right”	property	i.e.
 #content {
   margin-right:260px;
   background-color:green;
   }
In	so	doing,	you	are	telling	the	browser	that	the	right	margin	of	the	content	div	is	set	
at	260px	from	the	right	margin	of	the	main	container	(galaxy-container).	Hence,	the	
container	region	cannot	overlap	with	the	sidebar	that	has	been	floated	to	the	right.
You	can	now	use	the	text	formatting	commands	to	format	the	text	in	each	div.	We	
need to do the following:

377

Cascading Style Sheet



(a)	 To	add	a	menu	to	the	menu	div.	
(b)	 To	add	a	title	in	the	Header	div.
(c)	 To	add	copyright	information	in	the	footer.
13.	 Add	the	following	in	the	header	section:
 <div id=“header”>
 <h2>Let Us Learn Sign Language </h2>
 </div>

Refresh	your	page	to	see	the	new	header	as	shown	in	Figure	17.21.	
 

Figure 17.21: New header
Notice	 the	space	between	the	menu	and	the	header.	This	 is	caused	by	the	default	
padding	and	margins.	Open	your	style	sheet	file	and	strip	these	default	values:	
 h2 {
  margin:0;
  padding:0;
  }

378

Cascading Style Sheet



If you do it correctly the white space will disappear.
14.	 	To	add	a	menu	we	use	the	unnumbered	list.	Edit	the	text	in	the	menu	div	section	

as follows:
1.	 <div	id=”menu”>
2.	 <ul>
3.	 <li><a		href=“#”>Home</a></li>
4.	 <li><a	href=“#”>About</a></li>
5.	 <li><a	href=“#”>Our	Services</a></li>
6.	 <li><a	href=“#”>Contacts</a></li>
7.	 </ul>
</div>Line	 2:	 the	 <ul>	 stands	 for	 unnumbered	 list.	 In	 this	 instance,	 it	 acts	 as	 a	
container for the menu items.
Line	3-6:	the	<li>	stands	for	list	values.	Each	li	creates	a	unique	identifier	for	the	menu	
items.	Each	menu	item	should	ideally	be	linked	to	a	page	(hence	the	href	property).
If	you	refresh	your	page	now,	yo	will	see	your	menu	having	bullets	one	item	after	
the	next.	We	don’t	want	a	bulleted	list.	We	want	a	horizontal	menu.	We	therefore	
move	to	step	15	below.
15. Open the CSS style sheet and edit #menu to become menu ul and menu li:
1. #menu ul {
2. list-style:none;
3.	 margin:0;
4.	 padding:0;
5.	 height:35px
6.	 }
7. #menu li {
8. float:left;
9.	 margin:0	1.00em;
10.	 }

Explanations:
Line	1:	points	to	the	unnumbered	list	menu	(ul).
Line	2:	specifies	that	the	list	has	no	numbering	style.
Line	7:	points	to	the	menu	list	items.
Line	8:	floats	the	menu	list	items	to	the	left	and	arranges	them	horizontally	one	after	
the	next.
Line	9:	specifies	the	spaces	between	menu	items.
Save	your	work	and	refresh	your	page.	It	should	now	look	like	Figure	17.22	below:

379

Cascading Style Sheet



 

Fig. 17.22: The menu or navigation pane is ready
16.	 Let	us	now	format	the	text	on	our	page.	Let	us	start	by	creating	a	heading	for	

our	content.	The	heading	is	“How	to	Help	Challenged	Citizens”.	We	want	to	
format it with the <h2> tag:

<div id=“content”>

<p><h2>How To Help Challenged Citizens</p></h2>
-	 Let	all	the	people	respect	the	visually	challenged,	deaf	and	dumb	citizens.
-	 For	citizens	that	don’t	have	limbs,	support	 them	physically	when	required	and	

financially	to	help	them	purchase	prosthetic	limbs.
-		 The	education	system	should	provide	special	books	written	in	Braille	to	support	

the	visually	challenged.
</div>
Do	not	forget	to	add	the	following	in	the	style	sheet	file:
 h3 {
  margin:0;
  padding:0;

380

Cascading Style Sheet



  }
 p {
  margin:0;
  padding:0;
  } 
17.	 Let	us	display	the	image	of	a	sign	languahe	in	the	sidebar.
Download	a	.jpg	image	of	one	of	sign	language	and	save	it	in	the	Pictures	folder	as	
galaxy.jpg.	To	display	this	in	the	sidebar	div	add	edit	the	code	in	the	sidebar-a	section	
of the style sheet:

#sidebar-a {
float:right;
background-image:url(../Pictures/signlanguage.jpeg); 
width:260px;
height:237px;
}

Carefully	specify	the	dimensions	of	the	image	to	fit	the	sidebar	space.	When	you	
refresh	your	page,	you	now	have	the	following	as	shown	in	Figure	17.23.	Notice	we	
have	deleted	some	of	te	text	in	the	content	area.	Also,	notice	the	image	causes	the	
sidebar	to	flow	downwards	so	that	it	can	fit	according	to	the	specifications	that	you	
gave	in	the	CSS	file.

Figure 17.23: An image inserted in the sidebar 
NB:	Check	for	the	code	of	this	Activity	in	the	code	section	below.

381

Cascading Style Sheet



Code for HTML Page index.html
<html>

<head>

<meta http-equiv=”Content-type” content=”text/html; 
charset=UTF-8”/>

<title> We Care for Special People </title>

<link rel=”stylesheet” type=”text/css” href=”rulestyles.css”/>

<style type=”text/css” media=”all”>@import “rulestyles.css”;</
style>

</head>

<body>

<div id=”help-container”>

<div id=”menu”>

 <ul>

 <li><a  href=“#”>Home</a></li>

 <li><a href=“#”>About</a></li>

 <li><a href=“#”>Our Services</a></li>

 <li><a href=“#”>Contacts</a></li>

 </ul>

</div>

<div id=”header”><h2>Let Us Learn Sign Language </h2></div>

<div id=”sidebar-a”><p> </div>

<div id=”content”>

 <h1>How to Help Challenged Citizens</hi>

<p>&bullet;&nbsp;Let all people respect the visually challenged, 
deaf and &nbsp;&nbsp;dumb without discrimination.</p>

<p>&bullet;&nbsp;The education system should provide special 
books &nbsp;&nbsp;written in Braille to support the visually 
challenged.</p>

</div>

<div id=”footer”>Footer</div>

</div>

</body>

</html>

382

Cascading Style Sheet



Code for CSS Stylesheet rulestyles.css

html, body {

 margin:0;

 padding:0;

 }

 h2 {

 margin:0;

 padding:0;

 }

 #help-container {

 width:760px;

 margin=auto;

 color:white;

 }

  #menu {

 background-color:orange;

 height:35px;

 font-size:24px;

 float:left;

 width:760px;

 }

  #menu ul {

 list-style:none;

 margin:0;

383

Cascading Style Sheet



 padding:0;

 height:35px

 }

  #menu li {

 float:left;

 margin: 0 1.00em;

 }

  #header {

 background-color:red;

 height:50px;

 font-size:24px;

 clear:both;

 }

  #sidebar-a {

 float:right;

 background-color:blue;

 background-image:url(signlanguage.jpg); 

 width:260px;

 height:337px;

 }

  #content {

 float:left;

 background-color:green;

384

Cascading Style Sheet



 width:500px;

 font-size: 14px;

 }

  #footer {

 clear:both;

 background-color:orange;

 width:760px;

 font-size:24px;

 }

Activity 17.15: CSS assignment
Create	a	CSS	web	page	for	your	school.	Let	it	have	a	layout	like	the	one	in	Activity	
17.6	but	you	can	choose	to	have	a	different	layout	if	you	so	wish.

Assessment Exercise 17.1
Fill	in	the	blanks	in	the	following	statements:
(a)	 Using	the	___________	element	allows	authors	to	use	external	style	sheets	in	

their pages.
(b)	 To	apply	a	CSS	rule	to	more	than	one	element	at	a	time,	separate	the	element	

names with a(n)_________.
(c)	 Pixels	are	a(n)__________length	measurement	unit.
(d)	 The	__________pseudo	class	is	activated	when	the	user	moves	the	mouse	cursor	

over	the	specified	element.
(e)	 Setting	the	overflow	property	to_______	provides	a	mechanism	for	containing	

inner	content	without	compromising	specified	box	dimensions.
(f) While ___________ is a generic in-line element that applies no inherent 

formatting	and	____________is	a	generic	block-level	element	that	applies	no	
inherent formatting.

(g)	 Setting	 property	 background-repeat	 to	 ____________tiles	 the	 specified	
background	image	vertically.

385

Cascading Style Sheet



(h)	 If	you	float	an	element,	you	can	stop	the	flowing	of	text	by	using	property________.
(i)	 The			property	allows	you	to	indent	the	first	line	of	text	in	an	element.
(j)	 Three	 _______	 components	 of	 the	 box	model	 are	 the________,	 ________	

and_______.

Unit Test 17
1.			 Write	a	CSS	rule	that	makes	all	text	in	a	div	to	be	of	font	color	green.
2.	 Write	a	CSS	rule	that	places	a	background	image	in	a	div.
3.		 Write	a	CSS	rule	that	gives	all	h1	and	h2	elements	a	padding	of	0.5	ems,	and	a	

margin	of	0.5	ems.
4.		 Create	a	CSS	web	page	displaying	the	flag	of	Rwanda	floating	to	the	left.	Write	

the	National	anthem	of	Rwanda	and	float	it	to	the	right	of	the	flag.	
5.		 Using	HTML	 and	CSS	 create	 a	 static	website	 for	 your	 school	 that	 has	 the	

following features:
					 (a)		The	school	logo	at	the	top	center	of	the	page.
					 (b)	The	school	motto	just	below	the	logo,	also	centered	on	the	page.
					 (c)		A	menu	bar	with	the	following	commands:	Home,	About,	Subjects,	Clubs,		

	 Games	Teams.
     (d) Create three sections one on top of the other below the menu.    

 In the first section, display a picture of your school.
					 (e)		In	the	second	section,	describe	the	location	of	your	school	and	give		 	

	 directions	on	how	a	visitor	can	trace	their	way	to	the	school.
					 (f)		In	the	lowest	section,	give	the	contact	information	for	the	school	e.g.		 	

	 Telephone,	address	etc.
				 (g)	At	the	bottom	of	the	page,	include	the	copyright	information.

NB:	Specify	the	font	styles,	color	and	background	color	as	you	wish.	However	
make	sure	that	your	colors	give	an	attractive	interface.	A	good	method	
of	selecting	colors	is	to	use	the	color	scheme	of	your	school	if	it	exists.	

386

Cascading Style Sheet



387

Glossary
Algorithm: A logical step-by-step procedure for solving a problem in terms of 

instructions to be executed, and the order in which the instructions are to be 
executed.

Arithmetic and Logic Unit (ALU): A part of the central processing unit that performs 
computations and makes comparisons as instructed.

Array:	An	array	is	a	group	of	contiguous	memory	locations	having	identified	by	the	
same name for storing data the same type.

Artificial intelligence (AI): A	field	of	computer	technology	in	which	researchers	
and electronic product developers concentrate on developing computers that 
mimic human intelligence.

Assignment: In programming context, assignment is an operation that causes operand 
on the left side of the assignment operator to have its value changed to the value 
on the right.

BIOS:	This	is	an	abbreviation	for	Basic	Input	Output	System,	a	read-only	firmware	
that contains the basic instruction set for booting the computer: 

Bit:  Bit is a short form of binary digits referring to a single digit 0 or 1 used to 
represent any data in digital computers.

Boolean data type: Data type used to represent two values: true (1) or false (0).
Boolean logic: A form of algebra in which all values are reduced to either true or false 
Boot Order:  Sequence in which a computer should check available storage devices 

for	the	operating	system’s	boot	files.
Byte: A group of bits used to store a single character. A byte usually consists of seven 

or eight bits, which the computer handles as a unit.
Cascading style sheet:	Styles	that	define	how	HTML	elements	and	markup	should	

be displayed by the browser.
Computer hardware: The physical computer equipment one can see and touch. 

Such equipment includes; the system unit, input devices, storage devices and 
output devices.

Computer program: A set of instructions that directs the computer on the tasks to 
perform and how to perform them. These instructions are specially written using 
computer programming languages.

Computer system: A computer system refers not only to the physically attached 
devices to the computer, but also to software and the user. 

Conditional logic: This is a Boolean statement formed by combining two statements 
or facts using conditional rules.

Control structure:	Refers	to	a	statement	or	block	of	code	that	determines	the	flow	
or order in which other program statements are executed.



388

Control unit: The part of the CPU that interprets instructions and controls all 
the operations in a computer system. The control unit monitors on the input, 
storage, the arithmetic and logic operations, and the output operations to have 
the instructions carried out. 

Declaration: In programming context, declaration refers to reserving memory 
location by specifying the type of data to be stored.

Device Driver: utility program that acts as an interface between a hardware device 
and the operating system.

Disk formatting: refers the process of preparing a new disk for use by imprinting 
sectors and tracks on the surface of the disk so that the operating system can 
recognise and make it accessible.

Drive: Devices used to read and/or write (store) data on a storage media.
Electronic mail (e-mail): A type of mail system that uses computers and 

telecommunication facilities to transmit messages. 
Electrostatic discharge (ESD): Refers	 to	 flow	 of	 static	 electricity	when	 two	

triboelectric objects come into contact.
Ergonomics: Refers to applied science of equipment design intended to optimize 

productivity by minimizing discomfort and fatigue.
Ethics: Refers to a set of moral principles that govern behaviour of an individual 

or group.
Expression:	Refers	to	a	sequence	of	operators	and	operands	that	specifies	relational	

or mathematical computation.
Flowchart: Program design tool represent an algorithm graphically using a set of 

standard symbols.
Function prototypes:  This is a statement in C or C++ programming used to  declare 

a function without implementing its body.
Goto: This is a form of jump statement used to transfer control to lines of code 

identified	using	labels.
Hard copy: Hard copy refers to the tangible output produced mostly on a piece of 

paper by devices such as printers and plotters.
Hard disk: Also referred to as a hard drive or a winchester disk, is a sealed unit in 

which are shiny, metallic disk platters and read/write heads that read and record 
data on the disks.

HMDI: This	is	an	abbreviation	for	High	Definition	Multimedia	Interface,	an	interface	
used for transferring compressed and uncompressed digital audio or video data: 

Hypertext Markup Language (HTML): This a standard web development language 
used for describing the structure of a web document.

Infinite loop: This is an endless loop that may be caused by boolean condition that 
is never returns false.



389

Input/output (I/O) devices: Devices used  for entering data to be processed and for 
reporting the results of processing.

Input: A collection of raw data at the start of information processing cycle.
Integrated circuits: Thousands of small circuits etched on a silicon chip. As these 

circuits are made more and more compact, they are called Large Scale Integrated 
(LSI) and  Very Large Scale Integrated (VLSI) circuits.

Interpreter: A language processor that translates the source program statement-
by-statement allowing the CPU to execute one line before translating the next.

Logic gate: These are the basic building blocks of electronic circuits having one or 
more inputs but returning only one output in digital systems. 

Logic Programming: Rule-based nonprocedural programming paradigm that focuses 
on use of symbolic logic or predicate calculus.

Looping: In programming context, looping refers to repeated execution of a block 
of statements until a boolean condition returns false.

Microcomputer: The name computer with a microprocessor as its brain. A 
microcomputer can perform input, processing, storage and retrieval, and output 
operations rapidly, accurately, automatically, and economically despite its 
relatively small physical size. 

Microprocessor: A complete central processing unit of a computer built silicon chip.
Minicomputer: A computer having a smaller capacity for both primary and secondary 

storage than medium size and large size mainframe computers.
Modular Programming: Programming approach in which complex program 

is broken down into smaller components known as modules, procedures or 
functions.

Networks: Communication systems that connect computers, terminals, and other 
electronic	 office	 equipment	 for	 the	 purpose	 of	 efficient	 communication	 and	
sharing of resources.

Nibble: This is a sequence of four bits Half a byte, which is usually a grouping of 
4 bits is called a nibble.

Object-oriented Programming (OOP): Programming paradigm in which 
programming procedures (methods) are combined with data (state) to form 
objects that are organized into classes.

Ones complement: Refers to bit-by-bit negation of a binary number. It is usually 
considered	as	a	step	to	finding	negative	binary	number	of	decimal	numbers.	

Operating system: This is a complex program that is responsible for controlling 
processing operations in a computer system, Examples of common Operating 
Systems are: Microsoft Windows, UNIX, Linux and Mac OS.

Output: Useful information available at the end of the information processing cycle.



390

Parameter passing: Refers to exchange of data between two functions. In other words 
parameter passing serves as hence serving as the communication mechanism 
between two functions.

Peripheral devices: Refers to devices that are connected to the system unit called 
through ports.

Programming Paradigm: Refers to pattern, theory or systems of ideas that used to 
guide development of computer programs.

Pseudocode: Refers to structured statements used to express an algorithm input, 
processing and output logic of a program.

Random-Access Memory (RAM): A type of main memory that holds data and 
information temporarily before and after processing. 

Read-Only Memory (ROM): This is a type of main memory that stores data or 
instructions permanently or semi permanently. 

Repetitive Strain Injuries (RSI): This is a health related problem characterized by 
eye strain, headache and dizziness caused by prolonged use of computers.

Reserved words: These are keywords that have a special meaning in a language and 
can only be used for the intended purpose.

Robotics: Study of robots controlled by computer to perform tasks ordinarily done 
by human beings.

Semiconductor: Materials that are neither bad conductors nor good conductors 
such as silicon on which integrated and support circuits are etched. It is used 
for developing microprocessors, solid state memory, RAM and other electronic 
components.

Source code: Refers to a set of instructions or statements written by a programmer 
that are not yet translated into machine-readable form. 

Supercomputer: The largest, fastest, and most expensive type of computer. 
A	 supercomputer	 can	 perform	 hundreds	 of	millions	 of	 complex	 scientific	
calculations in a second.

System unit: This is the main part of most desktop computers within which are 
components like the processor, hard disk drive and main memory

Utility program: A collection of instructions designed to make common processing 
operations run smoothly. 

Variable: In programming context,  a variable correspond to location in memory in 
which a value required by a program can be stored.

Web server: A program that runs on a computer and is responsible for replying to 
web browser requests for resources such as web pages.

World Wide Web: Refers to hypertext interactive, cross-platform, and graphical 
information repository known as website that runs over the Internet.


