
Recommender
Systems

Charu C. Aggarwal

The Textbook

Recommender Systems: The Textbook

Charu C. Aggarwal

Recommender Systems

The Textbook

123

Charu C. Aggarwal
IBM T.J. Watson Research Center
Yorktown Heights, NY, USA

ISBN 978-3-319-29657-9 ISBN 978-3-319-29659-3 (eBook)
DOI 10.1007/978-3-319-29659-3

Library of Congress Control Number: 2016931438

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be
true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To my wife Lata, my daughter Sayani,
and my late parents Dr. Prem Sarup and Mrs. Pushplata Aggarwal.

Contents

1 An Introduction to Recommender Systems 1
1.1 Introduction . 1
1.2 Goals of Recommender Systems . 3

1.2.1 The Spectrum of Recommendation Applications 7
1.3 Basic Models of Recommender Systems . 8

1.3.1 Collaborative Filtering Models . 8
1.3.1.1 Types of Ratings . 10
1.3.1.2 Relationship with Missing Value Analysis 13
1.3.1.3 Collaborative Filtering as a Generalization of Classification

and Regression Modeling 13
1.3.2 Content-Based Recommender Systems 14
1.3.3 Knowledge-Based Recommender Systems 15

1.3.3.1 Utility-Based Recommender Systems 18
1.3.4 Demographic Recommender Systems 19
1.3.5 Hybrid and Ensemble-Based Recommender Systems 19
1.3.6 Evaluation of Recommender Systems 20

1.4 Domain-Specific Challenges in Recommender Systems 20
1.4.1 Context-Based Recommender Systems 20
1.4.2 Time-Sensitive Recommender Systems 21
1.4.3 Location-Based Recommender Systems 21
1.4.4 Social Recommender Systems . 22

1.4.4.1 Structural Recommendation of Nodes and Links 22
1.4.4.2 Product and Content Recommendations with Social

Influence . 23
1.4.4.3 Trustworthy Recommender Systems 23
1.4.4.4 Leveraging Social Tagging Feedback for

Recommendations . 23
1.5 Advanced Topics and Applications . 23

1.5.1 The Cold-Start Problem in Recommender Systems 24
1.5.2 Attack-Resistant Recommender Systems 24
1.5.3 Group Recommender Systems . 24

vii

viii CONTENTS

1.5.4 Multi-Criteria Recommender Systems 24
1.5.5 Active Learning in Recommender Systems 25
1.5.6 Privacy in Recommender Systems 25
1.5.7 Application Domains . 26

1.6 Summary . 26
1.7 Bibliographic Notes . 26
1.8 Exercises . 28

2 Neighborhood-Based Collaborative Filtering 29
2.1 Introduction . 29
2.2 Key Properties of Ratings Matrices . 31
2.3 Predicting Ratings with Neighborhood-Based Methods 33

2.3.1 User-Based Neighborhood Models 34
2.3.1.1 Similarity Function Variants 37
2.3.1.2 Variants of the Prediction Function 38
2.3.1.3 Variations in Filtering Peer Groups 39
2.3.1.4 Impact of the Long Tail . 39

2.3.2 Item-Based Neighborhood Models 40
2.3.3 Efficient Implementation and Computational Complexity 41
2.3.4 Comparing User-Based and Item-Based Methods 42
2.3.5 Strengths and Weaknesses of Neighborhood-Based Methods 44
2.3.6 A Unified View of User-Based and Item-Based Methods 44

2.4 Clustering and Neighborhood-Based Methods 45
2.5 Dimensionality Reduction and Neighborhood Methods 47

2.5.1 Handling Problems with Bias . 49
2.5.1.1 Maximum Likelihood Estimation 49
2.5.1.2 Direct Matrix Factorization of Incomplete Data 50

2.6 A Regression Modeling View of Neighborhood Methods 51
2.6.1 User-Based Nearest Neighbor Regression 53

2.6.1.1 Sparsity and Bias Issues 54
2.6.2 Item-Based Nearest Neighbor Regression 55
2.6.3 Combining User-Based and Item-Based Methods 57
2.6.4 Joint Interpolation with Similarity Weighting 57
2.6.5 Sparse Linear Models (SLIM) . 58

2.7 Graph Models for Neighborhood-Based Methods 60
2.7.1 User-Item Graphs . 61

2.7.1.1 Defining Neighborhoods with Random Walks 61
2.7.1.2 Defining Neighborhoods with the Katz Measure 62

2.7.2 User-User Graphs . 63
2.7.3 Item-Item Graphs . 66

2.8 Summary . 67
2.9 Bibliographic Notes . 67
2.10 Exercises . 69

3 Model-Based Collaborative Filtering 71
3.1 Introduction . 71
3.2 Decision and Regression Trees . 74

3.2.1 Extending Decision Trees to Collaborative Filtering 76

CONTENTS ix

3.3 Rule-Based Collaborative Filtering . 77
3.3.1 Leveraging Association Rules for Collaborative Filtering 79
3.3.2 Item-Wise Models versus User-Wise Models 80

3.4 Naive Bayes Collaborative Filtering . 82
3.4.1 Handling Overfitting . 84
3.4.2 Example of the Bayes Method with Binary Ratings 85

3.5 Using an Arbitrary Classification Model as a Black-Box 86
3.5.1 Example: Using a Neural Network as a Black-Box 87

3.6 Latent Factor Models . 90
3.6.1 Geometric Intuition for Latent Factor Models 91
3.6.2 Low-Rank Intuition for Latent Factor Models 93
3.6.3 Basic Matrix Factorization Principles 94
3.6.4 Unconstrained Matrix Factorization 96

3.6.4.1 Stochastic Gradient Descent 99
3.6.4.2 Regularization . 100
3.6.4.3 Incremental Latent Component Training 103
3.6.4.4 Alternating Least Squares and Coordinate Descent 105
3.6.4.5 Incorporating User and Item Biases 106
3.6.4.6 Incorporating Implicit Feedback 109

3.6.5 Singular Value Decomposition . 113
3.6.5.1 A Simple Iterative Approach to SVD 114
3.6.5.2 An Optimization-Based Approach 116
3.6.5.3 Out-of-Sample Recommendations 116
3.6.5.4 Example of Singular Value Decomposition 117

3.6.6 Non-negative Matrix Factorization 119
3.6.6.1 Interpretability Advantages 121
3.6.6.2 Observations about Factorization with Implicit Feedback . 122
3.6.6.3 Computational and Weighting Issues with Implicit

Feedback . 124
3.6.6.4 Ratings with Both Likes and Dislikes 124

3.6.7 Understanding the Matrix Factorization Family 126
3.7 Integrating Factorization and Neighborhood Models 128

3.7.1 Baseline Estimator: A Non-Personalized Bias-Centric Model 128
3.7.2 Neighborhood Portion of Model . 129
3.7.3 Latent Factor Portion of Model . 130
3.7.4 Integrating the Neighborhood and Latent Factor Portions 131
3.7.5 Solving the Optimization Model . 131
3.7.6 Observations about Accuracy . 132
3.7.7 Integrating Latent Factor Models with Arbitrary Models 133

3.8 Summary . 134
3.9 Bibliographic Notes . 134
3.10 Exercises . 136

4 Content-Based Recommender Systems 139
4.1 Introduction . 139
4.2 Basic Components of Content-Based Systems 141
4.3 Preprocessing and Feature Extraction . 142

4.3.1 Feature Extraction . 142
4.3.1.1 Example of Product Recommendation 143

x CONTENTS

4.3.1.2 Example of Web Page Recommendation 143
4.3.1.3 Example of Music Recommendation 144

4.3.2 Feature Representation and Cleaning 145
4.3.3 Collecting User Likes and Dislikes 146
4.3.4 Supervised Feature Selection and Weighting 147

4.3.4.1 Gini Index . 147
4.3.4.2 Entropy . 148
4.3.4.3 χ2-Statistic . 148
4.3.4.4 Normalized Deviation . 149
4.3.4.5 Feature Weighting . 150

4.4 Learning User Profiles and Filtering . 150
4.4.1 Nearest Neighbor Classification . 151
4.4.2 Connections with Case-Based Recommender Systems 152
4.4.3 Bayes Classifier . 153

4.4.3.1 Estimating Intermediate Probabilities 154
4.4.3.2 Example of Bayes Model 155

4.4.4 Rule-based Classifiers . 156
4.4.4.1 Example of Rule-based Methods 157

4.4.5 Regression-Based Models . 158
4.4.6 Other Learning Models and Comparative Overview 159
4.4.7 Explanations in Content-Based Systems 160

4.5 Content-Based Versus Collaborative Recommendations 161
4.6 Using Content-Based Models for Collaborative Filtering 162

4.6.1 Leveraging User Profiles . 163
4.7 Summary . 163
4.8 Bibliographic Notes . 164
4.9 Exercises . 165

5 Knowledge-Based Recommender Systems 167
5.1 Introduction . 167
5.2 Constraint-Based Recommender Systems 172

5.2.1 Returning Relevant Results . 174
5.2.2 Interaction Approach . 176
5.2.3 Ranking the Matched Items . 178
5.2.4 Handling Unacceptable Results or Empty Sets 179
5.2.5 Adding Constraints . 180

5.3 Case-Based Recommenders . 181
5.3.1 Similarity Metrics . 183

5.3.1.1 Incorporating Diversity in Similarity Computation 187
5.3.2 Critiquing Methods . 188

5.3.2.1 Simple Critiques . 188
5.3.2.2 Compound Critiques . 190
5.3.2.3 Dynamic Critiques . 192

5.3.3 Explanation in Critiques . 193
5.4 Persistent Personalization in Knowledge-Based Systems 194
5.5 Summary . 195
5.6 Bibliographic Notes . 195
5.7 Exercises . 197

CONTENTS xi

6 Ensemble-Based and Hybrid Recommender Systems 199
6.1 Introduction . 199
6.2 Ensemble Methods from the Classification Perspective 204
6.3 Weighted Hybrids . 206

6.3.1 Various Types of Model Combinations 208
6.3.2 Adapting Bagging from Classification 209
6.3.3 Randomness Injection . 211

6.4 Switching Hybrids . 211
6.4.1 Switching Mechanisms for Cold-Start Issues 212
6.4.2 Bucket-of-Models . 212

6.5 Cascade Hybrids . 213
6.5.1 Successive Refinement of Recommendations 213
6.5.2 Boosting . 213

6.5.2.1 Weighted Base Models . 214
6.6 Feature Augmentation Hybrids . 215
6.7 Meta-Level Hybrids . 216
6.8 Feature Combination Hybrids . 217

6.8.1 Regression and Matrix Factorization 218
6.8.2 Meta-level Features . 218

6.9 Mixed Hybrids . 220
6.10 Summary . 221
6.11 Bibliographic Notes . 222
6.12 Exercises . 224

7 Evaluating Recommender Systems 225
7.1 Introduction . 225
7.2 Evaluation Paradigms . 227

7.2.1 User Studies . 227
7.2.2 Online Evaluation . 227
7.2.3 Offline Evaluation with Historical Data Sets 229

7.3 General Goals of Evaluation Design . 229
7.3.1 Accuracy . 229
7.3.2 Coverage . 231
7.3.3 Confidence and Trust . 232
7.3.4 Novelty . 233
7.3.5 Serendipity . 233
7.3.6 Diversity . 234
7.3.7 Robustness and Stability . 235
7.3.8 Scalability . 235

7.4 Design Issues in Offline Recommender Evaluation 235
7.4.1 Case Study of the Netflix Prize Data Set 236
7.4.2 Segmenting the Ratings for Training and Testing 238

7.4.2.1 Hold-Out . 238
7.4.2.2 Cross-Validation . 239

7.4.3 Comparison with Classification Design 239
7.5 Accuracy Metrics in Offline Evaluation . 240

7.5.1 Measuring the Accuracy of Ratings Prediction 240
7.5.1.1 RMSE versus MAE . 241
7.5.1.2 Impact of the Long Tail . 241

xii CONTENTS

7.5.2 Evaluating Ranking via Correlation 242
7.5.3 Evaluating Ranking via Utility . 244
7.5.4 Evaluating Ranking via Receiver Operating Characteristic 247
7.5.5 Which Ranking Measure is Best? 250

7.6 Limitations of Evaluation Measures . 250
7.6.1 Avoiding Evaluation Gaming . 252

7.7 Summary . 252
7.8 Bibliographic Notes . 253
7.9 Exercises . 254

8 Context-Sensitive Recommender Systems 255
8.1 Introduction . 255
8.2 The Multidimensional Approach . 256

8.2.1 The Importance of Hierarchies . 259
8.3 Contextual Pre-filtering: A Reduction-Based Approach 262

8.3.1 Ensemble-Based Improvements . 264
8.3.2 Multi-level Estimation . 265

8.4 Post-Filtering Methods . 266
8.5 Contextual Modeling . 268

8.5.1 Neighborhood-Based Methods . 268
8.5.2 Latent Factor Models . 269

8.5.2.1 Factorization Machines . 272
8.5.2.2 A Generalized View of Second-Order Factorization

Machines . 275
8.5.2.3 Other Applications of Latent Parametrization 276

8.5.3 Content-Based Models . 277
8.6 Summary . 279
8.7 Bibliographic Notes . 280
8.8 Exercises . 281

9 Time- and Location-Sensitive Recommender Systems 283
9.1 Introduction . 283
9.2 Temporal Collaborative Filtering . 285

9.2.1 Recency-Based Models . 286
9.2.1.1 Decay-Based Methods . 286
9.2.1.2 Window-Based Methods 288

9.2.2 Handling Periodic Context . 288
9.2.2.1 Pre-Filtering and Post-Filtering 289
9.2.2.2 Direct Incorporation of Temporal Context 290

9.2.3 Modeling Ratings as a Function of Time 290
9.2.3.1 The Time-SVD++ Model 291

9.3 Discrete Temporal Models . 295
9.3.1 Markovian Models . 295

9.3.1.1 Selective Markov Models 298
9.3.1.2 Other Markovian Alternatives 300

9.3.2 Sequential Pattern Mining . 300
9.4 Location-Aware Recommender Systems . 302

9.4.1 Preference Locality . 303
9.4.2 Travel Locality . 305
9.4.3 Combined Preference and Travel Locality 305

CONTENTS xiii

9.5 Summary . 305
9.6 Bibliographic Notes . 306
9.7 Exercises . 308

10 Structural Recommendations in Networks 309
10.1 Introduction . 309
10.2 Ranking Algorithms . 311

10.2.1 PageRank . 311
10.2.2 Personalized PageRank . 314
10.2.3 Applications to Neighborhood-Based Methods 316

10.2.3.1 Social Network Recommendations 317
10.2.3.2 Personalization in Heterogeneous Social Media 317
10.2.3.3 Traditional Collaborative Filtering 319

10.2.4 SimRank . 321
10.2.5 The Relationship Between Search and Recommendation 322

10.3 Recommendations by Collective Classification 323
10.3.1 Iterative Classification Algorithm 324
10.3.2 Label Propagation with Random Walks 325
10.3.3 Applicability to Collaborative Filtering in Social Networks 326

10.4 Recommending Friends: Link Prediction 326
10.4.1 Neighborhood-Based Measures . 327
10.4.2 Katz Measure . 328
10.4.3 Random Walk-Based Measures . 329
10.4.4 Link Prediction as a Classification Problem 329
10.4.5 Matrix Factorization for Link Prediction 330

10.4.5.1 Symmetric Matrix Factorization 333
10.4.6 Connections Between Link Prediction and Collaborative Filtering . 335

10.4.6.1 Using Link Prediction Algorithms for Collaborative
Filtering . 336

10.4.6.2 Using Collaborative Filtering Algorithms for Link
Prediction . 337

10.5 Social Influence Analysis and Viral Marketing 337
10.5.1 Linear Threshold Model . 339
10.5.2 Independent Cascade Model . 340
10.5.3 Influence Function Evaluation . 340
10.5.4 Targeted Influence Analysis Models in Social Streams 341

10.6 Summary . 342
10.7 Bibliographic Notes . 343
10.8 Exercises . 344

11 Social and Trust-Centric Recommender Systems 345
11.1 Introduction . 345
11.2 Multidimensional Models for Social Context 347
11.3 Network-Centric and Trust-Centric Methods 349

11.3.1 Collecting Data for Building Trust Networks 349
11.3.2 Trust Propagation and Aggregation 351
11.3.3 Simple Recommender with No Trust Propagation 353
11.3.4 TidalTrust Algorithm . 353

xiv CONTENTS

11.3.5 MoleTrust Algorithm . 356
11.3.6 TrustWalker Algorithm . 357
11.3.7 Link Prediction Methods . 358
11.3.8 Matrix Factorization Methods . 361

11.3.8.1 Enhancements with Logistic Function 364
11.3.8.2 Variations in the Social Trust Component 364

11.3.9 Merits of Social Recommender Systems 365
11.3.9.1 Recommendations for Controversial Users and Items . . . 365
11.3.9.2 Usefulness for Cold-Start 366
11.3.9.3 Attack Resistance . 366

11.4 User Interaction in Social Recommenders 366
11.4.1 Representing Folksonomies . 367
11.4.2 Collaborative Filtering in Social Tagging Systems 368
11.4.3 Selecting Valuable Tags . 371
11.4.4 Social-Tagging Recommenders with No Ratings Matrix 372

11.4.4.1 Multidimensional Methods for Context-Sensitive Systems . 372
11.4.4.2 Ranking-Based Methods 373
11.4.4.3 Content-Based Methods 374

11.4.5 Social-Tagging Recommenders with Ratings Matrix 377
11.4.5.1 Neighborhood-Based Approach 378
11.4.5.2 Linear Regression . 379
11.4.5.3 Matrix Factorization . 380
11.4.5.4 Content-Based Methods 382

11.5 Summary . 382
11.6 Bibliographic Notes . 382
11.7 Exercises . 384

12 Attack-Resistant Recommender Systems 385
12.1 Introduction . 385
12.2 Understanding the Trade-Offs in Attack Models 386

12.2.1 Quantifying Attack Impact . 390
12.3 Types of Attacks . 392

12.3.1 Random Attack . 393
12.3.2 Average Attack . 393
12.3.3 Bandwagon Attack . 394
12.3.4 Popular Attack . 395
12.3.5 Love/Hate Attack . 395
12.3.6 Reverse Bandwagon Attack . 396
12.3.7 Probe Attack . 396
12.3.8 Segment Attack . 396
12.3.9 Effect of Base Recommendation Algorithm 397

12.4 Detecting Attacks on Recommender Systems 398
12.4.1 Individual Attack Profile Detection 399
12.4.2 Group Attack Profile Detection . 402

12.4.2.1 Preprocessing Methods . 402
12.4.2.2 Online Methods . 403

12.5 Strategies for Robust Recommender Design 403
12.5.1 Preventing Automated Attacks with CAPTCHAs 403
12.5.2 Using Social Trust . 404

CONTENTS xv

12.5.3 Designing Robust Recommendation Algorithms 404
12.5.3.1 Incorporating Clustering in Neighborhood Methods 405
12.5.3.2 Fake Profile Detection during Recommendation Time . . . 405
12.5.3.3 Association-Based Algorithms 405
12.5.3.4 Robust Matrix Factorization 405

12.6 Summary . 408
12.7 Bibliographic Notes . 408
12.8 Exercises . 410

13 Advanced Topics in Recommender Systems 411
13.1 Introduction . 411
13.2 Learning to Rank . 413

13.2.1 Pairwise Rank Learning . 415
13.2.2 Listwise Rank Learning . 416
13.2.3 Comparison with Rank-Learning Methods in Other Domains 417

13.3 Multi-Armed Bandit Algorithms . 418
13.3.1 Naive Algorithm . 419
13.3.2 ε-Greedy Algorithm . 420
13.3.3 Upper Bounding Methods . 421

13.4 Group Recommender Systems . 423
13.4.1 Collaborative and Content-Based Systems 424
13.4.2 Knowledge-Based Systems . 425

13.5 Multi-Criteria Recommender Systems . 426
13.5.1 Neighborhood-Based Methods . 427
13.5.2 Ensemble-Based Methods . 428
13.5.3 Multi-Criteria Systems without Overall Ratings 429

13.6 Active Learning in Recommender Systems 430
13.6.1 Heterogeneity-Based Models . 431
13.6.2 Performance-Based Models . 432

13.7 Privacy in Recommender Systems . 432
13.7.1 Condensation-Based Privacy . 434
13.7.2 Challenges for High-Dimensional Data 434

13.8 Some Interesting Application Domains . 435
13.8.1 Portal Content Personalization . 435

13.8.1.1 Dynamic Profiler . 436
13.8.1.2 Google News Personalization 436

13.8.2 Computational Advertising versus Recommender Systems 438
13.8.2.1 Importance of Multi-Armed Bandit Methods 442

13.8.3 Reciprocal Recommender Systems 443
13.8.3.1 Leveraging Hybrid Methods 444
13.8.3.2 Leveraging Link Prediction Methods 445

13.9 Summary . 446
13.10 Bibliographic Notes . 446

Bibliography 449

Index 493

Preface

“Nature shows us only the tail of the lion. But I do not doubt that the lion be-
longs to it even though he cannot at once reveal himself because of his enormous
size.”– Albert Einstein

The topic of recommender systems gained increasing importance in the nineties, as
the Web became an important medium for business and e-commerce transactions. It was
recognized early on that the Web provided unprecedented opportunities for personalization,
which were not available in other channels. In particular, the Web provided ease in data
collection and a user interface that could be employed to recommend items in a non-intrusive
way.

Recommender systems have grown significantly in terms of public awareness since then.
An evidence of this fact is that many conferences and workshops are exclusively devoted
to this topic. The ACM Conference on Recommender Systems is particularly notable be-
cause it regularly contributes many of the cutting-edge results in this topic. The topic of
recommender systems is very diverse because it enables the ability to use various types
of user-preference and user-requirement data to make recommendations. The most well-
known methods in recommender systems include collaborative filtering methods, content-
based methods, and knowledge-based methods. These three methods form the fundamental
pillars of research in recommender systems. In recent years, specialized methods have been
designed for various data domains and contexts, such as time, location and social infor-
mation. Numerous advancements have been proposed for specialized scenarios, and the
methods have been adapted to various application domains, such as query log mining, news
recommendations, and computational advertising. The organization of the book reflects
these important topics. The chapters of this book can be organized into three categories:

1. Algorithms and evaluation: These chapters discuss the fundamental algorithms in
recommender systems, including collaborative filtering methods (Chapters 2 and 4),
content-based methods (Chapter 4), and knowledge-based methods (Chapter 5). Tech-
niques for hybridizing these methods are discussed in Chapter 6. The evaluation of
recommender systems is discussed in Chapter 7.

2. Recommendations in specific domains and contexts: The context of a recommender
system plays a critical role in providing effective recommendations. For example, a

xvii

xviii PREFACE

user looking for a restaurant would want to use their location as additional context.
The context of a recommendation can be viewed as important side information that
affects the recommendation goals. Different types of domains such as temporal data,
spatial data, and social data, provide different types of contexts. These methods are
discussed in Chapters 8, 9, 10, and 11. Chapter 11 also discusses the issue of using
social information to increase the trustworthiness of the recommendation process.
Recent topics such as factorization machines and trustworthy recommender systems
are also covered in these chapters.

3. Advanced topics and applications: In Chapter 12, we discuss various robustness aspects
of recommender systems, such as shilling systems, attack models, and their defenses.
In addition, recent topics, such as learning to rank, multi-armed bandits, group rec-
ommender systems, multi-criteria systems, and active learning systems, are discussed
in Chapter 13. An important goal of this chapter is to introduce the reader to the
basic ideas and principles underlying recent developments. Although it is impossible
to discuss all the recent developments in detail in a single book, it is hoped that the
material in the final chapter will play the role of “breaking the ice” for the reader
in terms of advanced topics. This chapter also investigates some application settings
in which recommendation technology is used, such as news recommendations, query
recommendations, and computational advertising. The application section provides
an idea of how the methods introduced in earlier chapters apply to these different
domains.

Although this book is primarily written as a textbook, it is recognized that a large por-
tion of the audience will comprise industrial practitioners and researchers. Therefore, we
have taken pains to write the book in such a way that it is also useful from an applied
and reference point of view. Numerous examples and exercises have been provided to en-
able its use as a textbook. As most courses on recommender systems will teach only the
fundamental topics, the chapters on fundamental topics and algorithms are written with a
particular emphasis on classroom teaching. On the other hand, advanced industrial practi-
tioners might find the chapters on context-sensitive recommendation useful, because many
real-life applications today arise in the domains where a significant amount of contextual
side-information is available. The application portion of Chapter 13 is particularly written
for industrial practitioners, although instructors might find it useful towards the end of a
recommender course.

We conclude with a brief introduction to the notations used in this book. This book
consistently uses an m × n ratings matrix denoted by R, where m is the number of users
and n is the number of items. The matrix R is typically incomplete because only a subset
of entries are observed. The (i, j)th entry of R indicates the rating of user i for item j, and
it is denoted by rij when it is actually observed. When the entry (i, j) is predicted by a
recommender algorithm (rather than being specified by a user), it is denoted by r̂ij , with a
“hat” symbol (i.e., a circumflex) denoting that it is a predicted value. Vectors are denoted
by an “overline,” as in X or y.

Acknowledgments

I would like to thank my wife and daughter for their love and support during the writing
of this book. I also owe my late parents a debt of gratitude for instilling in me a love of
education, which has played an important inspirational role in my book-writing efforts.

This book has been written with the direct and indirect support of many individuals
to whom I am grateful. During the writing of this book, I received feedback from many
colleagues. In particular, I received feedback from Xavier Amatriain, Kanishka Bhaduri,
Robin Burke, Martin Ester, Bart Goethals, Huan Liu, Xia Ning, Saket Sathe, Jiliang Tang,
Alexander Tuzhilin, Koen Versetrepen, and Jieping Ye. I would like to thank them for their
constructive feedback and suggestions. Over the years, I have benefited from the insights
of numerous collaborators. These insights have influenced this book directly or indirectly. I
would first like to thank my long-term collaborator Philip S. Yu for my years of collaboration
with him. Other researchers with whom I have had significant collaborations include Tarek
F. Abdelzaher, Jing Gao, Quanquan Gu, Manish Gupta, Jiawei Han, Alexander Hinneb-
urg, Thomas Huang, Nan Li, Huan Liu, Ruoming Jin, Daniel Keim, Arijit Khan, Latifur
Khan, Mohammad M. Masud, Jian Pei, Magda Procopiuc, Guojun Qi, Chandan Reddy,
Saket Sathe, Jaideep Srivastava, Karthik Subbian, Yizhou Sun, Jiliang Tang, Min-Hsuan
Tsai, Haixun Wang, Jianyong Wang, Min Wang, Joel Wolf, Xifeng Yan, Mohammed Zaki,
ChengXiang Zhai, and Peixiang Zhao. I would also like to thank my advisor James B. Orlin
for his guidance during my early years as a researcher.

I would also like to thank my manager Nagui Halim for providing the tremendous support
necessary for the writing of this book. His professional support has been instrumental for
my many book efforts in the past and present.

Finally, I would like to thank Lata Aggarwal for helping me with some of the figures
drawn using Microsoft Powerpoint.

xix

Author Biography

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.
J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from
IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996.

He has worked extensively in the field of data mining. He has
published more than 300 papers in refereed conferences and jour-
nals and authored over 80 patents. He is the author or editor of
15 books, including a textbook on data mining and a comprehen-
sive book on outlier analysis. Because of the commercial value
of his patents, he has thrice been designated a Master Inventor
at IBM. He is a recipient of an IBM Corporate Award (2003)
for his work on bio-terrorist threat detection in data streams,
a recipient of the IBM Outstanding Innovation Award (2008)
for his scientific contributions to privacy technology, a recipient
of two IBM Outstanding Technical Achievement Award (2009,

2015) for his work on data streams and high-dimensional data, respectively. He received the
EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data
mining. He is also a recipient of the IEEE ICDM Research Contributions Award (2015),
which is one of the two highest awards for influential research contributions in the field of
data mining.

He has served as the general co-chair of the IEEE Big Data Conference (2014), program
co-chair of the ACM CIKM Conference (2015), IEEE ICDM Conference (2015), and the
ACM KDD Conference (2016). He served as an associate editor of the IEEE Transactions
on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the
ACM Transactions on Knowledge Discovery from Data, an associate editor of the IEEE
Transactions on Big Data, an action editor of the Data Mining and Knowledge Discovery
Journal, editor-in-chief of the ACM SIGKDD Explorations, and an associate editor of the
Knowledge and Information Systems Journal. He serves on the advisory board of the Lecture
Notes on Social Networks, a publication by Springer. He has served as the vice-president
of the SIAM Activity Group on Data Mining. He is a fellow of the SIAM, ACM, and the
IEEE, for “contributions to knowledge discovery and data mining algorithms.”

xxi

Chapter 1

An Introduction to Recommender
Systems

“Many receive advice, only the wise profit from it.” – Harper Lee

1.1 Introduction

The increasing importance of the Web as a medium for electronic and business transactions
has served as a driving force for the development of recommender systems technology. An
important catalyst in this regard is the ease with which the Web enables users to provide
feedback about their likes or dislikes. For example, consider a scenario of a content provider
such as Netflix. In such cases, users are able to easily provide feedback with a simple click
of a mouse. A typical methodology to provide feedback is in the form of ratings, in which
users select numerical values from a specific evaluation system (e.g., five-star rating system)
that specify their likes and dislikes of various items.

Other forms of feedback are not quite as explicit but are even easier to collect in the
Web-centric paradigm. For example, the simple act of a user buying or browsing an item
may be viewed as an endorsement for that item. Such forms of feedback are commonly
used by online merchants such as Amazon.com, and the collection of this type of data
is completely effortless in terms of the work required of a customer. The basic idea of
recommender systems is to utilize these various sources of data to infer customer interests.
The entity to which the recommendation is provided is referred to as the user, and the
product being recommended is also referred to as an item. Therefore, recommendation
analysis is often based on the previous interaction between users and items, because past
interests and proclivities are often good indicators of future choices. A notable exception

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 1

1

2 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

is the case of knowledge-based recommender systems, in which the recommendations are
suggested on the basis of user-specified requirements rather than the past history of the
user.

So, what is the basic principle that underlies the working of recommendation algorithms?
The basic principle of recommendations is that significant dependencies exist between user-
and item-centric activity. For example, a user who is interested in a historical documentary
is more likely to be interested in another historical documentary or an educational pro-
gram, rather than in an action movie. In many cases, various categories of items may show
significant correlations, which can be leveraged to make more accurate recommendations.
Alternatively, the dependencies may be present at the finer granularity of individual items
rather than categories. These dependencies can be learned in a data-driven manner from
the ratings matrix, and the resulting model is used to make predictions for target users.
The larger the number of rated items that are available for a user, the easier it is to make
robust predictions about the future behavior of the user. Many different learning models
can be used to accomplish this task. For example, the collective buying or rating behav-
ior of various users can be leveraged to create cohorts of similar users that are interested
in similar products. The interests and actions of these cohorts can be leveraged to make
recommendations to individual members of these cohorts.

The aforementioned description is based on a very simple family of recommendation
algorithms, referred to as neighborhood models. This family belongs to a broader class of
models, referred to as collaborative filtering. The term “collaborative filtering” refers to
the use of ratings from multiple users in a collaborative way to predict missing ratings. In
practice, recommender systems can be more complex and data-rich, with a wide variety
of auxiliary data types. For example, in content-based recommender systems, the content
plays a primary role in the recommendation process, in which the ratings of users and the
attribute descriptions of items are leveraged in order to make predictions. The basic idea is
that user interests can be modeled on the basis of properties (or attributes) of the items they
have rated or accessed in the past. A different framework is that of knowledge-based systems,
in which users interactively specify their interests, and the user specification is combined
with domain knowledge to provide recommendations. In advanced models, contextual data,
such as temporal information, external knowledge, location information, social information,
or network information, may be used.

This book will study all types of basic systems, including collaborative, content-based,
and knowledge-based systems. We will also discuss both the basic and the enhanced models
of recommender systems in different domains. We will study various aspects of the robust-
ness of recommender systems, such as attack models, and the construction of trustworthy
models. In addition, a variety of evaluation and hybridization models for recommender sys-
tems will be studied thoroughly. In this chapter, the goal is to provide an overview of the
wide diversity of work in the field of recommender systems, and also relate the various topics
to the individual chapters of this book.

This chapter is organized as follows. Section 1.2 discusses the main goals of recommender
systems. Section 1.3 will introduce the basic models and evaluation methods used in rec-
ommender systems. The use of recommender systems in various data domains is discussed
in section 1.4. Advanced models for recommender systems are discussed in section 1.5.
Section 1.6 discusses the conclusions and summary.

1.2. GOALS OF RECOMMENDER SYSTEMS 3

1.2 Goals of Recommender Systems

Before discussing the goals of recommender systems, we introduce the various ways in which
the recommendation problem may be formulated. The two primary models are as follows:

1. Prediction version of problem: The first approach is to predict the rating value for a
user-item combination. It is assumed that training data is available, indicating user
preferences for items. For m users and n items, this corresponds to an incomplete
m × n matrix, where the specified (or observed) values are used for training. The
missing (or unobserved) values are predicted using this training model. This problem
is also referred to as the matrix completion problem because we have an incompletely
specified matrix of values, and the remaining values are predicted by the learning
algorithm.

2. Ranking version of problem: In practice, it is not necessary to predict the ratings of
users for specific items in order to make recommendations to users. Rather, a merchant
may wish to recommend the top-k items for a particular user, or determine the top-k
users to target for a particular item. The determination of the top-k items is more
common than the determination of top-k users, although the methods in the two cases
are exactly analogous. Throughout this book, we will discuss only the determination of
the top-k items, because it is the more common setting. This problem is also referred
to as the top-k recommendation problem, and it is the ranking formulation of the
recommendation problem.

In the second case, the absolute values of the predicted ratings are not important. The
first formulation is more general, because the solutions to the second case can be derived
by solving the first formulation for various user-item combinations and then ranking the
predictions. However, in many cases, it is easier and more natural to design methods for
solving the ranking version of the problem directly. Such methods will be discussed in
Chapter 13.

Increasing product sales is the primary goal of a recommender system. Recommender
systems are, after all, utilized by merchants to increase their profit. By recommending
carefully selected items to users, recommender systems bring relevant items to the attention
of users. This increases the sales volume and profits for the merchant. Although the primary
goal of a recommendation system is to increase revenue for the merchant, this is often
achieved in ways that are less obvious than might seem at first sight. In order to achieve the
broader business-centric goal of increasing revenue, the common operational and technical
goals of recommender systems are as follows:

1. Relevance: The most obvious operational goal of a recommender system is to recom-
mend items that are relevant to the user at hand. Users are more likely to consume
items they find interesting. Although relevance is the primary operational goal of a
recommender system, it is not sufficient in isolation. Therefore, we discuss several sec-
ondary goals below, which are not quite as important as relevance but are nevertheless
important enough to have a significant impact.

2. Novelty: Recommender systems are truly helpful when the recommended item is some-
thing that the user has not seen in the past. For example, popular movies of a preferred
genre would rarely be novel to the user. Repeated recommendation of popular items
can also lead to reduction in sales diversity [203].

3. Serendipity: A related notion is that of serendipity [229], wherein the items recom-
mended are somewhat unexpected, and therefore there is a modest element of lucky

4 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

discovery, as opposed to obvious recommendations. Serendipity is different from nov-
elty in that the recommendations are truly surprising to the user, rather than simply
something they did not know about before. It may often be the case that a particu-
lar user may only be consuming items of a specific type, although a latent interest in
items of other types may exist which the user might themselves find surprising. Unlike
novelty, serendipitous methods focus on discovering such recommendations.

For example, if a new Indian restaurant opens in a neighborhood, then the recom-
mendation of that restaurant to a user who normally eats Indian food is novel but
not necessarily serendipitous. On the other hand, when the same user is recommended
Ethiopian food, and it was unknown to the user that such food might appeal to her,
then the recommendation is serendipitous. Serendipity has the beneficial side effect
of increasing sales diversity or beginning a new trend of interest in the user. Increas-
ing serendipity often has long-term and strategic benefits to the merchant because
of the possibility of discovering entirely new areas of interest. On the other hand,
algorithms that provide serendipitous recommendations often tend to recommend ir-
relevant items. In many cases, the longer term and strategic benefits of serendipitous
methods outweigh these short-term disadvantages.

4. Increasing recommendation diversity: Recommender systems typically suggest a list of
top-k items. When all these recommended items are very similar, it increases the risk
that the user might not like any of these items. On the other hand, when the recom-
mended list contains items of different types, there is a greater chance that the user
might like at least one of these items. Diversity has the benefit of ensuring that the
user does not get bored by repeated recommendation of similar items.

Aside from these concrete goals, a number of soft goals are also met by the recommendation
process both from the perspective of the user and merchant. From the perspective of the user,
recommendations can help improve overall user satisfaction with the Web site. For example,
a user who repeatedly receives relevant recommendations from Amazon.com will be more
satisfied with the experience and is more likely to use the site again. This can improve user
loyalty and further increase the sales at the site. At the merchant end, the recommendation
process can provide insights into the needs of the user and help customize the user experience
further. Finally, providing the user an explanation for why a particular item is recommended
is often useful. For example, in the case of Netflix, recommendations are provided along with
previously watched movies. As we will see later, some recommendation algorithms are better
suited to providing explanations than others.

There is a wide diversity in the types of products recommended by such systems. Some
recommender systems, such as Facebook, do not directly recommend products. Rather
they may recommend social connections, which have an indirect benefit to the site by
increasing its usability and advertising profits. In order to understand the nature of these
goals, we will discuss some popular examples of historical and current recommender systems.
These examples will also showcase the broad diversity of recommender systems that were
built either as research prototypes, or are available today as commercial systems in various
problem settings.

GroupLens Recommender System

GroupLens was a pioneering recommender system, which was built as a research prototype
for recommendation of Usenet news. The system collected ratings from Usenet readers and
used them to predict whether or not other readers would like an article before they read it.

1.2. GOALS OF RECOMMENDER SYSTEMS 5

Some of the earliest automated collaborative filtering algorithms were developed in the
GroupLens1 setting. The general ideas developed by this group were also extended to other
product settings such as books and movies. The corresponding recommender systems were
referred to as BookLens andMovieLens, respectively. Aside from its pioneering contributions
to collaborative filtering research, the GroupLens research team was notable for releasing
several data sets during the early years of this field, when data sets were not easily available
for benchmarking. Prominent examples include three data sets [688] from the MovieLens
recommender system. These data sets are of successively increasing size, and they contain
105, 106, and 107 ratings, respectively.

Amazon.com Recommender System

Amazon.com [698] was also one of the pioneers in recommender systems, especially in the
commercial setting. During the early years, it was one of the few retailers that had the
foresight to realize the usefulness of this technology. Originally founded as a book e-retailer,
the business expanded to virtually all forms of products. Consequently, Amazon.com now
sells virtually all categories of products such as books, CDs, software, electronics, and so
on. The recommendations in Amazon.com are provided on the basis of explicitly provided
ratings, buying behavior, and browsing behavior. The ratings in Amazon.com are specified
on a 5-point scale, with lowest rating being 1-star, and the highest rating being 5-star. The
customer-specific buying and browsing data can be easily collected when users are logged
in with an account authentication mechanism supported by Amazon. Recommendations
are also provided to users on the main Web page of the site, whenever they log into their
accounts. In many cases, explanations for recommendations are provided. For example, the
relationship of a recommended item to previously purchased items may be included in the
recommender system interface.

The purchase or browsing behavior of a user can be viewed as a type of implicit rating,
as opposed to an explicit rating, which is specified by the user. Many commercial systems
allow the flexibility of providing recommendations both on the basis of explicit and implicit
feedback. In fact, several models have been designed (cf. section 3.6.4.6 of Chapter 3) to
jointly account for explicit and implicit feedback in the recommendation process. Some of
the algorithms used by early versions of the Amazon.com recommender system are discussed
in [360].

Netflix Movie Recommender System

Netflix was founded as a mail-order digital video disc (DVD) rental company [690] of movies
and television shows, which was eventually expanded to streaming delivery. At the present
time, the primary business of Netflix is that of providing streaming delivery of movies and
television shows on a subscription basis. Netflix provides users the ability to rate the movies
and television shows on a 5-point scale. Furthermore, the user actions in terms of watching
various items are also stored by Netflix. These ratings and actions are then used by Netflix
to make recommendations. Netflix does an excellent job of providing explanations for the
recommended items. It explicitly provides examples of recommendations based on specific
items that were watched by the user. Such information provides the user with additional

1 The term “GroupLens” currently refers to the academic group at the University of Minnesota [687]
that developed these algorithms. This group continues to work in the area of recommender systems, and
has made many pioneering contributions over the years.

6 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

information to decide whether or not to watch a specific movie. Presenting meaningful
explanations is important to provide the user with an understanding of why they might find
a particular movie interesting. This approach also makes it more likely for the user to act
on the recommendation and truly improves the user experience. This type of interesting
approach can also help improve customer loyalty and retention.

Netflix has contributed significantly to the research community as a result of the Netflix
Prize contest. This contest was designed to provide a forum for competition among various
collaborative filtering algorithms contributed by contestants. A data set of Netflix movie rat-
ings was released, and the task was to predict ratings of particular user-item combinations.
For this purpose, Netflix provided both a training data set, and a qualifying data set. The
training data set contained 100,480,507 ratings that 480,189 users gave to 17,770 movies.
The training set included a smaller probe set containing 1,408,395 ratings. The probe set
was based on more recent ratings than the remaining training data, and it was statistically
similar to the portion of the data set with hidden ratings. This portion of the data set was
referred to as the qualifying data set, and it contained over 2,817,131 triplets of the form
〈User,Movie,GradeDate〉. Note that the triplet did not contain the actual rating, which
was known only to the judges. Users needed to predict the ratings in the qualifying data
set based on models of the training data. This prediction was scored by the judges (or an
equivalent automated system), and the users were (continuously) informed of the prediction
results on only half the qualifying data set on the leader-board. This half of the qualifying
data set was referred to as the quiz set. The remaining half was used as the test set for
computing the final score and determining the prize-winners. The scores of the remaining
half were never revealed to the users until the very end. Furthermore, it was not revealed
to the contestants which of the triplets in the qualifying set belonged to the quiz set, and
which belonged to the test set. The reason for this unusual arrangement on the test set
was to ensure that the users did not leverage the scores on the leader-board to overfit their
algorithms to the test set. Issues related to overfitting will be described in Chapter 7 on
evaluation algorithms. Indeed, Netflix’s framework for handling the contestant entries is an
excellent example of proper evaluation design of recommendation algorithms.

The probe set, quiz set, and test set were designed to have similar statistical char-
acteristics. Prizes were given based on improvement of Netflix’s own recommendation al-
gorithm, known as Cinematch, or by improvement of the previous best score by a certain
threshold. Many well-known recommendation algorithms, such as latent factor models, were
popularized by the Netflix contest. The Netflix Prize contest is notable for its numerous
contributions to recommendation [71, 373] research.

Google News Personalization System

The Google News personalization system [697] is able to recommend news to users based on
their history of clicks. The clicks are associated with specific users based on identification
mechanisms enabled by Gmail accounts. In this case, news articles are treated as items. The
act of a user clicking on a news article can be viewed as a positive rating for that article.
Such ratings can be viewed as unary ratings, in which a mechanism exists for a user to
express their affinity for an item, but no mechanism exists for them to show their dislike.
Furthermore, the ratings are implicit, because they are inferred from user actions rather
than being explicitly specified by the user. Nevertheless, variations of the approach can also
be applied to cases where ratings are explicitly specified. Collaborative recommendation
algorithms are applied to the collected ratings, so that inferences can be made about the

1.2. GOALS OF RECOMMENDER SYSTEMS 7

Table 1.1: Examples of products recommended by various real-world recommender systems

System Product Goal

Amazon.com [698] Books and other products
Netflix [690] DVDs, Streaming Video
Jester [689] Jokes

GroupLens [687] News
MovieLens [688] Movies
last.fm [692] Music

Google News [697] News
Google Search [696] Advertisements

Facebook [691] Friends, Advertisements
Pandora [693] Music
YouTube [694] Online videos

Tripadvisor [695] Travel products
IMDb [699] Movies

personalized articles for specific users. A description of a collaborative filtering system for
Google News is provided in [175]. More details of the Google News personalization engine
are discussed in section 13.8.1.2 of Chapter 13.

Facebook Friend Recommendations

Social networking sites often recommend potential friends to users in order to increase
the number of social connections at the site. Facebook [691] is one such example of a so-
cial networking Web site. This kind of recommendation has slightly different goals than
a product recommendation. While a product recommendation directly increases the profit
of the merchant by facilitating product sales, an increase in the number of social connec-
tions improves the experience of a user at a social network. This, in turn, encourages the
growth of the social network. Social networks are heavily dependent on the growth of the
network to increase their advertising revenues. Therefore, the recommendation of poten-
tial friends (or links) enables better growth and connectivity of the network. This problem
is also referred to as link prediction in the field of social network analysis. Such forms of
recommendations are based on structural relationships rather than ratings data. Therefore,
the nature of the underlying algorithms is completely different. The link recommendation
problem is explored in detail in Chapter 10. The relationship of computational advertising
to recommender system technology is discussed in Chapter 13.

1.2.1 The Spectrum of Recommendation Applications

In the following, we will provide a brief overview of the application-specific goals accom-
plished by various implementations of recommender systems. A brief overview of the prod-
ucts suggested and the goals accomplished by various recommender systems are illustrated
in Table 1.1. Many of these recommender systems are focused on traditional e-commerce
applications for various products, including books, movies, videos, travel, and other goods
and services. The broader applicability of recommender systems to e-commerce applications
is discussed in [530]. However, recommender systems have expanded beyond the traditional
domain of product recommendations. It is noteworthy that some of the systems in Table 1.1

8 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

may not recommend specific products. An example is the Google search application, which
may advertise products along with their search results. This is the area of computational
advertising, which is a distinct area in its own right, but it is nevertheless closely related
to recommender systems. This area is discussed in detail in section 13.8.2 of Chapter 13.
Similarly, Facebook recommends friends, and online recruitment sites recommend employers
and job-seekers to one another. The last of these systems is also referred to as a reciprocal
recommender. The models for some of these recommendation algorithms are quite differ-
ent from those of traditional recommender systems. This book will study many of these
variations in detail.

1.3 Basic Models of Recommender Systems

The basic models for recommender systems work with two kinds of data, which are (i) the
user-item interactions, such as ratings or buying behavior, and (ii) the attribute information
about the users and items such as textual profiles or relevant keywords. Methods that use the
former are referred to as collaborative filtering methods, whereas methods that use the latter
are referred to as content-based recommendermethods. Note that content-based systems also
use the ratings matrices in most cases, although the model is usually focused on the ratings
of a single user rather than those of all users. In knowledge-based recommender systems,
the recommendations are based on explicitly specified user requirements. Instead of using
historical rating or buying data, external knowledge bases and constraints are used to create
the recommendation. Some recommender systems combine these different aspects to create
hybrid systems. Hybrid systems can combine the strengths of various types of recommender
systems to create techniques that can perform more robustly in a wide variety of settings.
In the following, we will discuss these basic models briefly, and also provide pointers to the
relevant chapters in the book where they are discussed.

1.3.1 Collaborative Filtering Models

Collaborative filtering models use the collaborative power of the ratings provided by multiple
users to make recommendations. The main challenge in designing collaborative filtering
methods is that the underlying ratings matrices are sparse. Consider an example of a movie
application in which users specify ratings indicating their like or dislike of specific movies.
Most users would have viewed only a small fraction of the large universe of available movies.
As a result, most of the ratings are unspecified. The specified ratings are also referred to as
observed ratings. Throughout this book, the terms “specified” and “observed” will be used
in an interchangeable way. The unspecified ratings will be referred to as “unobserved” or
“missing.”

The basic idea of collaborative filtering methods is that these unspecified ratings can be
imputed because the observed ratings are often highly correlated across various users and
items. For example, consider two users named Alice and Bob, who have very similar tastes. If
the ratings, which both have specified, are very similar, then their similarity can be identified
by the underlying algorithm. In such cases, it is very likely that the ratings in which only
one of them has specified a value, are also likely to be similar. This similarity can be used to
make inferences about incompletely specified values. Most of the models for collaborative
filtering focus on leveraging either inter-item correlations or inter-user correlations for the
prediction process. Some models use both types of correlations. Furthermore, some models
use carefully designed optimization techniques to create a training model in much the same

1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 9

way a classifier creates a training model from the labeled data. This model is then used
to impute the missing values in the matrix, in the same way that a classifier imputes the
missing test labels. There are two types of methods that are commonly used in collaborative
filtering, which are referred to as memory-based methods and model-based methods:

1. Memory-based methods: Memory-based methods are also referred to as neighborhood-
based collaborative filtering algorithms. These were among the earliest collaborative
filtering algorithms, in which the ratings of user-item combinations are predicted on
the basis of their neighborhoods. These neighborhoods can be defined in one of two
ways:

• User-based collaborative filtering: In this case, the ratings provided by like-minded
users of a target user A are used in order to make the recommendations for A.
Thus, the basic idea is to determine users, who are similar to the target user A,
and recommend ratings for the unobserved ratings of A by computing weighted
averages of the ratings of this peer group. Therefore, if Alice and Bob have rated
movies in a similar way in the past, then one can use Alice’s observed ratings
on the movie Terminator to predict Bob’s unobserved ratings on this movie. In
general, the k most similar users to Bob can be used to make rating predictions
for Bob. Similarity functions are computed between the rows of the ratings matrix
to discover similar users.

• Item-based collaborative filtering: In order to make the rating predictions for
target item B by user A, the first step is to determine a set S of items that are
most similar to target item B. The ratings in item set S, which are specified
by A, are used to predict whether the user A will like item B. Therefore, Bob’s
ratings on similar science fiction movies like Alien and Predator can be used to
predict his rating on Terminator. Similarity functions are computed between the
columns of the ratings matrix to discover similar items.

The advantages of memory-based techniques are that they are simple to implement
and the resulting recommendations are often easy to explain. On the other hand,
memory-based algorithms do not work very well with sparse ratings matrices. For
example, it might be difficult to find sufficiently similar users to Bob, who have rated
Gladiator. In such cases, it is difficult to robustly predict Bob’s rating of Gladiator. In
other words, such methods might lack full coverage of rating predictions. Nevertheless,
the lack of coverage is often not an issue, when only the top-k items are required.
Memory-based methods are discussed in detail in Chapter 2.

2. Model-based methods: In model-based methods, machine learning and data mining
methods are used in the context of predictive models. In cases where the model is
parameterized, the parameters of this model are learned within the context of an
optimization framework. Some examples of such model-based methods include deci-
sion trees, rule-based models, Bayesian methods and latent factor models. Many of
these methods, such as latent factor models, have a high level of coverage even for
sparse ratings matrices. Model-based collaborative filtering algorithms are discussed
in Chapter 3.

Even though memory-based collaborative filtering algorithms are valued for their simplicity,
they tend to be heuristic in nature, and they do not work well in all settings. However, the
distinction between memory-based and model-based methods is somewhat artificial, because

10 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

I LOVED IT

I LIKED IT

IT WAS OK

I DIDN’T LIKE IT

I HATED IT

Figure 1.1: Example of 5-point interval ratings

1. The quality of the course content

2. The instructor's overall teaching

Excellent
Very
Good Good Fair Poor NA

Overall Ratings

Figure 1.2: Example of ordinal ratings used in Stanford University course evaluations

memory-based methods can also be considered similarity-basedmodels, albeit heuristic ones.
In section 2.6 of Chapter 2, it will also be shown that some variations of neighborhood-based
methods can be formally expressed as regression-based models. Latent factor models were
popularized in later years as a result of the Netflix Prize contest, although similar algo-
rithmswere proposed much earlier in the context of (generic) incomplete data sets [24].
Recently, it was shown that some combinations of memory-based and model-based meth-
ods [309] provide very accurate results.

1.3.1.1 Types of Ratings

The design of recommendation algorithms is influenced by the system used for tracking
ratings. The ratings are often specified on a scale that indicates the specific level of like
or dislike of the item at hand. It is possible for ratings to be continuous values, such as in
the case of the Jester joke recommendation engine [228, 689], in which the ratings can take
on any value between -10 and 10. This is, however, relatively rare. Usually, the ratings are
interval-based, where a discrete set of ordered numbers are used to quantify like or dislike.
Such ratings are referred to as interval-based ratings. For example, a 5-point rating scale
might be drawn from the set {−2,−1, 0, 1, 2}, in which a rating of −2 indicates an extreme
dislike, and a rating of 2 indicates a strong affinity to the item. Other systems might draw
the ratings from the set {1, 2, 3, 4, 5}.

The number of possible ratings might vary with the system at hand. The use of 5-point,
7-point, and 10-point ratings is particularly common. The 5-star ratings system, illustrated
in Figure 1.1, is an example of interval ratings. Along each of the possible ratings, we have
indicated a semantic interpretation of the user’s level of interest. This interpretation might
vary slightly across different merchants, such as Amazon or Netflix. For example, Netflix
uses a 5-star ratings system in which the 4-star point corresponds to “really liked it,” and
the central 3-star point corresponds to “liked it.” Therefore, there are three favorable ratings
and two unfavorable ratings in Netflix, which leads to an unbalanced rating scale. In some

1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 11

cases, there may be an even number of possible ratings, and the neutral rating might be
missing. This approach is referred to as a forced choice rating system.

One can also use ordered categorical values such as {Strongly Disagree,Disagree,
Neutral,Agree, Strongly Agree} in order to achieve the same goals. In general, such rat-
ings are referred to as ordinal ratings, and the term is derived from the concept of ordinal
attributes. An example of ordinal ratings, used in Stanford University course evaluation
forms, is illustrated in Figure 1.2. In binary ratings, the user may represent only a like or
dislike for the item and nothing else. For example, the ratings may be 0, 1, or unspecified
values. The unspecified values need to be predicted to 0-1 values. A special case of ratings
is that of unary ratings, in which there is a mechanism for a user to specify a liking for
an item but no mechanism to specify a dislike. Unary ratings are particularly common,
especially in the case of implicit feedback data sets [259, 260, 457]. In these cases, customer
preferences are derived from their activities rather than their explicitly specified ratings.
For example, the buying behavior of a customer can be converted to unary ratings. When
a customer buys an item, it can be viewed as a preference for the item. However, the act of
not buying an item from a large universe of possibilities does not always indicate a dislike.
Similarly, many social networks, such as Facebook, use “like” buttons, which provide the
ability to express liking for an item. However, there is no mechanism to specify dislike for
an item. The implicit feedback setting can be viewed as the matrix completion analog of
the positive-unlabeled (PU) learning problem in data classification [259].

Examples of Explicit and Implicit Ratings

A quantitative example of explicit ratings is illustrated in Figure 1.3(a). In this case, there
are 6 users, labeled U1 . . . U6, and 6 movies with specified titles. Higher ratings indicate more
positive feedback in Figure 1.3(a). The missing entries correspond to unspecified preferences.
The example of this figure represents a small toy example. In general, the ratings could be
represented as anm×n matrix, wherem and n are typically very large and may range in the
order of hundreds of thousands. Even though this particular example uses a 6 × 6 matrix,
the values of m and n are typically not the same in real-world scenarios. A ratings matrix
is sometimes referred to as a utility matrix, although the two may not always be the same.
Strictly speaking, when the utility refers to the amount of profit, then the utility of a user-
item combination refers to the amount of profit incurred by recommending that item to the
particular user. While utility matrices are often set to be the same as the ratings matrices,
it is possible for the application to explicitly transform the ratings to utility values based
on domain-specific criteria. All collaborative filtering algorithms are then applied to the
utility matrix rather than the ratings matrix. However, such an approach is rarely used in
practice, and most collaborative filtering algorithms work directly with the ratings matrix.

An example of a unary ratings matrix is illustrated in Figure 1.3(b). For cases in which
the ratings are unary, the matrix is referred to as a positive preference utility matrix because
it allows only the specification of positive preferences. The two matrices in Figure 1.3 have
the same set of observed entries, but they provide very different insights. For example, the
users U1 and U3 are very different in Figure 1.3(a) because they have very different ratings
for their mutually specified entries. On the other hand, these users would be considered very
similar in Figure 1.3(b) because these users have expressed a positive preference for the same
items. The ratings-based utility provides a way for users to express negative preferences for
items. For example, user U1 does not like the movie Gladiator in Figure 1.3(a). There is no
mechanism to specify this in the positive-preference utility matrix of Figure 1.3(b) beyond

12 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

U
R

G
LA

D
IT
O
R

BE
N
H

G
O
D
FT
H
ER

G
O
O
D
FE
LL
AS

SC
AR

FA
CE

SP
AR

TA
CU

S

U1 1 5 21

U2

35

5

1

4

U 35

3

1

4

U3

U4

3

5

5

4U6

U5

AT
O
R

U
R

AT
H
ER

FE
LL
AS

AC
E

AC
U
S

G
LA

D
I

BE
N

H

G
O
D
F

G
O
O
D

SC
AR

F

SP
AR

T

U1 1 1 11

U2

11

1

1

1

U 11

1

1

1

U3

U4

1

1

1

1U6

U5

(a) Ordered ratings (b) Unary ratings

Figure 1.3: Examples of utility matrices

a relatively ambiguous missing entry. In other words, the matrix in Figure 1.3(b) is less
expressive. While Figure 1.3(b) provides an example of a binary matrix, it is possible for
the nonzero entries to be arbitrary positive values. For example, they could correspond to
the quantities of items bought by the different users. In general, unary matrices are created
by user actions such as buying an item, and are therefore also referred to as implicit feedback
matrices.

Unary ratings have a significant effect on the recommendation algorithm at hand, be-
cause no information is available about whether a user dislikes an item. In the case of unary
matrices, it is often recommended [260] to perform the analysis in a simple way by treating
the missing entries as 0s in the initial phase. However, the final predicted value by the
learning algorithm might be much larger than 0, especially if the item matches user inter-
ests. The recommended items are therefore based on the entries with the largest positive
prediction error over the initial “zero” assumption. In fact, if the missing entries are not
substituted with 0s, significant overfitting is possible. This type of overfitting is an artifact
of the fact that there is often not a sufficient level of discrimination between the various
observed values of the ratings. In explicit feedback matrices, ratings correspond to (highly
discriminated) preferences, whereas in implicit feedback matrices, ratings correspond to
(less discriminated) confidences. In a later chapter, we will provide a specific example of
overfitting with implicit feedback matrices when missing entries are not treated as zeros
(cf. section 3.6.6.2 of Chapter 3).

Pre-substitution of missing ratings is not recommended in explicit ratings matrices. In
explicit ratings matrices with both likes and dislikes, the substitution of missing entries with
any value (such as 0 or the row/column/data mean) always leads to a significant amount
of bias in the analysis. In the unary case, substituting missing entries with 0s also leads
to some bias [457, 467, 468], although it is often small because the default assumption in
implicit feedback data, such as buying data, is that the user will not buy most of the items.
One is often willing to live with this bias in the unary case, because a significant amount
of overfitting is reduced by the substitution. There are also some interesting computational
effects of such choices. These trade-offs are discussed in Chapters 2 and 3.

1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 13

TRAINING
ROWS

TEST
ROWS

INDEPENDENT
VARIABLES

DEPENDENT
VARIABLE

NO
DEMARCATION

BETWEEN
TRAINING AND
TEST ROWS

NO DEMARCATIONBETWEEN DEPENDENT
AND INDEPENDENT VARIABLES

(a) Classification (b) Collaborative filtering

Figure 1.4: Comparing the traditional classification problem with collaborative filtering.
Shaded entries are missing and need to be predicted.

1.3.1.2 Relationship with Missing Value Analysis

Collaborative filtering models are closely related to missing value analysis. The traditional
literature on missing value analysis studies the problem of imputation of entries in an in-
completely specified data matrix. Collaborative filtering can be viewed as a (difficult)special
case of this problem in which the underlying data matrix is very large and sparse. A detailed
discussion of methods for missing value analysis in the statistical literature may be found
in [362]. Many of these methods can also be used for recommender systems, although some
of them might require specialized adaptations for very large and sparse matrices. In fact,
some of the recent classes of models for recommender systems, such as latent factor models,
were studied earlier in the context of missing value analysis [24]. Similar methods were in-
dependently proposed in the context of recommender systems [252, 309, 313, 500, 517, 525].
In general, many classical missing value estimation methods [362] can also be used for
collaborative filtering.

1.3.1.3 Collaborative Filtering as a Generalization of Classification and
Regression Modeling

Collaborative filtering methods can be viewed as generalizations of classification and regres-
sion modeling. In the classification and regression modeling problems, the class/dependent
variable can be viewed as an attribute with missing values. Other columns are treated as
features/independent variables. The collaborative filtering problem can be viewed as a gen-
eralization of this framework because any column is allowed to have missing values rather
than (only) the class variable. In the recommendation problem, a clear distinction does

14 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

not exist between class variables and feature variables because each feature plays the dual
role of a dependent and independent variable. This distinction exists in the classification
problem only because the missing entries are restricted to a special column. Furthermore,
there is no distinction between training and test rows in collaborative filtering because any
row might contain missing entries. Therefore, it is more meaningful to speak of training
and test entries in collaborative filtering rather than training and test rows. Collaborative
filtering is a generalization of classification/regression modeling in which the prediction is
performed in entry-wise fashion rather than row-wise fashion. This relationship between
classification/regression modeling and collaborative filtering is important to keep in mind
because many principles of classification and regression modeling methods can be general-
ized to recommender systems. The relationship between the two problems is illustrated in
Figure 1.4. This figure is particularly useful in relating collaborative filtering with classifica-
tion, and it will be revisited multiple times in this book. wherever the similarities between
these two problems are leveraged in some way for algorithmic or theoretical development.

The matrix completion problem also shares a number of characteristics with the trans-
ductive setting in classification and regression. In the transductive setting, the test instances
are also included in the training process (typically with the use of a semisupervised algo-
rithm), and it is often hard to make predictions for test instances that are not available at
the time of training. On the other hand, models in which predictions can be easily made for
new instances are referred to as inductive. For example, a naive Bayes model in classification
is inherently inductive because one can easily use it to predict the label of a test instance
for which the features were not known at the time of building the Bayes model.

The setting for matrix completion is inherently transductive because the training and
test data are tightly integrated with one another in the m× n ratings matrix R, and many
models cannot easily predict ratings for out-of-sample users and/or items. For example, if
John is added to the ratings matrix (with many specified ratings) after the collaborative
filtering model has already been constructed, many off-the-shelf methods will not be able
to make predictions for John. This is especially true for model-based collaborative filtering
methods. However, some recent matrix completion models have also been designed to be
inductive in which ratings can be predicted for out-of-sample users and/or items.

1.3.2 Content-Based Recommender Systems

In content-based recommender systems, the descriptive attributes of items are used to make
recommendations. The term “content” refers to these descriptions. In content-based meth-
ods, the ratings and buying behavior of users are combined with the content information
available in the items. For example, consider a situation where John has rated the movie
Terminator highly, but we do not have access to the ratings of other users. Therefore, col-
laborative filtering methods are ruled out. However, the item description of Terminator
contains similar genre keywords as other science fiction movies, such as Alien and Predator.
In such cases, these movies can be recommended to John.

In content-based methods, the item descriptions, which are labeled with ratings, are
used as training data to create a user-specific classification or regression modeling problem.
For each user, the training documents correspond to the descriptions of the items she has
bought or rated. The class (or dependent) variable corresponds to the specified ratings or
buying behavior. These training documents are used to create a classification or regression
model, which is specific to the user at hand (or active user). This user-specific model is used
to predict whether the corresponding individual will like an item for which her rating or
buying behavior is unknown.

1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 15

Content-based methods have some advantages in making recommendations for new
items, when sufficient rating data are not available for that item. This is because other
items with similar attributes might have been rated by the active user. Therefore, the su-
pervised model will be able to leverage these ratings in conjunction with the item attributes
to make recommendations even when there is no history of ratings for that item.

Content-based methods do have several disadvantages as well:

1. In many cases, content-based methods provide obvious recommendations because of
the use of keywords or content. For example, if a user has never consumed an item with
a particular set of keywords, such an item has no chance of being recommended. This
is because the constructed model is specific to the user at hand, and the community
knowledge from similar users is not leveraged. This phenomenon tends to reduce the
diversity of the recommended items, which is undesirable.

2. Even though content-based methods are effective at providing recommendations for
new items, they are not effective at providing recommendations for new users. This is
because the training model for the target user needs to use the history of her ratings.
In fact, it is usually important to have a large number of ratings available for the
target user in order to make robust predictions without overfitting.

Therefore, content-based methods have different trade-offs from collaborative filtering
systems.

Although the aforementioned description provides the conventional learning-based view
of content-based methods, a broader view of these methods is sometimes used. For exam-
ple, users can specify relevant keywords in their own profiles. These profiles can be matched
with item descriptions in order to make recommendations. Such an approach does not
use ratings in the recommendation process, and it is therefore useful in cold-start scenar-
ios. However, such methods are often viewed as a distinct class of recommender systems,
known as knowledge-based systems, because the similarity metrics are often based on do-
main knowledge. Knowledge-based recommender systems are often considered to be closely
related to content-based recommender systems, and it is sometimes questioned whether a
clear demarcation exists between the two classes of methods [558]. Methods for content-
based recommender systems are discussed in Chapter 4.

1.3.3 Knowledge-Based Recommender Systems

Knowledge-based recommender systems are particularly useful in the context of items that
are not purchased very often. Examples include items such as real estate, automobiles,
tourism requests, financial services, or expensive luxury goods. In such cases, sufficient
ratings may not be available for the recommendation process. As the items are bought rarely,
and with different types of detailed options, it is difficult to obtain a sufficient number of
ratings for a specific instantiation (i.e., combination of options) of the item at hand. This
problem is also encountered in the context of the cold-start problem, when sufficient ratings
are not available for the recommendation process. Furthermore, the nature of consumer
preferences may evolve over time when dealing with such items. For example, the model
of a car may evolve significantly over a few years, as a result of which the preferences
may show a corresponding evolution. In other cases, it might be difficult to fully capture
user interest with historical data such as ratings. A particular item may have attributes
associated with it that correspond to its various properties, and a user may be interested
only in items with specific properties. For example, cars may have several makes, models,

16 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

Table 1.2: The conceptual goals of various recommender systems
Approach Conceptual Goal Input

Collaborative Give me recommendations based on a collaborative approach User ratings +
that leverages the ratings and actions of my peers/myself. community ratings

Content- Give me recommendations based on the content (attributes) User ratings +
based I have favored in my past ratings and actions. item attributes

Knowledge- Give me recommendations based on my explicit specification User specification +
based of the kind of content (attributes) I want. item attributes +

domain knowledge

Figure 1.5: A hypothetical example of an initial user interface for a constraint-based rec-
ommender)

colors, engine options, and interior options, and user interests may be regulated by a very
specific combination of these options. Thus, in these cases, the item domain tends to be
complex in terms of its varied properties, and it is hard to associate sufficient ratings with
the large number of combinations at hand.

Such cases can be addressed with knowledge-based recommender systems, in which rat-
ings are not used for the purpose of recommendations. Rather, the recommendation processis
performed on the basis of similarities between customer requirements and item descriptions,
or the use of constraints specifying user requirements. The process is facilitated with the use
of knowledge bases, which contain data about rules and similarity functions to use during the
retrieval process. In fact, the knowledge bases are so important to the effective functioning
of these methods that the approach takes its name from this fact. The explicit specification
of requirements results in greater control of users over the recommendation process. In both
collaborative and content-based systems, recommendations are decided entirely by either
the user’s past actions/ratings, the action/ratings of her peers, or a combination of the two.
Knowledge-based systems are unique in that they allow the users to explicitly specify what
they want. This difference is illustrated in Table 1.2.

Knowledge-based recommender systems can be classified on the basis of the type of the
interface (and corresponding knowledge) used to achieve the aforementioned goals:

1. Constraint-based recommender systems: In constraint-based systems [196, 197], users
typically specify requirements or constraints (e.g., lower or upper limits) on the item

1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 17

Figure 1.6: A hypothetical example of an initial user interface for a case-based recommender)

attributes. An example of such an interface is illustrated in Figure 1.5. Domain-specific
rules are used to match the user requirements to item attributes. These rules represent
the domain-specific knowledge used by the system. Such rules could take the form of
domain-specific constraints on the item attributes (e.g., “Cars before year 1970 do
not have cruise control.”). Furthermore, constraint-based systems often create rules
relating user attributes to item attributes (e.g., “Older investors do not invest in ultra
high-risk products.”). In such cases, user attributes may also be specified in the search
process. Depending on the number and type of returned results, the user might have
an opportunity to modify their original requirements. For example, they might relax
some of their constraints when too few results are returned, or they might add more
constraints. This search process is interactively repeated until the user arrives at her
desired results.

2. Case-based recommender systems: In case-based recommender systems [102, 116, 377,
558], specific cases are specified by the user as targets or anchor points. Similarity
metrics are defined on the item attributes to retrieve similar items to these cases. An
example of such an interface is illustrated in Figure 1.6. The similarity metrics are
often carefully defined in a domain-specific way. Therefore, the similarity metrics form
the domain knowledge that is used in such systems. The returned results are often
used as new target cases with some interactive modifications by the user. For example,
when a user sees a returned result, which is almost similar to what they want, they
might re-issue a query with that target, but with some of the attributes changed to
the user’s liking. This interactive process is used to guide the user towards items of
interest.

18 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

Note that in both cases, the system provides an opportunity to the user to change their
specified requirements. However, the way in which this is done is different in the two cases.
In case-based systems, examples (or cases) are used as anchor points to guide the search
in combination with similarity metrics. Critiquing interfaces are particularly popular for
expressing feedback in such systems, where users iteratively modify one or more attributes
of a preferred item in each iteration. In constraint-based systems, rules (or constraints) are
used to guide the search. The form of the guidance may often take the form of search-based
systems, where users specify their constraints with a search-based interface.

How is the interactivity in knowledge-based recommender systems achieved? This guid-
ance takes place through one or more of the following methods:

1. Conversational systems: In this case, the user preferences are determined iteratively
in the context of a feedback loop. The main reason for this is that the item domain is
complex and the user preferences can be determined only in the context of an iterative
conversational system.

2. Search-based systems: In search-based systems, user preferences are elicited by using
a preset sequence of questions such as the following: “Do you prefer a house in a
suburban area or within the city?” In some cases, specific search interfaces may be
set up in order to provide the ability to specify user constraints.

3. Navigation-based recommendation: In navigation-based recommendation, the user
specifies a number of change requests to the item being currently recommended.
Through an iterative set of change requests, it is possible to arrive at a desirable
item. An example of a change request specified by the user, when a specific house is
being recommended is as follows: “I would like a similar house about 5 miles west of
the currently recommended house.” Such recommender systems are also referred to
as critiquing recommender systems [417].

It is noteworthy that both knowledge-based and content-based systems depend significantly
on the attributes of the items. Because of their use of content-attributes, knowledge-based
systems inherit some of the same disadvantages as content-based systems. For example, just
like content-based systems, the recommendations in knowledge-based systems can some-
times be obvious because the use of community (i.e., peer) ratings is not leveraged. In fact,
knowledge-based systems are sometimes considered to be the “cousins” of content-based sys-
tems [558]. The main difference is that content-based systems learn from past user behavior,
whereas knowledge-based recommendation systems recommend based on active user speci-
fication of their needs and interests. Therefore, in most of the recommendation literature,
knowledge-based recommenders are considered to be a distinct category from content-based
recommenders. These distinctions are based both on the goals of such systems and the kind
of input data used (see Table 1.2). The different forms of knowledge-based recommender
systems are discussed in Chapter 5.

1.3.3.1 Utility-Based Recommender Systems

In utility-based recommender systems, a utility function is defined on the product features
in order to compute the probability of a user liking the item [239]. The central challenge
in utility-based methods is in defining an appropriate utility function for the user at hand.
It is noteworthy that all recommender schemes, whether collaborative, content-based, or
knowledge-based methods, implicitly rank the recommended items on the basis of their
perceived value (or utility) for the target user. In utility-based systems, this utility value is

1.3. BASIC MODELS OF RECOMMENDER SYSTEMS 19

based on a function that is known a priori. In this sense, such functions can be viewed as
a kind of external knowledge. Therefore, utility-based systems can be viewed as a specific
case of knowledge-based recommender systems. In fact, it will be shown in Chapter 5 that
utility functions are used frequently in various ways for ranking items in knowledge-based
recommender systems.

1.3.4 Demographic Recommender Systems

In demographic recommender systems, the demographic information about the user is lever-
aged to learn classifiers that can map specific demographics to ratings or buying propensities.
An early recommender system, referred to as Grundy [508], recommended books based on
the library of manually assembled stereotypes. The characteristics of the user were collected
with the use of an interactive dialogue. The work in [320] observed that the demographic
groups from marketing research can be used to recommend items. Another work [475] makes
Web page recommendations on the basis of the demographic characteristics of users that
have rated a particular page highly. In many cases, demographic information can be com-
bined with additional context to guide the recommendation process. This approach is related
to the methodology of context-sensitive recommender systems. Some of these methods are
discussed in section 8.5.3 of Chapter 8.

More recent techniques have focused on using classifiers for making recommendations.
One of the interesting systems in this respect was a technique that extracted features from
user home pages in order to predict their likelihood of liking certain restaurants. Rule-based
classifiers [31, 32] are often used to relate the demographic profile to buying behavior in an
interactive way. While the approach in [31, 32] was not specifically used to recommend spe-
cific items, it can easily be paired with a recommender system. Such recommender systems
are not very different from the vanilla classification and regression modeling problem, in
which feature variables correspond to the demographic profiles and the dependent variables
correspond to the ratings or to the buying behavior. Although demographic recommender
systems do not usually provide the best results on a stand-alone basis, they add significantly
to the power of other recommender systems as a component of hybrid or ensemble mod-
els. Demographic techniques are sometimes combined with knowledge-based recommender
systems to increase their robustness.

1.3.5 Hybrid and Ensemble-Based Recommender Systems

The three aforementioned systems exploit different sources of input, and they may work
well in different scenarios. For example, collaborative filtering systems rely on community
ratings, content-based methods rely on textual descriptions and the target user’s own rat-
ings, and knowledge-based systems rely on interactions with the user in the context of
knowledge bases. Similarly, demographic systems use the demographic profiles of the users
to make recommendations. It is noteworthy that these different systems use different types
of input, and have different strengths and weaknesses. Some recommender systems, such
as knowledge-based systems, are more effective in cold-start settings where a significant
amount of data is not available. Other recommender systems, such as collaborative meth-
ods, are more effective when a lot of data is available.

In many cases where a wider variety of inputs is available, one has the flexibility of using
different types of recommender systems for the same task. In such cases, many opportuni-
ties exist for hybridization, where the various aspects from different types of systems are
combined to achieve the best of all worlds. Hybrid recommender systems are closely related

20 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

to the field of ensemble analysis, in which the power of multiple types of machine learning
algorithms is combined to create a more robust model. Ensemble-based recommender sys-
tems are able to combine not only the power of multiple data sources, but they are also able
to improve the effectiveness of a particular class of recommender systems (e.g., collaborative
systems) by combining multiple models of the same type. This scenario is not very different
from that of ensemble analysis in the field of data classification. Chapter 6 studies various
hybridization strategies for recommender systems.

1.3.6 Evaluation of Recommender Systems

Given a set of recommendation algorithms, how well do they perform? How can we evalu-
ate their relative effectiveness? Recommender systems share several conceptual similarities
with the classification and regression modeling problem. In classification and regression
modeling, the missing class variable needs to be predicted from the feature variables. In
recommender systems, any of the matrix entries may be missing and need to be predicted
in a data-driven way from the observed entries in the remaining matrix. In this sense, the
recommendation problem can be viewed as a generalization of the classification problem.
Therefore, many of the models used for evaluation of classifiers can be used for evaluating
recommender systems, albeit with some modifications. There are significant variations in
the evaluation techniques used for different aspects of recommender systems, such as rating
prediction or ranking. The former is closely related to classification and regression model-
ing, whereas the latter is closely related to the evaluation of retrieval effectiveness in search
and information retrieval applications. Evaluation methods for recommender systems are
discussed in detail in Chapter 7.

1.4 Domain-Specific Challenges in Recommender

Systems

In different domains, such as temporal data, location-based data, and social data, the con-
text of the recommendation plays a critical role. Therefore, the notion of contextual rec-
ommender systems was developed to address the additional side information that arises in
these domains. This notion is used with different modifications for various types of data,
such as temporal data, location data, or social data.

1.4.1 Context-Based Recommender Systems

Context-based or context-aware recommender systems take various types of contextual in-
formation into account, while making recommendations. Such contextual information could
include time, location, or social data. For example, the types of clothes recommended by a
retailer might depend both on the season and the location of the customer. Another example
is the case in which a particular type of festival or holiday affects the underlying customer
activity.

It has generally been observed that the use of such contextual information can greatly im-
prove the effectiveness of the recommendation process. Context-based recommender systems
are incredibly powerful because the underlying ideas are relevant to a wide variety of domain-
specific settings. In fact, a recurring theme throughout the later chapters of the book, will
be the use of a multidimensional model [7] for context-specific recommendations in different

1.4. DOMAIN-SPECIFIC CHALLENGES IN RECOMMENDER SYSTEMS 21

domain-specific settings. Context-aware recommender systems will be discussed in Chap-
ter 8 in a general sense. However, individual aspects of the context, such as time, location,
and social information, are studied in detail in other chapters. A general review of these
different aspects is provided below.

1.4.2 Time-Sensitive Recommender Systems

In many settings, the recommendations for an item might evolve with time. For example,
the recommendations for a movie may be very different at the time of release from the
recommendations received several years later. In such cases, it is extremely important to
incorporate temporal knowledge in the recommendation process. The temporal aspect in
such recommender systems can be reflected in several ways:

1. The rating of an item might evolve with time, as community attitudes evolve and
the interests of users change over time. User interests, likes, dislikes, and fashions
inevitably evolve with time.

2. The rating of an item might be dependent on the specific time of day, day of week,
month, or season. For example, it makes little sense to recommend winter clothing
during the summer, or raincoats during the dry season.

The first type of recommender system is created by incorporating time as an explicit pa-
rameter in collaborative filtering systems. The second type can be viewed as a special case
of context-based recommender systems. Temporal recommender systems are challenging be-
cause of the fact that the matrix of ratings is sparse, and the use of specific temporal context
aggravates the sparsity problem. Therefore, it is particularly important to have access to
large data sets in these settings.

Another common setting is that of implicit feedback data sets such as Web click-streams.
The user activity on the Web and other internet platforms creates a lot of useful data
that can be mined to make recommendations about future activity. In such cases, discrete
sequential pattern mining and Markov models are helpful. The problem of time-sensitive
recommendation is discussed in detail in Chapter 9.

1.4.3 Location-Based Recommender Systems

With the increasing popularity of GPS-enabled mobile phones, consumers are often in-
terested in location-based recommendations. For example, a traveling user may wish to
determine the closest restaurant based on her previous history of ratings for other restau-
rants. In general, the recommendation of places always has a location aspect built into it.
An example of such a system is Foursquare2, which recommends various types of places such
as restaurants or nightlife venues. There are two types of spatial locality that are common
to such systems:

1. User-specific locality: The geographical location of a user has an important role in
her preferences. For example, a user from Wisconsin might not have the same movie
preferences as a user from New York. This type of locality is referred to as preference
locality.

2http://foursquare.com

http://foursquare.com

22 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

2. Item-specific locality: The geographical location of an item (e.g., restaurant) might
have an impact on the relevance of the item, depending on the current location of
the user. Users are generally not willing to travel very far from their current location.
This type of locality is referred to as travel locality.

The algorithms for preference locality and travel locality are quite different. The former
are closer to context-sensitive systems, whereas the latter are usually designed as ad hoc
heuristics. Location-based recommender systems have witnessed an increasing interest in
recent years because of the increasing prevalence of mobile phones and other GPS-enabled
devices. Location-based recommender systems are discussed in detail in Chapter 9.

1.4.4 Social Recommender Systems

Social recommender systems are based on network structures, social cues and tags, or a
combination of these various network aspects. In general, the recommender systems that
are based on social cues and tags are slightly different from those that are based purely on
structural aspects. Recommender systems, which are based purely on structural aspects,
are used to suggest nodes and links within the network itself. On the other hand, social
recommender systems may be also be used to recommend various products with the use of
social cues. Both these forms of recommender systems will be studied in this book. However,
these forms of recommendation are sufficiently different that they will be studied in different
chapters of this book. It is important to note that the utility of structural recommender
systems extends beyond social networks, because such methods are applied to various types
of Web-enabled networks.

1.4.4.1 Structural Recommendation of Nodes and Links

Various types of networks, including social networks, are composed of nodes and links. In
many cases, it is desirable to recommend nodes and links. For example, a personalized Web
search may require a recommendation of material which is related to a particular topic.
Since the Web can be viewed as a graph, such methods can be viewed as a node recommen-
dation problem. The problem of node recommendation is closely related to the problem of
Web search. In fact, both problems require the use of various forms of ranking algorithms.
A key component of these methods is the use of the PageRank algorithm, although the
personalization of such algorithms is more closely related to recommendation algorithms.
Therefore, such algorithms are also referred to as personalized PageRank algorithms. In
cases where examples of nodes of interest are available, such nodes can be used as training
data in order to determine other nodes of interest. This problem is referred to as collective
classification. A closely related problem is that of the link recommendation or link predic-
tion problem, where it is desirable to suggest friends (or potential links) for a user in a
social network. The link prediction problem also has numerous applications beyond social
networks. Interestingly, the problems of ranking, collective classification, and link recom-
mendation are closely related. In fact, solutions to one problem are often used as subroutines
for other problems. For example, ranking and link prediction methods are often used for
traditional product recommendations in user-item graphs. In fact, these methods can be
used to perform recommendations in many problem settings, which can be transformed into
graphs. Methods for node and link recommendations are discussed in Chapter 10.

1.5. ADVANCED TOPICS AND APPLICATIONS 23

1.4.4.2 Product and Content Recommendations with Social Influence

Many forms of product and content recommendation are performed with the help of network
connections and other social cues. This problem is also referred to as viral marketing. In
viral marketing, products are recommended with the use of word-of-mouth systems. In
order to achieve this goal, it is important to be able to determine influential and topically
relevant entities in the network. This problem is referred to as influence analysis in social
networks [297]. Many variations of this problem have been proposed, in which the influencers
are found in a topically sensitive way, in the social stream scenario. For example, determining
the influential users in a Twitter stream for specific topics may be very useful for viral
marketing. In other cases, social cues are harvested from social networks in order to make
recommendations. These methods for discussed in Chapter 10.

1.4.4.3 Trustworthy Recommender Systems

Many social media sites, such as Epinions [705] or Slashdot [706], allow users to express
their trust and distrust in one another, either in a direct way, or through various feedback
mechanisms. For example, users can express their trust or distrust in reviews of other users,
or they may directly specify their trust or distrust relationships with other users. This
trust information is very useful for making more robust recommendations. For example,
it is evident that a user-based neighborhood method should be computed with the use of
trustworthy peers to obtain robust recommendations. Recent research has shown [221, 588,
616] that the incorporation of trust information can lead to more robust recommendations.
Trustworthy recommender systems are presented in Chapter 11.

1.4.4.4 Leveraging Social Tagging Feedback for Recommendations

Users have numerous methods for incorporating their feedback in recommender systems.
The most common form of feedback is social tagging. Such forms of feedback are partic-
ularly common on content sharing sites on the Web, such as Flickr (photo sharing) [692],
last.fm [692] (music sharing), and Bibsonomy [708] (scientific literature sharing). Tags are
meta-data that users utilize to add short informative keywords to the content. For example,
a user on a music site might tag Michael Jackson’s Thriller album as “rock.” Such tags
provide useful information about the interests of both the user and the content of the item
because the tag is associated with both. The tags serve as useful context for performing
the recommendations. Methods for context-sensitive recommendations can be directly used
to incorporate this feedback into the recommendation process. Other specialized methods
have also been developed for using social tagging feedback in the recommendation process.
These methods are discussed in detail in Chapter 11.

1.5 Advanced Topics and Applications

This book will also introduce a number of advanced topics and applications. Most of the
these topics are discussed in Chapters 12 and 13, although some of the topics are spread
out over the book, where it is appropriate. In this section, we provide a brief introduction
to these topics.

24 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

1.5.1 The Cold-Start Problem in Recommender Systems

One of the major problems in recommender systems is that the number of initially avail-
able ratings is relatively small. In such cases, it becomes more difficult to apply traditional
collaborative filtering models. While content-based and knowledge-based methods are more
robust than collaborative models in the presence of cold starts, such content or knowledge
might not always be available. Therefore, a number of specific methods have been designed
to ameliorate the problem of cold start in the context of recommender systems. The sus-
ceptibility of various models to the cold-start problem is also highlighted throughout this
book, along with possible solutions.

1.5.2 Attack-Resistant Recommender Systems

The use of recommender systems has a significant impact on the sale of various products
and services. As a result, the sellers of products and services have significant economic
incentives to manipulate the output of recommender systems. One example of such a ma-
nipulation would be to submit inflated ratings of their own products to the recommender
systems. A malicious rival might submit biased and negative reviews about the products
of a competitor. Over the years, numerous sophisticated strategies have been developed for
attacking recommender systems. Such attacks are highly undesirable because they reduce
the overall effectiveness of the recommender system and reduce the quality of experience
for legitimate users. Therefore, methods are needed that enable robust recommendations in
the presence of such attacks. Attack methods, including the susceptibility of various types
of algorithms to attacks, are discussed in detail in Chapter 12. In addition, Chapter 12 will
provide a number of strategies for constructing robust recommender systems in the presence
of such attacks.

1.5.3 Group Recommender Systems

An interesting extension of traditional recommender systems is the notion of group recom-
mender systems [168]. In such cases, the recommendation system is tailored to recommend
a particular activity to a group of users rather than a single user. Examples might include
the watching of movie or television by a group [408, 653], the selection of music in a fitness
center, or the travel recommendations to a group of tourists. The earliest systems, such
as PolyLens [168], designed models that aggregated the preferences of individual users in
order to create group recommendations. However, the consensus over the years has evolved
into designing recommender systems, which are better than the sum of their parts and
can take the interactions between the various users into account for designing recommenda-
tions [272, 413]. Simple averaging strategies do not work well when groups are heterogeneous
and contain users with diverse tastes [653]. This is because users often have an impact on
each other’s tastes based on phenomena from social psychology, such as emotional conta-
gion and conformity. Detailed surveys on the subject may be found in [45, 271, 407]. Group
recommender systems are discussed in section 13.4 of Chapter 13.

1.5.4 Multi-Criteria Recommender Systems

In multi-criteria systems, ratings might be specified on the basis of different criteria by
a single user. For example, a user might rate movies based on the plot, music, special
effects, and so on. Such techniques often provide recommendations by modeling the user’s
utility for an item as a vector of ratings corresponding to various criteria. In multi-criteria

1.5. ADVANCED TOPICS AND APPLICATIONS 25

recommender systems, one can often obtain misleading results by using only the overall
rating in conjunction with a traditional recommender system. For example, if two users
have the same overall rating for a movie, but their component ratings for the plot and
music are very different, then the two users should not be considered similar from the
perspective of a similarity-based collaborative filtering algorithm. In some of the multi-
criteria systems, users may not specify an overall rating at all. In such cases, the problem is
even more challenging because it is needed to present ranked lists of items to various users
on the basis of multiple criteria. Excellent overviews of multi-criteria recommender systems
may be found in [11, 398, 604] from various perspectives.

It has been shown [271, 410], that some of the methods for group recommender systems
can also be adapted to multi-criteria recommender systems. However, the two topics are
generally considered different because they emphasize different aspects of the recommenda-
tion process. Methods for multi-criteria recommender systems are discussed in section 13.5
of Chapter 13.

1.5.5 Active Learning in Recommender Systems

A major challenge in recommender systems is the acquisition of sufficient ratings in order
to make robust predictions. The sparsity of the ratings matrix continues to be a significant
impediment in effective functioning of recommender systems. The acquisition of sufficient
ratings can reduce the sparsity problem. A variety of real-world recommender systems have
mechanisms to encourage users to enter ratings in order to populate the system. For exam-
ple, users might be provided incentives to rate certain items. In general, it is often difficult
to obtain too many ratings from the single user because of the high cost of the acquisition
process. Therefore, one must judiciously select the items to be rated by specific users. For
example, if a user has already rated a lot of action movies, then asking the user to rate
another action movie does not help much in predicting ratings of other action movies, and
it helps even less in predicting ratings of movies belonging to unrelated genres. On the other
hand, asking the user to rate movies belonging to less populated genres will help significantly
in predicting ratings of movies belonging to that genre. Of course, if a user is asked to rate
an unrelated movie, it is not necessary that she will be able to provide feedback because she
might not have watched that movie at all. Therefore, there are many interesting trade-offs
in the problem of active learning of recommender systems, that are not encountered in other
problem domains like classification. A review of active learning methods for recommender
systems may be found in [513]. Active learning methods are discussed in section 13.6 of
Chapter 13.

1.5.6 Privacy in Recommender Systems

Recommender systems are based heavily on feedback from the users, which might be implicit
or explicit. This feedback contains significant information about the interests of the user,
and it might reveal information about their political opinions, sexual orientations, and
personal preferences. In many cases, such information can be highly sensitive, which leads
to privacy concerns. Such privacy concerns are significant in that they impede the release
of data necessary for the advancement of recommendation algorithms. The availability of
real data is crucial for algorithmic advances. For example, the contribution of the Netflix
Prize data set to the recommender systems community is invaluable, in that it can be
credited with motivating the development of many state-of-the-art algorithms [373]. In
recent years, the topic of privacy has been explored in the context of a wide variety of

26 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

data mining problems [20]. The recommendation domain is no exception, and numerous
privacy-preserving algorithms have been developed [133, 484, 485]. The topic of privacy in
recommender systems is discussed in detail in section 13.7 of Chapter 13.

1.5.7 Application Domains

Recommender systems are used in numerous application domains, such as retail, music,
content, Web search, querying, and computational advertisements. Some of these domains
require specialized methods for adapting recommender systems. In particular, Chapter 13
will study three specific domains corresponding to news recommendations, computational
advertising, and reciprocal recommender systems. All these application domains are Web-
centric in nature. An important aspect of recommender systems is that they assume the
existence of strong user-identification mechanisms in order to track and identify long-term
user interests. In many Web domains, mechanisms for strong user identification may not
be available. In such cases, direct user of recommendation technology may not be feasi-
ble. Furthermore, since new items (advertisements) continually enter and leave the system,
certain types of methods such as multi-armed bandits are particularly suitable. Therefore,
Chapter 13 will discuss the scenarios in which recommendation technology can be used
in these application domains. The specific changes that need to be made to off-the-shelf
recommender systems will be discussed in this chapter together with advanced techniques
such as multi-armed bandits.

1.6 Summary

This book will provide an overview of the most important classes of algorithms for recom-
mender systems, their advantages and disadvantages, and the specific scenarios in which
they are most effective. The recommendation problem will be studied in the context of
different domain-specific scenarios and with different types of input information and knowl-
edge bases. As this book will show, the recommendation problem is a rich one, and has
many different manifestations depending on the nature of the input data and the scenario
at hand. Furthermore, the relative effectiveness of different algorithms may vary with the
specific problem setting. These trade-offs will also be explored by this book. In many cases,
hybrid systems can be developed, which exploit these trade-offs effectively.

A number of advanced topics, such as attack models, group recommender systems, multi-
criteria systems, active learning systems, will be studied in later chapters of this book.
We will also explore a number of specific applications, such as news recommendations and
computational advertising. It is hoped that this book will provide a comprehensive overview
and understanding of the different scenarios that arise in the field of recommender systems.

1.7 Bibliographic Notes

Recommender systems became increasingly popular in the mid-nineties, as recommendation
systems such as GroupLens [501] were developed. Since then, this topic has been explored
extensively in the context of a wide variety of models such as collaborative systems, content-
based systems, and knowledge-based systems. Detailed surveys and books on the topic may
be found in [5, 46, 88, 275, 291, 307, 364, 378, 505, 529, 570]. Among these, the work in [5] is
a very well written survey, which provides an excellent overview of the basic ideas. More re-
cent surveys may be found in [88, 378, 570]. A survey of the use of non-traditional sources of

1.7. BIBLIOGRAPHIC NOTES 27

information for recommendations, such as social, temporal, side information, or contextual
data, is provided in [544]. A recent classification of various facets of recommender system re-
search may be found in [462]. An excellent introductory book may be found in [275], whereas
a detailed handbook [505] discusses various aspects of recommender systems in detail.

The problem of collaborative filtering with incomplete ratings matrices is closely re-
lated to the traditional literature on missing data analysis [362], although the two fields
have often been studied independently. The earliest user-based collaborative filtering mod-
els were studied in [33, 98, 501, 540]. User-based methods utilize the ratings of similar users
on the same item in order to make predictions. While such methods were initially quite
popular, they are not easily scalable and sometimes inaccurate. Subsequently, item-based
methods [181, 360, 524] were proposed, which compute predicted ratings as a function of
the ratings of the same user on similar items. Another popular approach for making rec-
ommendations is the use of latent factor models. The earliest works in latent factor models
independently appear in the contexts of recommendation [525] and missing value analy-
sis [24]. Eventually, these methods were rediscovered as the most effective class of methods
for performing recommendations [252, 309, 313, 500, 517]. Aside from their use in factor-
based models, dimensionality reduction methods are also used to reduce the dimensionality
of the ratings matrix to improve the efficiency of the user-to-user or item-to-item similar-
ity in the reduced space [228, 525]. However, the work on missing data analysis is just as
relevant to the recommendation literature. Other relevant models for collaborative filtering
include the use of data mining models such as clustering [167, 360, 608], classification, or
association pattern mining [524]. Sparsity is a major problem is such systems, and various
graph-based systems have been designed to alleviate the problem of sparsity [33, 204, 647].

Content-based methods are closely related to the information retrieval literature [144,
364, 400], in which similarity retrieval methods are used in the recommendation process.
Text classification methods are also particularly useful in the recommendation process.
A detailed discussion on various text classification methods may be found in [22]. Some
of the earliest works on content-based recommendations are found in [60, 69]. The general
survey in [5] also discusses content-based recommendations quite extensively.

There are many cases in which collaborative and content-based methods are not useful
in obtaining meaningful recommendations because of the high degree of complexity and
constraints in the item space. In such cases, knowledge-based recommender systems [116]
are particularly useful. Demographic recommender systems are discussed in [320, 475, 508],
whereas utility-based recommender systems are discussed in [239]. An excellent survey on
explanations in recommender systems is provided in [598].

Different recommender systems are more effective in different types of settings. The
evaluation [246] of recommender systems is important in order to judge the effectiveness of
different algorithms. A detailed discussion of evaluation methods may also be found in [538].
Hybrid systems [117] can combine various recommender systems to obtain more effective
results. Furthermore, ensemble methods can also combine algorithms of the same type to
obtain more effective results. The top entries of the Netflix Prize contest, such as “The
Ensemble” [704] and “Bellkor’s Pragmatic Chaos,” [311] were both ensemble methods.

Recommender systems require specialized methods to make them more effective in a
wide variety of scenarios. A major problem in the effective use of such systems is the cold-
start problem, in which a sufficient number of ratings is not available at the beginning of
the recommendation process. Therefore, specialized methods are often used to address this
problem [533]. In many cases, the context of the recommendation, such as the location,
time, or social information, can significantly improve the recommendation process [7]. Each
of these different types of context has also been studied individually as a separate area of

28 CHAPTER 1. AN INTRODUCTION TO RECOMMENDER SYSTEMS

recommender systems. Temporally-aware recommender systems have been studied in [310],
whereas location-aware recommender systems have been discussed in [26]. The social con-
text is particularly diverse because it allows for a wide variety of problem settings. One can
either recommend nodes or links in social networks, or one can recommend products with
the help of social cues. The first of these settings is closely related to the domain of social
network analysis [656]. Each of the traditional problems of ranking, node classification, and
link prediction [22, 656] can be viewed as a structural recommendation problem in social
networks. Furthermore, these forms of recommendation are useful beyond the social net-
work setting. Interestingly, methods such as link prediction can also be used for traditional
recommendation by transforming the user-item interactions into a bipartite graph struc-
ture [261]. A different form of social recommendation is the case where social cues are used
for performing recommendations [588]. The social network structure can also be directly
used in the context of viral marketing applications [297].

Since recommender systems often help the sale of products, the sellers of those products
or their competitors have significant motivations to attack recommender systems by manip-
ulating the ratings. In such cases, the recommendations are unlikely to be of high quality,
and therefore untrustworthy. In recent years, a significant amount of effort has been devoted
to the design of trustworthy recommender systems [444]. Various group recommender sys-
tems are discussed in [45, 271, 272, 407, 408, 412, 413, 415, 653]. Multi-criteria recommender
systems are discussed in [11, 398, 604]. Active learning methods are discussed in [513]. A gen-
eral discussion of privacy-preservation methods may be found in [20]. The earliest studies on
the topic of privacy-preserving recommendations were presented in [133, 451, 484, 485, 667].
Privacy continues to be a significant challenge to such systems because of the high dimen-
sional nature of the data. It has been shown in [30, 451] how the dimensionality can be
leveraged to make privacy attacks on different types of data sets.

1.8 Exercises

1. Explain why unary ratings are significantly different from other types of ratings in
the design of recommender systems.

2. Discuss cases in which content-based recommendations will not perform as well as
ratings-based collaborative filtering.

3. Suppose you set up a system, where a guided visual interface is used in order to
determine the product of interest to a customer. What category of recommender
system does this case fall into?

4. Discuss a scenario in which location plays an important role in the recommendation
process.

5. The chapter mentions the fact that collaborative filtering can be viewed as a gener-
alization of the classification problem. Discuss a simple method to generalize classi-
fication algorithms to collaborative filtering. Explain why it is difficult to use such
methods in the context of sparse ratings matrices.

6. Suppose that you had a recommender system that could predict raw ratings. How
would you use it to design a top-k recommender system? Discuss the computational
complexity of such a system in terms of the number of applications of the base
prediction algorithm. Under what circumstances would such an approach become
impractical?

Chapter 2

Neighborhood-Based Collaborative
Filtering

“When one neighbor helps another, we strengthen our
communities.” – Jennifer Pahlka

2.1 Introduction

Neighborhood-based collaborative filtering algorithms, also referred to as memory-based
algorithms, were among the earliest algorithms developed for collaborative filtering. These
algorithms are based on the fact that similar users display similar patterns of rating behavior
and similar items receive similar ratings. There are two primary types of neighborhood-based
algorithms:

1. User-based collaborative filtering: In this case, the ratings provided by similar users to
a target user A are used to make recommendations for A. The predicted ratings of A
are computed as the weighted average values of these “peer group” ratings for each
item.

2. Item-based collaborative filtering: In order to make recommendations for target item
B, the first step is to determine a set S of items, which are most similar to item B.
Then, in order to predict the rating of any particular user A for item B, the ratings in
set S, which are specified by A, are determined. The weighted average of these ratings
is used to compute the predicted rating of user A for item B.

An important distinction between user-based collaborative filtering and item-based col-
laborative filtering algorithms is that the ratings in the former case are predicted us-
ing the ratings of neighboring users, whereas the ratings in the latter case are predicted using

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 2

29

30 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

the user’s own ratings on neighboring (i.e., closely related) items. In the former case, neigh-
borhoods are defined by similarities among users (rows of ratings matrix), whereas in the
latter case, neighborhoods are defined by similarities among items (columns of ratings ma-
trix). Thus, the two methods share a complementary relationship. Nevertheless, there are
considerable differences in the types of recommendations that are achieved using these two
methods.

For the purpose of subsequent discussion, we assume that the user-item ratings matrix
is an incomplete m × n matrix R = [ruj] containing m users and n items. It is assumed
that only a small subset of the ratings matrix is specified or observed. Like all other collab-
orative filtering algorithms, neighborhood-based collaborative filtering algorithms can be
formulated in one of two ways:

1. Predicting the rating value of a user-item combination: This is the simplest and most
primitive formulation of a recommender system. In this case, the missing rating ruj
of the user u for item j is predicted.

2. Determining the top-k items or top-k users: In most practical settings, the merchant
is not necessarily looking for specific ratings values of user-item combinations. Rather,
it is more interesting to learn the top-k most relevant items for a particular user, or
the top-k most relevant users for a particular item. The problem of determining the
top-k items is more common than that of finding the top-k users. This is because the
former formulation is used to present lists of recommended items to users in Web-
centric scenarios. In traditional recommender algorithms, the “top-k problem” almost
always refers to the process of finding the top-k items, rather than the top-k users.
However, the latter formulation is also useful to the merchant because it can be used
to determine the best users to target with marketing efforts.

The two aforementioned problems are closely related. For example, in order to determine
the top-k items for a particular user, one can predict the ratings of each item for that user.
The top-k items can be selected on the basis of the predicted rating. In order to improve
efficiency, neighborhood-based methods pre-compute some of the data needed for prediction
in an offline phase. This pre-computed data can be used in order to perform the ranking in
a more efficient way.

This chapter will discuss various neighborhood-based methods. We will study the impact
of some properties of ratings matrices on collaborative filtering algorithms. In addition, we
will study the impact of the ratings matrix on recommendation effectiveness and efficiency.
We will discuss the use of clustering and graph-based representations for implementing
neighborhood-based methods. We will also discuss the connections between neighborhood
methods and regression modeling techniques. Regression methods provide an optimization
framework for neighborhood-based methods. In particular, the neighborhood-based method
can be shown to be a heuristic approximation of a least-squares regression model [72]. This
approximate equivalence will be shown in section 2.6. Such an optimization framework also
paves the way for the integration of neighborhood methods with other optimization models,
such as latent factor models. The integrated approach is discussed in detail in section 3.7
of Chapter 3.

This chapter is organized as follows. Section 2.2 discusses a number of key properties of
ratings matrices. Section 2.3 discusses the key algorithms for neighborhood-based collabo-
rative filtering algorithms. Section 2.4 discusses how neighborhood-based algorithms can be
made faster with the use of clustering methods. Section 2.5 discusses the use of dimensional-
ity reduction methods for enhancing neighborhood-based collaborative filtering algorithms.

2.2. KEY PROPERTIES OF RATINGS MATRICES 31

An optimization modeling view of neighborhood-based methods is discussed in section 2.6.
A linear regression approach is used to simulate the neighborhood model within a learning
and optimization framework. Section 2.7 discusses how graph-based representations can be
used to alleviate the sparsity problem in neighborhood methods. The summary is provided
in section 2.8.

2.2 Key Properties of Ratings Matrices

As discussed earlier, we assume that the ratings matrix is denoted by R, and it is an
m × n matrix containing m users and n items. Therefore, the rating of user u for item j
is denoted by ruj . Only a small subset of the entries in the ratings matrix are typically
specified. The specified entries of the matrix are referred to as the training data, whereas
the unspecified entries of the matrix are referred to as the test data. This definition has a
direct analog in classification, regression, and semisupervised learning algorithms [22]. In
that case, all the unspecified entries belong to a special column, which is known as the class
variable or dependent variable. Therefore, the recommendation problem can be viewed as
a generalization of the problem of classification and regression.

Ratings can be defined in a variety of ways, depending on the application at hand:

1. Continuous ratings: The ratings are specified on a continuous scale, corresponding to
the level of like or dislike of the item at hand. An example of such a system is the
Jester joke recommendation engine [228, 689], in which the ratings can take on any
value between -10 and 10. The drawback of this approach is that it creates a burden
on the user of having to think of a real value from an infinite number of possibilities.
Therefore, such an approach is relatively rare.

2. Interval-based ratings: In interval-based ratings, the ratings are often drawn from
a 5-point or 7-point scale, although 10-point and 20-point scales are also possible.
Examples of such ratings could be numerical integer values from 1 to 5, from -2 to 2,
or from 1 to 7. An important assumption is that the numerical values explicitly define
the distances between the ratings, and the rating values are typically equidistant.

3. Ordinal ratings: Ordinal ratings are much like interval-based ratings, except that or-
dered categorical values may be used. Examples of such ordered categorical values
might be responses such as “Strongly Disagree,” “Disagree,” “Neutral,” “Agree,” and
“Strongly Agree.” A major difference from interval-based ratings is that it is not as-
sumed that the difference between any pair of adjacent ratings values is the same.
However, in practice, this difference is only theoretical, because these different or-
dered categorical values are often assigned to equally spaced utility values. For exam-
ple, one might assign the “Strongly Disagree” response to a rating value of 1, and the
“Strongly Agree” response to a rating value of 5. In such cases, ordinal ratings are
almost equivalent to interval-based ratings. Generally, the numbers of positive and
negative responses are equally balanced in order to avoid bias. In cases where an even
number of responses are used, the “Neutral” option is not present. Such an approach
is referred to as the forced choice method because the neutral option is not present.

4. Binary ratings: In the case of binary ratings, only two options are present, correspond-
ing to positive or negative responses. Binary ratings can be considered a special case
of both interval-based and ordinal ratings. For example, the Pandora Internet radio
station provides users with the ability to either like or dislike a particular music track.

32 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

Binary ratings are an example of the case where forced choice is imposed on the user.
In cases where the user is neutral, she will often not specify a rating at all.

5. Unary ratings: Such systems allow the user to specify a positive preference for an
item, but there is no mechanism to specify a negative preference. This is often the
case in many real-world settings, such as the use of a “like” button on Facebook.
More often, unary ratings are derived from customer actions. For example, the act of
a customer buying an item can be considered a positive vote for an item. On the other
hand, if the customer has not bought the item, then it does not necessarily indicate a
dislike for the item. Unary ratings are special because they simplify the development
of specialized models in these settings.

It is noteworthy that the indirect derivation of unary ratings from customer actions is also
referred to as implicit feedback, because the customer does not explicitly provide feedback.
Rather, the feedback is inferred in an implicit way through the customer’s actions. Such
types of “ratings” are often easier to obtain because users are far more likely to interact with
items on an online site than to explicitly rate them. The setting of implicit feedback (i.e.,
unary ratings) is inherently different, as it can be considered the matrix completion analog
of the positive-unlabeled (PU) learning problem in classification and regression modeling.

The distribution of ratings among items often satisfies a property in real-world settings,
which is referred to as the long-tail property. According to this property, only a small
fraction of the items are rated frequently. Such items are referred to as popular items. The
vast majority of items are rated rarely. This results in a highly skewed distribution of the
underlying ratings. An example of a skewed rating distribution is illustrated in Figure 2.1.
The X-axis shows the index of the item in order of decreasing frequency, and the Y -axis
shows the frequency with which the item was rated. It is evident that most of the items are
rated only a small number of times. Such a rating distribution has important implications
for the recommendation process:

1. In many cases, the high-frequency items tend to be relatively competitive items with
little profit for the merchant. On the other hand, the lower frequency items have larger
profit margins. In such cases, it may be advantageous to the merchant to recommend
lower frequency items. In fact, analysis suggests [49] that many companies, such as
Amazon.com, make most of their profit by selling items in the long tail.

2. Because of the rarity of observed ratings in the long tail it is generally more difficult
to provide robust rating predictions in the long tail. In fact, many recommendation al-
gorithms have a tendency to suggest popular items rather than infrequent items [173].
This phenomenon also has a negative impact on diversity, and users may often become
bored by receiving the same set of recommendations of popular items.

3. The long tailed distribution implies that the items, which are frequently rated by
users, are fewer in number. This fact has important implications for neighborhood-
based collaborative filtering algorithms because the neighborhoods are often defined
on the basis of these frequently rated items. In many cases, the ratings of these high-
frequency items are not representative of the low-frequency items because of the in-
herent differences in the rating patterns of the two classes of items. As a result, the
prediction process may yield misleading results. As we will discuss in section 7.6 of
Chapter 7, this phenomenon can also cause misleading evaluations of recommendation
algorithms.

2.3. PREDICTING RATINGS WITH NEIGHBORHOOD-BASED METHODS 33

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0

100

200

300

400

500

600

700

ITEM INDEX ORDERED BY DECREASING FREQUENCY

N
U

M
B

E
R

 O
F

 R
A

T
IN

G
S

LONG TAIL

Figure 2.1: The long tail of rating frequencies

Important characteristics of ratings, such as sparsity and the long tail, need to be taken into
account during the recommendation process. By adjusting the recommendation algorithms
to take such real-world properties into account, it is possible to obtain more meaningful
predictions [173, 463, 648].

2.3 Predicting Ratings with Neighborhood-Based

Methods

The basic idea in neighborhood-based methods is to use either user-user similarity or item-
item similarity to make recommendations from a ratings matrix. The concept of a neigh-
borhood implies that we need to determine either similar users or similar items in order to
make predictions. In the following, we will discuss how neighborhood-based methods can be
used to predict the ratings of specific user-item combinations. There are two basic principles
used in neighborhood-based models:

1. User-based models: Similar users have similar ratings on the same item. Therefore, if
Alice and Bob have rated movies in a similar way in the past, then one can use Alice’s
observed ratings on the movie Terminator to predict Bob’s unobserved ratings on this
movie.

2. Item-based models: Similar items are rated in a similar way by the same user. There-
fore, Bob’s ratings on similar science fiction movies like Alien and Predator can be
used to predict his rating on Terminator.

Since the collaborative filtering problem can be viewed as a generalization of the clas-
sification/regression modeling problem, neighborhood-based methods can be viewed as
generalizations of nearest neighbor classifiers in the machine learning literature. Unlike

34 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

Table 2.1: User-user similarity computation between user 3 and other users

Item-Id ⇒ 1 2 3 4 5 6 Mean Cosine(i, 3) Pearson(i, 3)
User-Id ⇓ Rating (user-user) (user-user)

1 7 6 7 4 5 4 5.5 0.956 0.894
2 6 7 ? 4 3 4 4.8 0.981 0.939
3 ? 3 3 1 1 ? 2 1.0 1.0
4 1 2 2 3 3 4 2.5 0.789 -1.0
5 1 ? 1 2 3 3 2 0.645 -0.817

Table 2.2: Ratings matrix of Table 2.1 with mean-centering for adjusted cosine similarity
computation among items. The adjusted cosine similarities of items 1 and 6 with other
items are shown in the last two rows.

Item-Id ⇒ 1 2 3 4 5 6
User-Id ⇓

1 1.5 0.5 1.5 -1.5 -0.5 -1.5
2 1.2 2.2 ? -0.8 -1.8 -0.8
3 ? 1 1 -1 -1 ?
4 -1.5 -0.5 -0.5 0.5 0.5 1.5
5 -1 ? -1 0 1 1

Cosine(1, j) 1 0.735 0.912 -0.848 -0.813 -0.990
(item-item)
Cosine(6, j) -0.990 -0.622 -0.912 0.829 0.730 1
(item-item)

classification, where the nearest neighbors are always determined only on the basis of row
similarity, it is possible to find the nearest neighbors in collaborative filtering on the basis
of either rows or columns. This is because all missing entries are concentrated in a single
column in classification, whereas the missing entries are spread out over the different rows
and columns in collaborative filtering (cf. section 1.3.1.3 of Chapter 1). In the following dis-
cussion, we will discuss the details of both user-based and item-based neighborhood models,
together with their natural variations.

2.3.1 User-Based Neighborhood Models

In this approach, user-based neighborhoods are defined in order to identify similar users to
the target user for whom the rating predictions are being computed. In order to determine
the neighborhood of the target user i, her similarity to all the other users is computed.
Therefore, a similarity function needs to be defined between the ratings specified by users.
Such a similarity computation is tricky because different users may have different scales of
ratings. One user might be biased toward liking most items, whereas another user might
be biased toward not liking most of the items. Furthermore, different users may have rated
different items. Therefore, mechanisms need to be identified to address these issues.

For the m× n ratings matrix R = [ruj] with m users and n items, let Iu denote the set
of item indices for which ratings have been specified by user (row) u. For example, if the
ratings of the first, third, and fifth items (columns) of user (row) u are specified (observed)

2.3. PREDICTING RATINGS WITH NEIGHBORHOOD-BASED METHODS 35

and the remaining are missing, then we have Iu = {1, 3, 5}. Therefore, the set of items
rated by both users u and v is given by Iu ∩ Iv. For example, if user v has rated the first
four items, then Iv = {1, 2, 3, 4}, and Iu ∩ Iv = {1, 3, 5} ∩ {1, 2, 3, 4} = {1, 3}. It is possible
(and quite common) for Iu ∩ Iv to be an empty set because ratings matrices are generally
sparse. The set Iu ∩ Iv defines the mutually observed ratings, which are used to compute
the similarity between the uth and vth users for neighborhood computation.

One measure that captures the similarity Sim(u, v) between the rating vectors of two
users u and v is the Pearson correlation coefficient. Because Iu∩Iv represents the set of item
indices for which both user u and user v have specified ratings, the coefficient is computed
only on this set of items. The first step is to compute the mean rating μu for each user u
using her specified ratings:

μu =

∑
k∈Iu

ruk

|Iu|
∀u ∈ {1 . . .m} (2.1)

Then, the Pearson correlation coefficient between the rows (users) u and v is defined as
follows:

Sim(u, v) = Pearson(u, v) =

∑
k∈Iu∩Iv

(ruk − μu) · (rvk − μv)
√∑

k∈Iu∩Iv
(ruk − μu)2 ·

√∑
k∈Iu∩Iv

(rvk − μv)2
(2.2)

Strictly speaking, the traditional definition of Pearson(u, v) mandates that the values of
μu and μv should be computed only over the items that are rated both by users u and v.
Unlike Equation 2.1, such an approach will lead to a different value of μu, depending on
the choice of the other user v to which the Pearson similarity is being computed. However,
it is quite common (and computationally simpler) to compute each μu just once for each
user u, according to Equation 2.1. It is hard to make an argument that one of these two
ways of computing μu always provides strictly better recommendations than the other. In
extreme cases, where the two users have only one mutually specified rating, it can be argued
that using Equation 2.1 for computing μu will provide more informative results, because
the Pearson coefficient will be indeterminate over a single common item in the traditional
definition. Therefore, we will work with the simpler assumption of using Equation 2.1 in this
chapter. Nevertheless, it is important for the reader to keep in mind that many implemen-
tations of user-based methods compute μu and μv in pairwise fashion during the Pearson
computation.

The Pearson coefficient is computed between the target user and all the other users. One
way of defining the peer group of the target user would be to use the set of k users with the
highest Pearson coefficient with the target. However, since the number of observed ratings
in the top-k peer group of a target user may vary significantly with the item at hand, the
closest k users are found for the target user separately for each predicted item, such that
each of these k users have specified ratings for that item. The weighted average of these
ratings can be returned as the predicted rating for that item. Here, each rating is weighted
with the Pearson correlation coefficient of its owner to the target user.

The main problem with this approach is that different users may provide ratings on
different scales. One user might rate all items highly, whereas another user might rate all
items negatively. The raw ratings, therefore, need to be mean-centered in row-wise fashion,
before determining the (weighted) average rating of the peer group. The mean-centered
rating suj of a user u for item j is defined by subtracting her mean rating from the raw
rating ruj .

suj = ruj − μu ∀u ∈ {1 . . .m} (2.3)

36 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

As before, the weighted average of the mean-centered rating of an item in the top-k peer
group of target user u is used to provide a mean-centered prediction. The mean rating of
the target user is then added back to this prediction to provide a raw rating prediction r̂uj
of target user u for item j. The hat notation “̂ ” on top of ruj indicates a predicted rating,
as opposed to one that was already observed in the original ratings matrix. Let Pu(j) be
the set1 of k closest users to target user u, who have specified ratings for item j. Users
with very low or negative correlations with target user u are sometimes filtered from Pu(j)
as a heuristic enhancement. Then, the overall neighborhood-based prediction function is as
follows:

r̂uj = μu +

∑
v∈Pu(j)

Sim(u, v) · svj
∑

v∈Pu(j)
|Sim(u, v)| = μu +

∑
v∈Pu(j)

Sim(u, v) · (rvj − μv)
∑

v∈Pu(j)
|Sim(u, v)| (2.4)

This broader approach allows for a number of different variations in terms of how the
similarity or prediction function is computed or in terms of which items are filtered out
during the prediction process.

Example of User-Based Algorithm

Consider the example of Table 2.1. In this case, the ratings of five users 1 . . . 5 are indicated
for six items denoted by 1 . . . 6. Each rating is drawn from the range {1 . . . 7}. Consider the
case where the target user index is 3, and we want to make item predictions on the basis of
the ratings in Table 2.1. We need to compute the predictions r̂31 and r̂36 of user 3 for items
1 and 6 in order to determine the top recommended item.

The first step is to compute the similarity between user 3 and all the other users. We
have shown two possible ways of computing similarity in the last two columns of the same
table. The second-last column shows the similarity based on the raw cosine between the
ratings and the last column shows the similarity based on the Pearson correlation coefficient.
For example, the values of Cosine(1, 3) and Pearson(1, 3) are computed as follows:

Cosine(1, 3) =
6 ∗ 3 + 7 ∗ 3 + 4 ∗ 1 + 5 ∗ 1√

62 + 72 + 42 + 52 ·
√
32 + 32 + 12 + 12

= 0.956

Pearson(1, 3) =

=
(6− 5.5) ∗ (3− 2) + (7− 5.5) ∗ (3− 2) + (4 − 5.5) ∗ (1 − 2) + (5− 5.5) ∗ (1− 2)

√
1.52 + 1.52 + (−1.5)2 + (−0.5)2 ·

√
12 + 12 + (−1)2 + (−1)2

= 0.894

The Pearson and raw cosine similarities of user 3 with all other users are illustrated in
the final two columns of Table 2.1. Note that the Pearson correlation coefficient is much
more discriminative and the sign of the coefficient provides information about similarity
and dissimilarity. The top-2 closest users to user 3 are users 1 and 2 according to both
measures. By using the Pearson-weighted average of the raw ratings of users 1 and 2, the
following predictions are obtained for user 3 with respect to her unrated items 1 and 6:

r̂31 =
7 ∗ 0.894 + 6 ∗ 0.939

0.894 + 0.939
≈ 6.49

r̂36 =
4 ∗ 0.894 + 4 ∗ 0.939

0.894 + 0.939
= 4

1In many cases, k valid peers of target user u with observed ratings for item j might not exist. This
scenario is particularly common in sparse ratings matrices, such as the case where user u has less than k
observed ratings. In such cases, the set Pu(j) will have cardinality less than k.

2.3. PREDICTING RATINGS WITH NEIGHBORHOOD-BASED METHODS 37

Thus, item 1 should be prioritized over item 6 as a recommendation to user 3. Furthermore,
the prediction suggests that user 3 is likely to be interested in bothmovies 1 and 6 to a greater
degree than any of the movies she has already rated. This is, however, a result of the bias
caused by the fact that the peer group {1, 2} of user indices is a far more optimistic group
with positive ratings, as compared to the target user 3. Let us now examine the impact
of mean-centered ratings on the prediction. The mean-centered ratings are illustrated in
Table 2.2. The corresponding predictions with mean-centered Equation 2.4 are as follows:

r̂31 = 2 +
1.5 ∗ 0.894 + 1.2 ∗ 0.939

0.894 + 0.939
≈ 3.35

r̂36 = 2 +
−1.5 ∗ 0.894− 0.8 ∗ 0.939

0.894 + 0.939
≈ 0.86

Thus, the mean-centered computation also provides the prediction that item 1 should be
prioritized over item 6 as a recommendation to user 3. There is, however, one crucial differ-
ence from the previous recommendation. In this case, the predicted rating of item 6 is only
0.86, which is less than all the other items that user 3 has rated. This is a drastically differ-
ent result than in the previous case, where the predicted rating for item 6 was greater than
all the other items that user 3 had rated. Upon visually inspecting Table 2.1 (or Table 2.2),
it is indeed evident that item 6 ought to be rated very low by user 3 (compared to her other
items), because her closest peers (users 1 and 2) have also rated it lower than their other
items. Thus, the mean-centering process enables a much better relative prediction with re-
spect to the ratings that have already been observed. In many cases, it can also affect the
relative order of the predicted items. The only weakness in this result is that the predicted
rating of item 6 is 0.85, which is outside the range of allowed ratings. Such ratings can
always be used for ranking, and the predicted value can be corrected to the closest value in
the allowed range.

2.3.1.1 Similarity Function Variants

Several other variants of the similarity function are used in practice. One variant is to use
the cosine function on the raw ratings rather than the mean-centered ratings:

RawCosine(u, v) =

∑
k∈Iu∩Iv

ruk · rvk
√∑

k∈Iu∩Iv
r2uk ·

√∑
k∈Iu∩Iv

r2vk

(2.5)

In some implementations of the raw cosine, the normalization factors in the denominator
are based on all the specified items and not the mutually rated items.

RawCosine(u, v) =

∑
k∈Iu∩Iv

ruk · rvk
√∑

k∈Iu
r2uk ·

√∑
k∈Iv

r2vk

(2.6)

In general, the Pearson correlation coefficient is preferable to the raw cosine because of
the bias adjustment effect of mean-centering. This adjustment accounts for the fact that
different users exhibit different levels of generosity in their global rating patterns.

The reliability of the similarity function Sim(u, v) is often affected by the number of
common ratings |Iu ∩ Iv| between users u and v. When the two users have only a small
number of ratings in common, the similarity function should be reduced with a discount
factor to de-emphasize the importance of that user pair. This method is referred to as
significance weighting. The discount factor kicks in when the number of common ratings

38 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

between the two users is less than a particular threshold β. The value of the discount factor

is given by min{|Iu∩Iv |,β}
β , and it always lies in the range [0, 1]. Therefore, the discounted

similarity DiscountedSim(u, v) is given by the following:

DiscountedSim(u, v) = Sim(u, v) · min{|Iu ∩ Iv|, β}
β

(2.7)

The discounted similarity is used both for the process of determining the peer group and
for computing the prediction according to Equation 2.4.

2.3.1.2 Variants of the Prediction Function

There are many variants of the prediction function used in Equation 2.4. For example,
instead of mean-centering the raw rating ruj to the centered value suj , one might use the
Z-score zuj , which further divides suj with the standard deviation σu of the observed ratings
of user u. The standard deviation is defined as follows:

σu =

√∑
j∈Iu

(ruj − μu)2

|Iu| − 1
∀u ∈ {1 . . .m} (2.8)

Then, the standardized rating is computed as follows:

zuj =
ruj − μu

σu
=

suj
σu

(2.9)

Let Pu(j) denote the set of the top-k similar users of target user u, for which the ratings of
item j have been observed. In this case, the predicted rating r̂uj of target user u for item j
is as follows:

r̂uj = μu + σu

∑
v∈Pu(j)

Sim(u, v) · zvj
∑

v∈Pu(j)
|Sim(u, v)| (2.10)

Note that the weighted average needs to be multiplied with σu in this case. In general, if a
function g(·) is applied during ratings normalization, then its inverse needs to be applied
during the final prediction process. Although it is generally accepted that normalization im-
proves the prediction, there seem to be conflicting conclusions in various studies on whether
mean-centering or the Z-score provides higher-quality results [245, 258]. One problem with
the Z-score is that the predicted ratings might frequently be outside the range of the per-
missible ratings. Nevertheless, even when the predicted values are outside the range of per-
missible ratings, they can be used to rank the items in order of desirability for a particular
user.

A second issue in the prediction is that of the weighting of the various ratings in Equa-
tion 2.4. Each mean-centered rating svj of user v for item j is weighted with the similarity
Sim(u, v) of user v to the target user u. While the value of Sim(u, v) was chosen to be the
Pearson correlation coefficient, a commonly used practice is to amplify it by exponentiating
it to the power of α. In other words, we have:

Sim(u, v) = Pearson(u, v)α (2.11)

By choosing α > 1, it is possible to amplify the importance of the similarity in the weighting
of Equation 2.4.

2.3. PREDICTING RATINGS WITH NEIGHBORHOOD-BASED METHODS 39

As discussed earlier, neighborhood-based collaborative filtering methods are generaliza-
tions of nearest neighbor classification/regression methods. The aforementioned discussion
is closer to nearest neighbor regression modeling, rather than nearest neighbor classification,
because the predicted value is treated as a continuous variable throughout the prediction
process. It is also possible to create a prediction function which is closer to a classification
method by treating ratings as categorical values and ignoring the ordering among the rat-
ings. Once the peer group of the target user u has been identified, the number of votes for
each possible rating value (e.g., Agree, Neutral, Disagree) within the peer group is deter-
mined. The rating with the largest number of votes is predicted as the relevant one. This
approach has the advantage of providing the most likely rating rather than the average
rating. Such an approach is generally more effective in cases where the number of distinct
ratings is small. It is also useful in the case of ordinal ratings, where the exact distances
between pairs of rating values are not defined. In cases where the granularity of ratings is
high, such an approach is less robust and loses a lot of ordering information among the
ratings.

2.3.1.3 Variations in Filtering Peer Groups

The peer group for a target user may be defined and filtered in a wide variety of ways. The
simplest approach is to use the top-k most similar users to the target user as her peer group.
However, such an approach might include users that are weakly or negatively correlated with
the target. Weakly correlated users might add to the error in the prediction. Furthermore,
negatively correlated ratings often do not have as much predictive value in terms of potential
inversion of the ratings. Although the prediction function technically allows the use of weak
or negative ratings, their use is not consistent with the broader principle of neighborhood
methods. Therefore, ratings with weak or negative correlations are often filtered out.

2.3.1.4 Impact of the Long Tail

As discussed in section 2.2, the distribution of ratings typically shows a long-tail distribution
in many real scenarios. Some movies may be very popular and they may repeatedly occur
as commonly rated items by different users. Such ratings can sometimes worsen the quality
of the recommendations because they tend to be less discriminative across different users.
The negative impact of these recommendations can be experienced both during the peer
group computation and also during the prediction computation (cf. Equation 2.4). This
notion is similar in principle to the deterioration in retrieval quality caused by popular and
noninformative words (e.g., “a,” “an,” “the”) in document retrieval applications. Therefore,
the proposed solutions used in collaborative filtering are also similar to those used in the
information retrieval literature. Just as the notion of Inverse Document Frequency (idf)
exists in the information retrieval literature [400], one can use the notion of Inverse User
Frequency in this case. If mj is the number of ratings of item j, and m is the total number
of users, then the weight wj of the item j is set to the following:

wj = log

(
m

mj

)

∀j ∈ {1 . . . n} (2.12)

Each item j is weighted by wj both during the similarity computation and during the
recommendation process. For example, the Pearson correlation coefficient can be modified
to include the weights as follows:

Pearson(u, v) =

∑
k∈Iu∩Iv

wk · (ruk − μu) · (rvk − μv)
√∑

k∈Iu∩Iv
wk · (ruk − μu)2 ·

√∑
k∈Iu∩Iv

wk · (rvk − μv)2
(2.13)

40 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

Item weighting can also be incorporated in other collaborative filtering methods. For exam-
ple, the final prediction step of item-based collaborative filtering algorithms can be modified
to use weights, even though the adjusted cosine similarity between two items remains un-
changed by the weights.

2.3.2 Item-Based Neighborhood Models

In item-based models, peer groups are constructed in terms of items rather than users.
Therefore, similarities need to be computed between items (or columns in the ratings ma-
trix). Before computing the similarities between the columns, each row of the ratings matrix
is centered to a mean of zero. As in the case of user-based ratings, the average rating of
each item in the ratings matrix is subtracted from each rating to create a mean-centered
matrix. This process is identical to that discussed earlier (see Equation 2.3), which results
in the computation of mean-centered ratings suj . Let Ui be the indices of the set of users
who have specified ratings for item i. Therefore, if the first, third, and fourth users have
specified ratings for item i, then we have Ui = {1, 3, 4}.

Then, the adjusted cosine similarity between the items (columns) i and j is defined as
follows:

AdjustedCosine(i, j) =

∑
u∈Ui∩Uj

sui · suj
√∑

u∈Ui∩Uj
s2ui ·

√∑
u∈Ui∩Uj

s2uj

(2.14)

This similarity is referred to as the adjusted cosine similarity because the ratings are mean-
centered before computing the similarity value. Although the Pearson correlation can also
be used on the columns in the case of the item-based method, the adjusted cosine generally
provides superior results.

Consider the case in which the rating of target item t for user u needs to be determined.
The first step is to determine the top-k most similar items to item t based on the afore-
mentioned adjusted cosine similarity. Let the top-k matching items to item t, for which the
user u has specified ratings, be denoted by Qt(u). The weighted average value of these (raw)
ratings is reported as the predicted value. The weight of item j in this average is equal to
the adjusted cosine similarity between item j and the target item t. Therefore, the predicted
rating r̂ut of user u for target item t is as follows:

r̂ut =

∑
j∈Qt(u)

AdjustedCosine(j, t) · ruj
∑

j∈Qt(u)
|AdjustedCosine(j, t)| (2.15)

The basic idea is to leverage the user’s own ratings on similar items in the final step of
making the prediction. For example, in a movie recommendation system, the item peer
group will typically be movies of a similar genre. The ratings history of the same user on
such movies is a very reliable predictor of the interests of that user.

The previous section discussed a number of variants of the basic approach for user-
based collaborative filtering. Because item-based algorithms are very similar to user-based
algorithms, similar variants of the similarity function and the prediction function can be
designed for item-based methods.

Example of Item-Based Algorithm

In order to illustrate the item-based algorithm, we will use the same example of Table 2.1,
which was leveraged to demonstrate the user-based algorithm. The missing ratings of user

2.3. PREDICTING RATINGS WITH NEIGHBORHOOD-BASED METHODS 41

3 are predicted with the item-based algorithm. Because the ratings of items 1 and 6 are
missing for user 3, the similarity of the columns for items 1 and 6 needs to be computed
with respect to the other columns (items).

First, the similarity between items are computed after adjusting for mean-centering.
The mean-centered ratings matrix is illustrated in Table 2.2. The corresponding adjusted
cosine similarities of each item to 1 and 6, respectively, are indicated in the final two rows
of the table. For example, the value of the adjusted cosine between items 1 and 3, denoted
by AdjustedCosine(1, 3), is as follows:

AdjustedCosine(1, 3) =
1.5 ∗ 1.5 + (−1.5) ∗ (−0.5) + (−1) ∗ (−1)

√
1.52 + (−1.5)2 + (−1)2 ·

√
1.52 + (−0.5)2 + (−1)2

= 0.912

Other item-item similarities are computed in an exactly analogous way, and are illustrated
in the final two rows of Table 2.2. It is evident that items 2 and 3 are most similar to item
1, whereas items 4 and 5 are most similar to item 6. Therefore, the weighted average of the
raw ratings of user 3 for items 2 and 3 is used to predict the rating r̂31 of item 1, whereas
the weighted average of the raw ratings of user 3 for items 4 and 5 is used to predict the
rating r̂36 of item 6:

r̂31 =
3 ∗ 0.735 + 3 ∗ 0.912

0.735 + 0.912
= 3

r̂36 =
1 ∗ 0.829 + 1 ∗ 0.730

0.829 + 0.730
= 1

Thus, the item-based method also suggests that item 1 is more likely to be preferred by user
3 than item 6. However, in this case, because the ratings are predicted using the ratings of
user 3 herself, the predicted ratings tend to be much more consistent with the other ratings
of this user. As a specific example, it is noteworthy that the predicted rating of item 6 is
no longer outside the range of allowed ratings, as in the case of the user-based method.
The greater prediction accuracy of the item-based method is its main advantage. In some
cases, the item-based method might provide a different set of top-k recommendations, even
though the recommended lists will generally be roughly similar.

2.3.3 Efficient Implementation and Computational Complexity

Neighborhood-based methods are always used to determine the best item recommendations
for a target user or the best user recommendations for a target item. The aforementioned
discussion only shows how to predict the ratings for a particular user-item combination, but
it does not discuss the actual ranking process. A straightforward approach is to compute all
possible rating predictions for the relevant user-item pairs (e.g., all items for a particular
user) and then rank them. While this is the basic approach used in current recommender
systems, it is important to observe that the prediction process for many user-item combina-
tions reuses many intermediate quantities. Therefore, it is advisable to have an offline phase
to store these intermediate computations and then leverage them in the ranking process.

Neighborhood-based methods are always partitioned into an offline phase and an online
phase. In the offline phase, the user-user (or item-item) similarity values and peer groups
of the users (or items) are computed. For each user (or item), the relevant peer group
is prestored on the basis of this computation. In the online phase, these similarity values
and peer groups are leveraged to make predictions with the use of relationships such as
Equation 2.4. Let n′ � n be the maximum number of specified ratings of a user (row), and

42 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

m′ � m be the maximum number of specified ratings of an item (column). Note that n′

is the maximum running time for computing the similarity between a pair of users (rows),
and m′ is the maximum running time for computing the similarity between a pair of items
(columns). In the case of user-based methods, the process of determining the peer group of a
target user may require O(m·n′) time. Therefore, the offline running time for computing the
peer groups of all users is given by O(m2 · n′). For item-based methods, the corresponding
offline running time is given by O(n2 ·m′).

In order to be able to use the approach for varying values of k, one might end up having
to store all pairs of nonzero similarities between pairs of users (or items). Therefore, the
space requirements of user-based methods are O(m2), whereas the space requirements of
item-based methods are O(n2). Because the number of users is typically greater than the
number of items, the space requirements of user-based methods are generally greater than
those of item-based methods.

The online computation of the predicted value according to Equation 2.4 requires O(k)
time for both user-based and item-based methods, where k is the size of the user/item
neighborhood used for prediction. Furthermore, if this prediction needs to be executed over
all items in order to rank them for a target user, then the running time is O(k · n) for both
user-based and item-based methods. On the other hand, a merchant may occasionally wish
to determine the top-r users to be targeted for a specific item. In this case, the prediction
needs to be executed over all users in order to rank them for a target item, and the running
time is O(k · m) for both user-based and item-based methods. It is noteworthy that the
primary computational complexity of neighborhood-based methods resides in the offline
phase, which needs to be executed occasionally. As a result, neighborhood-based methods
tend to be efficient when they are used for online prediction. After all, one can afford to be
generous in allocating significantly more computational time to the offline phase.

2.3.4 Comparing User-Based and Item-Based Methods

Item-based methods often provide more relevant recommendations because of the fact that a
user’s own ratings are used to perform the recommendation. In item-based methods, similar
items are identified to a target item, and the user’s own ratings on those items are used to
extrapolate the ratings of the target. For example, similar items to a target historical movie
might be a set of other historical movies. In such cases, the user’s own recommendations
for the similar set might be highly indicative of her preference for the target. This is not
the case for user-based methods in which the ratings are extrapolated from other users,
who might have overlapping but different interests. As a result, item-based methods often
exhibit better accuracy.

Although item-based recommendations are often more likely to be accurate, the relative
accuracy between item-based and user-based methods also depends on the data set at hand.
As you will learn in Chapter 12, item-based methods are also more robust to shilling attacks
in recommender systems. On the other hand, it is precisely these differences that can lead
to greater diversity in the recommendation process for user-based methods over item-based
methods. Diversity refers to the fact that the items in the ranked list tend to be somewhat
different. If the items are not diverse, then if the user does not like the first item, she might
not also like any of the other items in the list. Greater diversity also encourages serendipity,
through which somewhat surprising and interesting items are discovered. Item-based meth-
ods might sometimes recommend obvious items, or items which are not novel from previous
user experiences. The notions of novelty, diversity, and serendipity are discussed in detail in
Chapter 7. Without sufficient novelty, diversity, and serendipity, users might become bored
with very similar recommendations to what they have already watched.

2.3. PREDICTING RATINGS WITH NEIGHBORHOOD-BASED METHODS 43

0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

ITEM INDEX

N
U

M
B

E
R

 O
F

 N
E

IG
H

B
O

R
 R

A
T

IN
G

S

LIKE
NEUTRAL
DISLIKE

TERMINATOR
ALIEN PREDATOR

Figure 2.2: Explaining Alice’s top recommendations with her neighbor rating histogram

Item-based methods can also provide a concrete reason for the recommendation. For
example, Netflix often provides recommendations with statements such as the following:

Because you watched “Secrets of the Wings,” [the recommendations are] 〈List〉 .

Such explanations can be concretely addressed with item-based methods2 by using
the item neighborhoods. On the other hand, these explanations are harder to address
withuser-based methods, because the peer group is simply a set of anonymous users and
not directly usable in the recommendation process.

User-based methods provide different types of explanations. For example, consider a
scenario where the movies Terminator, Alien, and Predator, are recommended to Alice.
Then, a histogram of her neighbor’s ratings for these movies can be shown to her. An
example of such a histogram is shown in Figure 2.2. This histogram can be used by Alice to
obtain an idea of how much she might like this movie. Nevertheless, the power of this type of
explanation is somewhat limited because it does not give Alice an idea of how these movies
relate to her own tastes or to those of friends she actually knows and trusts. Note that the
identity of her neighbors is usually not available to Alice because of privacy concerns.

Finally, item-based methods are more stable with changes to the ratings. This is because
of two reasons. First, the number of users is generally much larger than the number of items.
In such cases, two users may have a very small number of mutually rated items, but two
items are more likely to have a larger number of users who have co-rated them. In the
case of user-based methods, the addition of a few ratings can change the similarity values
drastically. This is not the case for item-based methods, which are more stable to changes
in the values of the ratings. Second, new users are likely to be added more frequently in

2The precise method used by Netflix is proprietary and therefore not known. However, item-based
methods do provide a viable methodology to achieve similar goals.

44 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

commercial systems than new items. In such cases, the computation of neighborhood items
can be done only occasionally because item neighborhoods are unlikely to change drastically
with the addition of new users. On the other hand, the computation of user neighborhoods
needs to be performed more frequently with the addition of new users. In this context,
incremental maintenance of the recommendation model is more challenging in the case of
user-based methods.

2.3.5 Strengths and Weaknesses of Neighborhood-Based Methods

Neighborhood methods have several advantages related to their simplicity and intuitive
approach. Because of the simple and intuitive approach of these methods, they are easy to
implement and debug. It is often easy to justify why a specific item is recommended, and
the interpretability of item-based methods is particularly notable. Such justifications are
often not easily available in many of the model-based methods discussed in later chapters.
Furthermore, the recommendations are relatively stable with the addition of new items and
users. It is also possible to create incremental approximations of these methods.

The main disadvantage of these methods is that the offline phase can sometimes be im-
practical in large-scale settings. The offline phase of the user-based method requires at least
O(m2) time and space. This might sometimes be too slow or space-intensive with desktop
hardware, when m is of the order of tens of millions. Nevertheless, the online phase of neigh-
borhood methods is always efficient. The other main disadvantage of these methods is their
limited coverage because of sparsity. For example, if none of John’s nearest neighbors have
rated Terminator, it is not possible to provide a rating prediction of Terminator for John.
On the other hand, we care only about the top-k items of John in most recommendation set-
tings. If none of John’s nearest neighbors have rated Terminator, then it might be evidence
that this movie is not a good recommendation for John. Sparsity also creates challenges for
robust similarity computation when the number of mutually rated items between two users
is small.

2.3.6 A Unified View of User-Based and Item-Based Methods

The respective weaknesses of user-based and item-based methods arise out of the fact that
the former ignores the similarity between the columns of the ratings matrix, whereas the
latter ignores the similarity between the rows while determining the most similar entries.
A natural question arises whether we can determine the most similar entries to a target
entry by unifying the two methods. By doing so, one does not need to ignore the similarity
along either rows or columns. Rather, one can combine the similarity information between
rows and columns.

In order to achieve this goal, it is crucial to understand that the user-based and item-
based methods are almost identical (with some minor differences), once the rows have been
mean-centered. We can assume without loss of generality that the rows of the ratings matrix
are mean-centered because the mean of each row can be added back to each entry after
the prediction. It is also noteworthy that if the rows are mean-centered then the Pearson
correlation coefficient between rows is identical3 to the cosine coefficient. Based on this

3There can be some minor differences depending on how the mean is computed for each row within the
Pearson coefficient. If the mean for each row is computed using all the observed entries of that row (rather
than only the mutually specified entries), then the Pearson correlation coefficient is identical to the cosine
coefficient for row-wise mean-centered matrices.

2.4. CLUSTERING AND NEIGHBORHOOD-BASED METHODS 45

assumption, the user-based and item-based methods can be described in a unified way to
predict the entry ruj in the ratings matrix R:

1. For a target entry (u, j) determine the most similar rows/columns of the ratings matrix
with the use of the cosine coefficient between rows/columns. For user-based methods
rows are used, whereas for item-based methods, columns are used.

2. Predict the target entry (u, j) using a weighted combination of the ratings in the most
similar rows/columns determined in the first step.

Note that the aforementioned description ignores either the rows or the columns in each
step. One can, of course, propose a generalized description of the aforementioned steps in
which the similarity and prediction information along rows and columns are combined:

1. For a target entry (u, j) determine the most similar entries of the ratings matrix
with the use of a combination function of the similarity between rows and columns.
For example, one can use the sum of the cosine similarity between rows and between
columns to determine the most similar entries in the ratings matrix to (u, j).

2. Predict the target entry (u, j) using a weighted combination of the ratings in the most
similar entries determined in the first step. The weights are based on the similarities
computed in the first step.

We have highlighted the steps, which are different in the generalized method. This approach
fuses the similarities along rows and columns with the use of a combination function. One
can experiment with the use of various combination functions to obtain the most effective
results. Detailed descriptions of such unified methods may be found in [613, 622]. This
basic principle is also used in the multidimensional model of context-sensitive recommender
systems, in which the similarities along users, items, and other contextual dimensions are
unified into a single framework (cf. section 8.5.1 of Chapter 8).

2.4 Clustering and Neighborhood-Based Methods

The main problem with neighborhood-based methods is the complexity of the offline phase,
which can be quite significant when the number of users or the number of items is very
large. For example, when the number of users m is of the order of a few hundred million, the
O(m2 ·n′) running time of a user-based method will become impractical even for occasional
offline computation. Consider the case where m = 108 and n′ = 100. In such a case,
O(m2 · n′) = O(1018) operations will be required. If we make the conservative assumption
that each operation requires an elementary machine cycle, a 10GHz computer will require
108 seconds, which is approximately 115.74 days. Clearly, such an approach will not be very
practical from a scalability point of view.

The main idea of clustering-based methods is to replace the offline nearest-neighbor com-
putation phase with an offline clustering phase. Just as the offline nearest-neighbor phase
creates a large number of peer groups, which are centered at each possible target, the clus-
tering process creates a smaller number of peer groups which are not necessarily centered
at each possible target. The process of clustering is much more efficient than the O(m2 ·n′)
time required for construction of the peer groups of every possible target. Once the clusters
have been constructed, the process of predicting ratings is similar to the approach used in
Equation 2.4. The main difference is that the top-k closest peers within the same cluster are
used to perform the prediction. It is noteworthy that the pairwise similarity computation

46 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

needs to be performed only within the same cluster and therefore, the approach can be
significantly more efficient. This efficiency does result in some loss of accuracy because the
set of closest neighbors to each target within a cluster is of lower quality than that over
the entire data. Furthermore, the clustering granularity regulates the trade-off between ac-
curacy and efficiency. When the clusters are fine-grained, the efficiency improves, but the
accuracy is reduced. In many cases, very large gains in efficiency can be obtained for small
reductions in accuracy. When the ratings matrices are very large, this approach provides a
very practical alternative at a small cost.

One challenge with the use of this approach is the fact that the ratings matrix is incom-
plete. Therefore, clustering methods need to be adapted to work with massively incomplete
data sets. In this context, k-means methods can be easily adapted to incomplete data. The
basic idea of a k-means approach is to work with k central points (or “means”), which
serve as the representatives of k different clusters. In k-means methods, the solution to a
clustering can be fully represented by the specification of these k representatives. Given a
set of k representatives Y1 . . . Yk, each data point is assigned to its closest representative
with the use of a similarity or distance function. Therefore, the data partitioning can be
uniquely defined by the set of representatives. For an m×n data set, each representative Yi

is an n-dimensional data point, which is a central point of the ith cluster. Ideally, we would
like the central representative to be the mean of the cluster.

Therefore, the clusters are dependent on the representatives and vice versa. Such an
interdependency is achieved with an iterative approach. We start with a set of representa-
tives Y1 . . . Yk, which might be randomly chosen points generated in the range of the data
space. We iteratively compute the cluster partitions using the representatives, and then re-
compute the representatives as the centroids of the resulting clusters. While computing the
centroids, care must be taken to use only the observed values in each dimension. This two-
step iterative approach is executed to convergence. The two-step approach is summarized
as follows:

1. Determine the clusters C1 . . . Ck by assigning each row in the m×n matrix to its closest
representative from Y1 . . . Yk. Typically, the Euclidean distance or the Manhattan
distance is used for similarity computation.

2. For each i ∈ {1 . . . k}, reset Yi to the centroid of the current set of points in Ci.

The main problem with the use of this approach is that the m× n ratings matrix is incom-
plete. Therefore, the computation of the mean and the distance values becomes undefined.
However, it is relatively easy to compute the means using only the observed values within
a cluster. In some cases, the centroid itself might not be fully specified, when no rating is
specified for one or more items in the cluster. The distance values are computed using only
the subset of dimensions, which are specified both for the data point and cluster represen-
tative. The distance is also divided by the number of dimensions used in the computation.
This is done in order to adjust for the fact that different numbers of dimensions are used for
computing the distance of a data point to various centroids, when all the centroids are not
fully specified. In this context, the Manhattan distance yields better adjustments than the
Euclidean distance, and the normalized value can be interpreted more easily as an average
distance along each observed value.

The aforementioned approach clusters the rows for user-based collaborative filtering.
In item-based methods, it would be necessary to cluster the columns. The approach is
exactly similar except that it is applied to the columns rather than the rows. A number of
clustering methods for efficient collaborative filtering are discussed in [146, 167, 528, 643,

2.5. DIMENSIONALITY REDUCTION AND NEIGHBORHOOD METHODS 47

644, 647]. Some of these methods are user-based methods, whereas others are item-based
methods. A number of co-clustering methods [643] can be used to cluster rows and columns
simultaneously.

2.5 Dimensionality Reduction and Neighborhood

Methods

Dimensionality reduction methods can be used to improve neighborhood-based methods
both in terms of quality and in terms of efficiency. In particular, even though pairwise
similarities are hard to robustly compute in sparse rating matrices, dimensionality reduction
provides a dense low-dimensional representation in terms of latent factors. Therefore, such
models are also referred to as latent factor models. Even when two users have very few items
rated in common, a distance can be computed between their low-dimensional latent vectors.
Furthermore, it is more efficient to determine the peer groups with low-dimensional latent
vectors. Before discussing the details of dimensionality reduction methods, we make some
comments about two distinct ways in which latent factor models are used in recommender
systems:

1. A reduced representation of the data can be created in terms of either row-wise la-
tent factors or in terms of column-wise latent factors. In other words, the reduced
representation will either compress the item dimensionality or the user dimension-
ality into latent factors. This reduced representation can be used to alleviate the
sparsity problem for neighborhood-based models. Depending on which dimension has
been compressed into latent factors, the reduced representation can be used for either
user-based neighborhood algorithms or item-based neighborhood algorithms.

2. The latent representations of both the row space and the column space are determined
simultaneously. These latent representations are used to reconstruct the entire ratings
matrix in one shot without the use of neighborhood-based methods.

Because the second class of methods is not directly related to neighborhood-based methods,
it will not be discussed in this chapter. A detailed discussion of the second class of methods
will be provided in Chapter 3. In this chapter, we will focus only on the first class of methods.

For ease of discussion, we will first describe only the user-based collaborative filtering
method. In user-based collaborative filtering methods, the basic idea is to transform the
m× n ratings matrix R into a lower-dimensional space by using principal component anal-
ysis. The resulting matrix R′ is of size m × d, where d � n. Thus, each of the (sparse)
n-dimensional vector of ratings corresponding to a user is transformed into a reduced d-
dimensional space. Furthermore, unlike the original rating vector, each of the d dimensions
is fully specified. After this d-dimensional representation of each user is determined, the
similarity is computed from the target user to each user using the reduced representation.
The similarity computations in the reduced representation are more robust because the new
low-dimensional vector is fully specified. Furthermore, the similarity computations are more
efficient because of the low dimensionality of the latent representation. A simple cosine or
dot product on the reduced vectors is sufficient to compute the similarity in this reduced
space.

It remains to be described how the low-dimensional representation of each data point
is computed. The low-dimensional representation can be computed using either SVD-like
methods or PCA-like methods. In the following, we describe an SVD-like method.

48 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

Table 2.3: Example of bias in estimating covariances

User Index Godfather Gladiator Nero

1 1 1 1
2 7 7 7
3 3 1 1
4 5 7 7
5 3 1 ?
6 5 7 ?
7 3 1 ?
8 5 7 ?
9 3 1 ?
10 5 7 ?
11 3 1 ?
12 5 7 ?

The first step is to augment the m×n incomplete ratings matrix R to fill in the missing
entries. The missing entry is estimated to be equal to the mean of the corresponding row
in the matrix (i.e., the mean rating of the corresponding user). An alternative approach is
to estimate the missing entry as the mean of the corresponding column in the matrix (i.e.,
the mean rating of the corresponding item). Let the resulting matrix be denoted by Rf .
Then, we compute the n × n similarity matrix between pairs of items, which is given by
S = RT

f Rf . This matrix is positive semi-definite. In order to determine the dominant basis
vectors of Rf for SVD, we perform the diagonalization of the similarity matrix S as follows:

S = PΔPT (2.16)

Here, P is an n × n matrix, whose columns contain the orthonormal eigenvectors of S. Δ
is a diagonal matrix containing the non-negative eigenvalues of S along its diagonal. Let
Pd be the n × d matrix containing only the columns of P corresponding to the largest d
eigenvectors. Then, the low-dimensional representation of Rf is given by the matrix product
RfPd. Note that the dimensions of the reduced representation RfPd are m × d, because
Rf is an m × n matrix and Pd is an n × d matrix. Therefore, each of the m users is
now represented in a d-dimensional space. This representation is then used to determine
the peer group of each user. Once the peers have been determined, the rating prediction
can be easily performed with Equation 2.4. Such an approach can also be used for item-
based collaborative filtering by applying the entire dimensionality reduction method to the
transpose of Rf instead of Rf .

The aforementioned methodology can be viewed as a singular value decomposition (SVD)
of the ratings matrix Rf . A number of other methods [24, 472] use principal component
analysis (PCA) instead of SVD, but the overall result is very similar. In the PCA method,
the covariance matrix of Rf is used instead of the similarity matrix RT

f Rf . For data, which
is mean-centered along columns, the two methods are identical. Therefore, one can subtract
the mean of each column from its entries, and then apply the aforementioned approach to
obtain a transformed representation of the data. This transformed representation is used
to determine the peers of each user. Mean-centering has benefits in terms of reducing bias
(see next section). An alternative approach is to first mean center along each row and then
mean-center along each column. SVD can be applied to the transformed representation.
This type of approach generally provides the most robust results.

2.5. DIMENSIONALITY REDUCTION AND NEIGHBORHOOD METHODS 49

2.5.1 Handling Problems with Bias

It is noteworthy that the matrix Rf is derived from the incomplete matrix R by filling
in the unspecified entries with average values along either the rows or the columns. Such
an approach is likely to cause considerable bias. To understand the nature of this bias,
consider the example in Table 2.3 of ratings given by 12 users to the three movies Godfather,
Gladiator, and Nero. Let us assume that PCA is used for dimensionality reduction, and
therefore the covariance matrix needs to be estimated. Let us assume that missing values
are replaced with the averages along the columns.

In this case, the ratings are drawn on a scale from 1 to 7 by a set of 4 users for 3 movies.
It is visually evident that the correlations between the ratings of the movies Gladiator and
Nero are extremely high because the ratings are very similar in the four cases in which they
are specified. The correlation between Godfather and Gladiator seems to be less significant.
However, many users have not specified their ratings for Nero. Because the mean rating
of Nero is (1 + 7 + 1 + 7)/4 = 4, these unspecified ratings are replaced with the mean
value of 4. The addition of these new entries significantly reduces the estimated covariance
between Gladiator and Nero. However, the addition of the new entries has no impact on
the covariance between Godfather and Gladiator. After filling in the missing ratings, the
pairwise covariances between the three movies can be estimated as follows:

Godfather Gladiator Nero

Godfather 2.55 4.36 2.18
Gladiator 4.36 9.82 3.27

Nero 2.18 3.27 3.27

According to the aforementioned estimation, the covariance between Godfather and Gladia-
tor is larger than that between Gladiator and Nero. This does not seem to be correct because
the ratings in Table 2.3 for Gladiator and Nero are identical for the case where both are
specified. Therefore, the correlation between Gladiator and Nero ought to be higher. This
error is a result of the bias caused by filling in the unspecified entries with the mean of that
column. This kind of bias can be very significant in sparse matrices because most of the
entries are unspecified. Therefore, methods need to be designed to reduce the bias caused
by using the mean ratings in place of the unspecified entries. In the following, we explore
two possible solutions to this problem.

2.5.1.1 Maximum Likelihood Estimation

The conceptual reconstruction method [24, 472] proposes the use of probabilistic techniques,
such as the EM-algorithm, in order to estimate the covariance matrix. A generative model is
assumed for the data and the specified entries are viewed as the outcomes of the generative
model. The covariance matrix can be estimated as part of the process of estimating the
parameters of this generative model. In the following, we provide a simplification of this
approach. In this simplified approach, the maximum likelihood estimate of the covariance
matrix is computed. The maximum likelihood estimate of the covariance between each pair
of items is estimated as the covariance between only the specified entries. In other words,
only the users that have specified ratings for a particular pair of items are used to estimate
the covariance. In the event that there are no users in common between a pair of items, the
covariance is estimated to be 0. By using this approach, the following covariance matrix is
estimated for the data in Table 2.3.

50 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

Godfather Gladiator Nero

Godfather 2.55 4.36 8
Gladiator 4.36 9.82 12

Nero 8 12 12

In this case, it becomes immediately evident that the covariance between Gladiator and
Nero is almost three times that between Godfather and Gladiator. Furthermore, the movie
Nero has more than three times as much variance than was originally estimated and has
the largest variance in ratings among all movies. While the pairwise covariance between
Godfather and Gladiator was the largest compared to all other pairwise covariances using
the mean-filling technique, this same pair now shows the least of all pairwise covariances.
This example suggests that the bias corrections can be very significant in some situations.
The greater the proportion of unspecified entries in the matrix, the greater the bias of the
mean-filling technique. Therefore, the modified technique of leveraging only the specified
entries is used for computing the covariance matrix. While such a technique is not always
effective, it is superior to the mean-filling technique. The reduced n× d basis matrix Pd is
computed by selecting the top-d eigenvectors of the resulting covariance matrix.

In order to further reduce the bias in representation, the incomplete matrix R can be
directly projected on the reduced matrix Pd, rather than projecting the filled matrix Rf

on Pd. The idea is to compute the contribution of each observed rating to the projection on
each latent vector of Pd, and then average the contribution over the number of such ratings.
This averaged contribution is computed as follows. Let ei be the ith column (eigenvector)
of Pd, for which the jth entry is eji. Let ruj be the observed rating of user u for item j in
matrix R. Then, the contribution of user u to the projection on latent vector ei is given by
rujeji. Then, if the set Iu represents the indices of the specified item ratings of user u, the
averaged contribution aui of user u on the ith latent vector is as follows:

aui =

∑
j∈Iu

rujeji

|Iu|
(2.17)

This type of averaged normalization is particularly useful in cases where the different users
have specified different numbers of ratings. The resulting m × d matrix A = [aui]m×d is
used as the reduced representation of the underlying ratings matrix. This reduced matrix
is used to compute the neighborhood of the target user efficiently for user-based collabo-
rative filtering. It is also possible to apply the approach to the transpose of the matrix R
and reduce the dimensionality along the user dimension, rather than the item dimension.
Such an approach is useful for computing the neighborhood of a target item in item-based
collaborative filtering. This approach of using the reduced representation for missing value
imputation is discussed in [24, 472].

2.5.1.2 Direct Matrix Factorization of Incomplete Data

Although the aforementioned methodology can correct for the bias in covariance estimation
to some extent, it is not completely effective when the sparsity level of the ratings is high.
This is because the covariance matrix estimation requires a sufficient number of observed
ratings for each pair of items for robust estimation. When the matrix is sparse, the covariance
estimates will be statistically unreliable.

A more direct approach is to use matrix factorization methods. Methods such as singular
value decomposition are essentially matrix factorization methods. For a moment, assume

2.6. A REGRESSION MODELING VIEW OF NEIGHBORHOOD METHODS 51

that them×n ratings matrixR is fully specified. It is a well-known fact of linear algebra [568]
that any (fully specified) matrix R can be factorized as follows:

R = QΣPT (2.18)

Here,Q is anm×mmatrix with columns containing them orthonormal eigenvectors ofRRT .
The matrix P is an n× n matrix with columns containing the n orthonormal eigenvectors
of RTR. Σ is an m × n diagonal matrix in which only diagonal entries4 are nonzero and
they contain the square-root of the nonzero eigenvalues of RTR (or equivalently, RRT). It is
noteworthy that the eigenvectors of RTR and RRT are not the same and will have different
dimensionality when m = n. However, they will always have the same number of (nonzero)
eigenvalues, which are identical in value. The values on the diagonal of Σ are also referred
to as singular values.

Furthermore, one can approximately factorize the matrix by using truncated SVD, where
only the eigenvectors corresponding to the d ≤ min{m,n} largest singular values are used.
Truncated SVD is computed as follows:

R ≈ QdΣdP
T
d (2.19)

Here, Qd, Σd, and Pd are m×d, d×d, and n×d matrices, respectively. The matrices Qd and
Pd, respectively, contain the d largest eigenvectors of RRT and RTR, whereas the matrix Σd

contains the square-roots of the d largest eigenvalues of either matrix along its diagonal. It
is noteworthy that the matrix Pd contains the top eigenvectors of RTR, which is the reduced
basis representation required for dimensionality reduction. Furthermore, the matrix QdΣd

contains the transformed and reduced m × d representation of the original ratings matrix
in the basis corresponding to Pd. It can be shown that such an approximate factorization
has the least mean-squared error of the approximated entries as compared to any other
rank-d factorization. Therefore, if we can approximately factorize the ratings matrix R in
the form corresponding to Equation 2.19, it provides us with the reduced basis as well as
the representation of the ratings in the reduced basis. The main problem of using such an
approach is that the ratings matrix is not fully specified. As a result, this factorization is
undefined. Nevertheless, it is possible to recast the formulation as an optimization problem,
in which the squared error of factorization is optimized only over the observed entries of
the ratings matrix. It is also possible to explicitly solve this modified formulation using
nonlinear optimization techniques. This results in a robust and unbiased lower dimensional
representation. Furthermore, such an approach can be used to directly estimate the ratings
matrix by using Equation 2.19, once the reduced factor matrices have been determined. In
other words, such methods have a direct utility beyond neighborhood-based methods. More
details of these latent factor models and nonlinear optimization techniques will be discussed
in section 3.6 of Chapter 3. The reader should consult this section to learn how the reduced
representation may be computed by using modified optimization formulations.

2.6 A Regression Modeling View of Neighborhood

Methods

An important observation about both user-based and item-based methods is that they
predict ratings as linear functions of either the ratings of the same item by neighboring
users, or of the same user on neighboring items. In order to understand this point, we

4Diagonal matrices are usually square. Although this matrix is not square, only entries with equal indices
are nonzero. This is a generalized definition of a diagonal matrix.

52 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

replicate the prediction function of user-based neighborhood methods (cf. Equation 2.4)
below:

r̂uj = μu +

∑
v∈Pu(j)

Sim(u, v) · (rvj − μv)
∑

v∈Pu(j)
|Sim(u, v)| (2.20)

Note that the predicted rating is a weighted linear combination of other ratings of the same
item. The linear combination has been restricted only to the ratings of item j belonging to
users with sufficiently similar tastes to target user u. This restriction is enabled with the use
of the peer rating set Pu(j). Recall from the discussion earlier in this chapter that Pu(j) is
the set of k nearest users to target user u, who have also rated item j. Note that if we allowed
the set Pu(j) to contain all ratings of item j (and not just specific peer users), then the
prediction function becomes similar5 to that of linear regression [22]. In linear regression,
the ratings are also predicted as weighted combinations of other ratings, and the weights
(coefficients) are determined with the use of an optimization model. In the neighborhood-
based approach, the coefficients of the linear function are chosen in a heuristic way with
the user-user similarities, rather than with the use of an optimization model.

A similar observation applies to the case of item-based neighborhood methods, where
the prediction function (cf. Equation 2.15) is as follows:

r̂ut =

∑
j∈Qt(u)

AdjustedCosine(j, t) · ruj
∑

j∈Qt(u)
|AdjustedCosine(j, t)| (2.21)

The set Qt(u) represents the set of the k closest items to target item t that have also been
rated by user u. In this case, the rating of a user u for a target item t is expressed as a
linear combination of her own ratings. As in the case of user-based methods, the coefficients
of the linear combination are heuristically defined with similarity values. Therefore, a user-
based model expresses a predicted rating as a linear combination of ratings in the same
column, whereas an item-based model expresses a predicted rating as a linear combination
of ratings in the same row. From this point of view, neighborhood-based models are heuristic
variants of linear regression models, in which the regression coefficients are heuristically set
to similarity values for related (neighboring) items/users and to 0 for unrelated items/users.

It is noteworthy that the use of similarity values as combination weights is rather heuris-
tic and arbitrary. Furthermore, the coefficients do not account for interdependencies among
items. For example, if a user has rated certain sets of correlated items in a very similar way,
then the coefficients associated with these items will be interdependent as well. The use of
similarities as heuristic weights does not account for such interdependencies.

A question arises as to whether one can do better by learning the weights with the use
of an optimization formulation. It turns out that one can derive analogous regression-based
models to the user-based and item-based models. Several different optimization formulations
have been proposed in the literature, which can leverage user-based models, item-based mod-
els, or a combination of the two. These models can be viewed as theoretical generalizations
of the heuristic nearest neighbor model. The advantage of such models is that they are
mathematically better founded in the context of a crisp optimization formulation, and the
weights for combining the ratings can be better justified because of their optimality from
a modeling perspective. In the following, we discuss an optimization-based neighborhood
model, which is a simplification of the work in [309]. This also sets the stage for combining
the power of this model with other optimization models, such as matrix factorization, in
section 3.7 of Chapter 3.

5A discussion of linear regression is provided in section 4.4.5 of Chapter 4, but in the context of content-
based systems.

2.6. A REGRESSION MODELING VIEW OF NEIGHBORHOOD METHODS 53

2.6.1 User-Based Nearest Neighbor Regression

Consider the user-based prediction of Equation 2.20. One can replace the (normalized)
similarity coefficient with the unknown parameter wuser

vu to model the predicted rating r̂uj
of target user u for item j as follows:

r̂uj = μu +
∑

v∈Pu(j)

wuser
vu · (rvj − μv) (2.22)

As in the case of neighborhood models, one can use the Pearson correlation coefficient to
define Pu(j). There is, however, a subtle but important difference in terms of how Pu(j) is
defined in this case. In neighborhood-based models, Pu(j) is the set of k closest users to
target user u, who have specified ratings for item j. Therefore, the size of Pu(j) is often
exactly k, when at least k users have rated item j. In the case of regression methods,
the set Pu(j) is defined by first determining the k closest peers for each user, and then
retaining only those for which ratings are observed. Therefore, the size of set Pu(j) is often
significantly less than k. Note that the parameter k needs to be set to much larger values
in the regression framework as compared to that in neighborhood models because of its
different interpretation.

Intuitively, the unknown coefficient wuser
vu controls the portion of the prediction of ratings

given by user u, which comes from her similarity to user v, because this portion is given by
wuser

vu · (rvj − μv). It is possible for wuser
vu to be different from wuser

uv . It is also noteworthy
that wuser

vu is only defined for the k different values of v (user indices) that are closest to
user u on the basis of the Pearson coefficient. The other values of wuser

vu are not needed by
the prediction function of Equation 2.22, and they therefore do not need to be learned. This
has the beneficial effect of reducing the number of regression coefficients.

One can use the aggregate squared difference between the predicted ratings r̂uj (accord-
ing to Equation 2.22) and the observed ratings ruj to create an objective function that
estimates the quality of a particular set of coefficients. Therefore, one can use the observed
ratings in the matrix to set up a least-squares optimization problem over the unknown val-
ues of wuser

vu in order to minimize the overall error. The idea is to predict each (observed)
rating of user u with her nearest k users in a formal regression model, and then measure
the error of the prediction. The squared errors can be added over all items rated by user
u to create a least-squares formulation. Therefore, the optimization problem is set up for
each target user u. Let Iu be the set of items that have been rated by the target user u. The
least-squares objective function for the uth user can be stated as the sum of the squares of
the errors in predicting each item in Iu with the k nearest neighbors of the user in a formal
regression model:

Minimize Ju =
∑

j∈Iu

(ruj − r̂uj)
2

=
∑

j∈Iu

⎛

⎝ruj −

⎡

⎣μu +
∑

v∈Pu(j)

wuser
vu · (rvj − μv)

⎤

⎦

⎞

⎠

2

The second relationship is obtained by substituting the expression in Equation 2.22 for r̂uj .
Note that this optimization problem is formulated separately for each target user u. How-
ever, one can add up the objective function values Ju over different target users u ∈ {1 . . .m}
with no difference to the optimal solution. This is because the various values of Ju are ex-
pressed in terms of mutually disjoint sets of optimization variables wuser

vu . Therefore, the

54 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

consolidated optimization problem is expressed as follows:

Minimize

m∑

u=1

Ju =

m∑

u=1

∑

j∈Iu

⎛

⎝ruj −

⎡

⎣μu +
∑

v∈Pu(j)

wuser
vu · (rvj − μv)

⎤

⎦

⎞

⎠

2

(2.23)

One can solve each of the smaller optimization problems (i.e., objective function Ju) in
their decomposed form more efficiently without affecting the overall solution. However, the
consolidated formulation has the advantage that it can be combined with other optimization
models such as matrix factorization methods (cf. section 3.7 of Chapter 3) in which such a
decomposition is not possible. Nevertheless, if linear regression is to be used on a standalone
basis, it makes sense to solve these problems in their decomposed form.

Both the consolidated and decomposed versions of the optimization models are least-
squares optimization problems. These methods can be solved with the use of any off-the-
shelf optimization solver. Refer to section 4.4.5 of Chapter 4 for a discussion of closed form
solutions to linear regression problems. A desirable property of most of these solvers is that
they usually have regularization built in them, and they can therefore avoid overfitting to
some extent. The basic idea in regularization is to reduce model complexity by adding the
term λ

∑
j∈Iu

∑
v∈Pu(j)

(wuser
vu)2 to each (decomposed) objective function Ju, where λ > 0

is a user-defined parameter regulating the weight of the regularization term. The term
λ
∑

j∈Iu

∑
v∈Pu(j)

(wuser
vu)2 penalizes large coefficients, and it therefore shrinks the absolute

values of the coefficients. Smaller coefficients result in simpler models and reduce overfitting.
However, as discussed below, it is sometimes not sufficient to use regularization alone to
reduce overfitting.

2.6.1.1 Sparsity and Bias Issues

One problem with this regression approach is that the size of the Pu(j) can be vastly dif-
ferent for the same user u and varying item indices (denoted by j). This is because of the
extraordinary level of sparsity inherent in ratings matrices. As a result, the regression coef-
ficients become heavily dependent on the number of peer users that have rated a particular
item j along with user u. For example, consider a scenario where the target user u has
rated both Gladiator and Nero. Out of the k nearest neighbors of the target u, only one
user might rate the movie Gladiator, whereas all k might have rated Nero. As a result, the
regression coefficient wuser

vu of the peer user v who rated Gladiator will be heavily influenced
by the fact that she is the only user who has rated Gladiator. This will result in overfitting
because this (statistically unreliable) regression coefficient might add noise to the rating
predictions of other movies.

The basic idea is to change the prediction function and assume that the regression for

item j predicts only a fraction |Pu(j)|
k of the rating of target user u for item j. The implicit

assumption is that the regression coefficients are based on all the peers of the target user,
and one must interpolate incomplete information as a fraction. Therefore, this approach
changes the interpretation of the regression coefficients. In this case, the prediction function
of Equation 2.22 is modified as follows:

r̂uj ·
|Pu(j)|

k
= μu +

∑

v∈Pu(j)

wuser
vu · (rvj − μv) (2.24)

A number of other heuristic adjustments are sometimes used. For example, along the lines of
the ideas in [312], one can use a heuristic adjustment factor of

√
|Pu(j)|/k. This factor can

2.6. A REGRESSION MODELING VIEW OF NEIGHBORHOOD METHODS 55

often be simplified to
√
|Pu(j)| because constant factors are absorbed by the optimization

variables. A related enhancement is that the constant offset μv is replaced with a bias
variable bu, which is learned in the optimization process. The corresponding prediction
model, including heuristic adjustment factors, is as follows:

r̂uj = buseru +

∑
v∈Pu(j)

wuser
vu · (rvj − buserv)
√
|Pu(j)|

(2.25)

Note that this model is no longer linear because of the multiplicative term wuser
vu · buserv

between two optimization variables. Nevertheless, it is relatively easy to use the same least-
squares formulation, as in the previous case. In addition to user biases, one can also incor-
porate item biases. In such a case, the model becomes the following:

r̂uj = buseru + bitemj +

∑
v∈Pu(j)

wuser
vu · (rvj − buserv − bitemj)
√
|Pu(j)|

(2.26)

Furthermore, it is recommended to center the entire ratings matrix around its global mean
by subtracting the mean of all the observed entries from it. The global mean needs to
be added back to the predictions. The main problem with this model is computational.
One must pre-compute and store all user-user relations, which is computationally expensive
and requires O(m2) space over m users. This problem is similar to that encountered in
traditional neighborhood-based models. Such models are suitable in settings in which the
item space changes rapidly, but the users are relatively stable over time [312]. An example
is the case of news recommender systems.

2.6.2 Item-Based Nearest Neighbor Regression

The item-based approach is similar to the user-based approach, except that the regression
learns and leverages item-item correlations rather than user-user correlations. Consider
the item-based prediction of Equation 2.21. One can replace the (normalized) similarity
coefficient AdjustedCosine(j, t) with the unknown parameter witem

jt to model the rating
prediction of user u for target item t:

r̂ut =
∑

j∈Qt(u)

witem
jt · ruj (2.27)

The nearest items in Qt(u) can be determined using the adjusted cosine, as in item-based
neighborhood methods. The set Qt(u) represents the subset of the k nearest neighbors of
the target item t, for which user u has provided ratings. This way of defining Qt(u) is subtly
different from that of traditional neighborhood-based methods, because the size of set Qt(u)
might be significantly less than k. In traditional neighborhood methods, one determines the
closest k items to target item t, for which the user u has specified ratings, and therefore
the size of the neighborhood set is often exactly k. This change is required to be able to
effectively implement the regression-based method.

Intuitively, the unknown coefficient witem
jt controls the portion of the rating of item t,

which comes from its similarity to item j, because this portion is given by witem
jt · ruj . The

prediction error of Equation 2.27 should be minimized to ensure the most robust predictive
model. One can use the known ratings in the matrix to set up a least-squares optimization
problem over the unknown values of witem

jt in order to minimize the overall error. The idea
is to predict each (observed) rating of target item t with its nearest k items and then,

56 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

create an expression for the least-squares error. The optimization problem is set up for each
target item t. Let Ut be the set of users who have rated the target item t. The least-squares
objective function for the tth item can be stated as the sum of the squares of the errors in
predicting each specified rating in Ut:

Minimize Jt =
∑

u∈Ut

(rut − r̂ut)
2

=
∑

u∈Ut

(rut −
∑

j∈Qt(u)

witem
jt · ruj)2

Note that this optimization problem is formulated separately for each target item t. However,
one can add up the terms over various values of the target item t with no difference to
the optimization solution, because the unknown coefficients witem

jt in the various objective
functions are non-overlapping over different values of the target item t ∈ {1 . . . n}. Therefore,
we have the following consolidated formulation:

Minimize

n∑

t=1

∑

u∈Ut

(rut −
∑

j∈Qt(u)

witem
jt · ruj)2 (2.28)

This is a least-squares regression problem and it can be solved with the use of any off-the-
shelf solver. Furthermore, one can also solve each of the smaller optimization problems (i.e.,
objective function Jt) in its decomposed form more efficiently without affecting the overall
solution. However, the consolidated formulation has the advantage that it can be combined
with other optimization models, such as matrix factorization methods (cf. section 3.7 of
Chapter 3). As in the case of user-based methods, significant challenges are associated with
the problem of overfitting. One can add the regularization term λ

∑
u∈Ut

∑
j∈Qt(u)

(witem
jt)2

to the objective function Jt.
As discussed in section 2.6.1.1 for the case of the user-based model, one can incorporate

adjustment factors and bias variables to improve performance. For example, the user-based
prediction model of Equation 2.26 takes on the following form in the item-wise model:

r̂ut = buseru + bitemt +

∑
j∈Qt(u)

witem
jt · (ruj − buseru − bitemj)
√
|Qt(u)|

(2.29)

Furthermore, it is assumed that the ratings are centered around the global mean of the
entire ratings matrix. Therefore, the global mean is subtracted from each of the ratings
before building the model. All predictions are performed on the centered ratings, and then
the global mean is added back to each prediction. In some variations of the model, the bias
terms buseru + bitemj within brackets are replaced with a consolidated constant term Buj .
This constant term is derived using a non-personalized approach described in section 3.7.1
of Chapter 3. The resulting prediction model is as follows:

r̂ut = buseru + bitemt +

∑
j∈Qt(u)

witem
jt · (ruj −Buj)

√
|Qt(u)|

(2.30)

A least-squares optimization model is formulated, and a gradient descent approach is used
to solve for the optimization parameters. This is precisely the model used in [309]. The
resulting gradient-descent steps are discussed in section 3.7.2 of Chapter 3. The user-user
model is known to perform slightly better than the item-item model [312]. However, the
item-based model is far more computationally and space-efficient in settings where the
number of items is much smaller than the number of users.

2.6. A REGRESSION MODELING VIEW OF NEIGHBORHOOD METHODS 57

2.6.3 Combining User-Based and Item-Based Methods

It is natural to combine the user and item-based models in a unified regression frame-
work [312]. Therefore, a rating is predicted based on its relationship with similar users as
well as similar items. This is achieved by combining the ideas in Equations 2.26 and 2.30
as follows:

r̂uj = buseru + bitemj +

∑
v∈Pu(j)

wuser
vu · (rvj −Bvj)

√
|Pu(j)|

+

∑
j∈Qt(u)

witem
jt · (ruj −Buj)

√
|Qt(u)|

(2.31)

As in previous cases, it is assumed that the ratings matrix is centered around its global
mean. A similar least-squares optimization formulation can be used in which the squared
error over all the observed entries is minimized. In this case, it is no longer possible to
decompose the optimization problem into independent subproblems. Therefore, a single
least-squares optimization model is constructed over all the observed entries in the ratings
matrix. As in the previous cases, the gradient-descent approach can be used. It was reported
in [312] that the fusion of the user-based and item-based models generally performs better
than the individual models.

2.6.4 Joint Interpolation with Similarity Weighting

The method in [72] uses a different idea to set up the joint neighborhood-based model.
The basic idea is to predict each rating of target user u with the user-based model of
Equation 2.22. Then, instead of comparing it with the observed value of the same item, we
compare it with the observed ratings of other items of that user.

Let S be the set of all pairs of user-item combinations in the ratings matrix, which have
been observed:

S = {(u, t) : rut is observed} (2.32)

We set up an objective function which is penalized when the predicted rating r̂uj of an item
j is far away from the observed rating given to a similar item s by the same target user u.
In other words, the objective function for target user u is defined as follows:

Minimize
∑

s:(u,s)∈S

∑

j:j �=s

AdjustedCosine(j, s) · (rus − r̂uj)
2

=
∑

s:(u,s)∈S

∑

j:j �=s

AdjustedCosine(j, s) ·
⎛

⎝rus−
⎡

⎣μu+
∑

v∈Pu(j)

wuser
vu · (rvj−μv)

⎤

⎦

⎞

⎠

2

Regularization can be added to the objective function to reduce overfitting. Here, Pu(j) is
defined as the k closest users to target user u, who have also rated item j. Therefore, the
conventional definition of Pu(j) as used in neighborhood-based models is leveraged in this
case.

By using the adjusted cosine as a multiplicative factor of each individual term in the
objective function, the approach forces the target user’s ratings of similar items to be
more similar as well. It is noteworthy that both user and item similarities are used in this
approach, but in different ways:

1. The item-item similarities are used as multiplicative factors of the terms in the ob-
jective function to force predicted ratings to be more similar to observed ratings of
similar items.

58 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

2. The user-user similarities are used for predicting the ratings by restricting the regres-
sion coefficients to the relevant peer group Pu(j) of the target user u.

Although it is also possible, in principle, to switch the roles of users and items to set up
a different model, it is stated in [72] that the resulting model is not as effective as the
one discussed above. This model can be solved with any off-the-shelf least-squares solver.
A number of methods are also discussed in [72] for handling sparsity.

2.6.5 Sparse Linear Models (SLIM)

An interesting method, based on the item-item regression in section 2.6.2, is proposed
in [455]. This family of models is referred to as sparse linear models because they encour-
age sparsity in the regression coefficients with the use of regularization methods. Unlike the
methods in [72, 309], these methods work with non-negative rating values. Therefore, unlike
the techniques in the previous sections, it will not be assumed that the ratings matrix is
mean-centered. This is because mean-centering will automatically create negative ratings,
corresponding to dislikes. However, the approach is designed to work with non-negative
ratings, in which there is no mechanism to specify dislikes. From a practical point of view,
the approach is most appropriate6 for implicit feedback matrices (e.g., click-through data
or sales data), where only positive preferences are expressed through user actions. Fur-
thermore, as is common in implicit feedback settings, missing values are treated as 0s for
the purposes of training in the optimization formulation. However, the optimization model
might eventually predict some of these values to be highly positive, and such user-item
combinations are excellent candidates for recommendation. Therefore, the approach ranks
items on the basis of prediction errors on the training entries that have been set to 0.

Unlike the technique in section 2.6.2, these methods do not restrict the regression coeffi-
cients to only the neighborhood of the target item t. Then, the prediction function in SLIM
is expressed as follows:

r̂ut =

n∑

j=1

witem
jt · ruj ∀u ∈ {1 . . .m}, ∀t ∈ {1 . . . n} (2.33)

Note the relationship with Equation 2.27 in which only the neighborhood of the target
item is used to construct the regression. It is important to exclude the target item itself on
the right-hand side to prevent overfitting. This can be achieved by requiring the constraint
that witem

tt = 0. Let R̂ = [r̂uj] represent the predicted ratings matrix and let W item =
[witem

jt] represent the item-item regression matrix. Therefore, if we assume that the diagonal

elements of W item are constrained to be 0, then we can stack up the instantiations of
Equation 2.33 over different users and target items to create the following matrix-based
prediction function:

R̂ = RW item

Diagonal(W item) = 0

Therefore, the main goal is to minimize the Frobenius norm ||R − RW item||2 along with
some regularization terms. This objective function is disjoint over different columns of W
(i.e., target items in regression). Therefore, one can solve each optimization problem (for

6The approach can be adapted to arbitrary rating matrices. However, the main advantages of the
approach are realized for non-negative ratings matrices.

2.6. A REGRESSION MODELING VIEW OF NEIGHBORHOOD METHODS 59

a given value of the target item t) independently, while setting witem
tt to 0. In order to

create a more interpretable sum-of-parts regression, the weight vectors are constrained to
be non-negative. Therefore, the objective function for target item t may be expressed as
follows:

Minimize Js
t =

m∑

u=1

(rut − r̂ut)
2 + λ ·

n∑

j=1

(witem
jt)2 + λ1 ·

n∑

j=1

|witem
jt |

=

m∑

u=1

(rut −
n∑

j=1

witem
jt · ruj)2 + λ ·

n∑

j=1

(witem
jt)2 + λ1 ·

n∑

j=1

|witem
jt |

subject to:

witem
jt ≥ 0 ∀j ∈ {1 . . . n}

witem
tt = 0

The last two terms in the objective function correspond to the elastic-net regularizer, which
combines L1- and L2-regularization. It can be shown [242] that the L1-regularization compo-
nent leads to sparse solutions for the weights wjt, which means that most of the coefficients
wjt have zero values. The sparsity ensures that each predicted rating can be expressed as a
more interpretable linear combination of the ratings of a small number of other related items.
Furthermore, since the weights are non-negative, the corresponding items are positively re-
lated in a highly interpretable way in terms of the specific level of impact of each rating in
the regression. The optimization problem is solved using the coordinate descent method,
although any off-the-shelf solver can be used in principle. A number of faster techniques
are discussed in [347]. The technique can also be hybridized [456] with side-information (cf.
section 6.8.1 of Chapter 6).

It is evident that this model is closely related to the neighborhood-based regression
models discussed in the previous sections. The main differences of the SLIM model from
the linear regression model in [309] are as follows:

1. The method in [309] restricts the nonzero coefficients for each target to at most the k
most similar items. The SLIMmethod can use as many as |Ut| nonzero coefficients. For
example, if an item is rated by all users, then all coefficients will be used. However, the
value of witem

tt is set to 0 to avoid overfitting. Furthermore, the SLIM method forces
sparsity by using the elastic-net regularizer, whereas the method in [309] preselects the
weights on the basis of explicit neighborhood computation. In other words, the work
in [309] uses a heuristic approach for feature selection, whereas the SLIM approach
uses a learning (regularization) approach for feature selection.

2. The SLIM method is primarily designed for implicit feedback data sets (e.g., buying
an item or customer clicks), rather than explicit ratings. In such cases, ratings are
typically unary, in which customer actions are indications of positive preference, but
the act of not buying or clicking on an item does not necessarily indicate a negative
preference. The approach can also be used for cases in which the “ratings” are ar-
bitrary values indicating only positive preferences (e.g., amount of product bought).
Note that such scenarios are generally conducive to regression methods that impose
non-negativity in the coefficients of the model. As you will learn in Chapter 3, this
observation is also true for other models, such as matrix factorization. For example,
non-negative matrix factorization is primarily useful for implicit feedback data sets,
but it is not quite as useful for arbitrary ratings. This is, in part, because the non-
negative, sum-of-parts decomposition loses its interpretability when a rating indicates
either a like or a dislike. For example, two “dislike” ratings do not add up to a “like”
rating.

60 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

3. The regression coefficients in [309] can be either positive or negative. On the other
hand, the coefficients in SLIM are constrained to be non-negative. This is because the
SLIM method is primarily designed for the implicit feedback setting. Non-negativity
is often more intuitive in these settings and the results are more interpretable. In fact,
in some cases, imposing non-negativity might improve7 the accuracy. However, some
limited experimental results have been presented [347], which suggest that removing
non-negativity constraints provides superior performance.

4. Although the SLIMmethod also proposes a prediction model for the ratings (according
to Equation 2.33), the final use of the predicted values is for ranking the items in order
of the predicted value. Note that the approach is generally used for data sets with
unary ratings and therefore, it makes sense to use the predicted values to rank the
items, rather than predict ratings. An alternative way of interpreting the predicted
values is that each of them can be viewed as the error of replacing a non-negative
rating with 0 in the ratings matrix. The larger the error is, the greater the predicted
value of the rating will be. Therefore, the items can be ranked in the order of the
predicted value.

5. Unlike the work in [309], the SLIM method does not explicitly adjust for the varying
number of specified ratings with heuristic adjustment factors. For example, the right-
hand side of Equation 2.29 uses an adjustment factor of

√
|Qt(u)| in the denominator.

On the other hand, no such adjustment factor is used in the SLIM method. The
adjustment issue is less pressing for the case of unary data sets, in which the presence
of an item is usually the only information available. In such cases, replacing missing
values with 0s is a common practice, and the bias of doing so is much lower than in
the case where ratings indicate varying levels of likes or dislikes.

Therefore, the models share a number of conceptual similarities, although there are some
differences at the detailed level.

2.7 Graph Models for Neighborhood-Based Methods

The sparsity of observed ratings causes a major problem in the computation of similarity in
neighborhood-based methods. A number of graph models are used in order to define similar-
ity in neighborhood-based methods, with the use of either structural transitivity or ranking
techniques. Graphs are a powerful abstraction that enable many algorithmic tools from the
network domain. The graphs provide a structural representation of the relationships among
various users and/or items. The graphs can be constructed on the users, on the items, or
on both. These different types of graphs result in a wide variety of algorithms, which use

7 It is noteworthy that imposing an additional constraint, such as non-negativity, always reduces the
quality of the optimal solution on the observed entries. On the other hand, imposing constraints increases the
model bias and reduces model variance, which might reduce overfitting on the unobserved entries. In fact,
when two closely related models have contradicting relative performances on the observed and unobserved
entries, respectively, it is almost always a result of differential levels of overfitting in the two cases. You
will learn more about the bias-variance trade-off in Chapter 6. In general, it is more reliable to predict
item ratings with positive item-item relationships rather than negative relationships. The non-negativity
constraint is based on this observation. The incorporation of model biases in the form of such natural
constraints is particularly useful for smaller data sets.

2.7. GRAPH MODELS FOR NEIGHBORHOOD-BASED METHODS 61

either random-walk or shortest-path methods for recommendation. In the following, we will
describe the algorithms used for performing recommendations with various types of graph
representations of ratings matrices.

2.7.1 User-Item Graphs

It is possible to use structural measures on the user-item graph, rather than the Pearson
correlation coefficient, for defining neighborhoods. Such an approach is more effective for
sparse ratings matrices because one can use structural transitivity of edges for the recom-
mendation process.

The user-item graph is defined as an undirected and bipartite graph G = (Nu ∪Ni, A),
where Nu is the set of nodes representing users, andNi is the set of nodes representing items.
All edges in the graph exist only between users and items. An undirected edge exists in A
between a user i and an item j, if and only if user i has rated item j. Therefore, the number
of edges is equal to the number of observed entries in the utility matrix. For example, the
user-item graph for the ratings matrix of Figure 2.3(a) is illustrated in Figure 2.3(b). The
main advantage of graph-based methods is that two users do not need to have rated many
of the same items to be considered neighbors as long as many short paths exist between
the two users. Therefore, this definition allows the construction of neighborhoods with the
notion of indirect connectivity between nodes. Of course, if two users have rated many
common items, then such a definition will also consider them close neighbors. Therefore,
the graph-based approach provides a different way of defining neighborhoods, which can be
useful in sparse settings.

The notion of indirect connectivity is achieved with the use of path- or walk-based
definitions. Some common methods for achieving this goal include the use of random-walk
measures or the Katz measure, which is discussed in section 2.7.1.2. Both these measures are
closely related to the problem of link prediction in social network analysis (cf. section 10.4
of Chapter 10), and they demonstrate the fact that graphical models of recommender sys-
tems connect the link-prediction problem to the vanilla recommendation problem. In the
following, we discuss different ways of defining neighborhoods on the graph representation.

2.7.1.1 Defining Neighborhoods with Random Walks

The neighborhood of a user is defined by the set of users that are encountered frequently
in a random walk starting at that user. How can the expected frequency of such random
walks be measured? The answer to this problem is closely related to the random-walk
methods, which are used frequently in Web-ranking applications. One can use either the
personalized PageRank or the SimRank method (cf. Chapter 10) to determine the k most
similar users to a given user for user-based collaborative filtering. Similarly, one can use this
method to determine the k most similar items to a given item by starting the random walk
at a given item. This approach is useful for item-based collaborative filtering. The other
steps of user-based collaborative filtering and item-based collaborative filtering remain the
same.

Why is this approach more effective for sparse matrices? In the case of the Pearson’s
correlation coefficient, two users need to be connected directly to a set of common items
for the neighborhood to be defined meaningfully. In sparse user-item graphs, such direct
connectivity may not exist for many nodes. On the other hand, a random-walk method
also considers indirect connectivity, because a walk from one node to another may use any
number of steps. Therefore, as long as large portions of the user-item graphs are connected,

62 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

AT
O
R

U
R

AT
H
ER

FE
LL
AS

AC
E

AC
U
S

G
LA

D
I

BE
N
H

G
O
D
F

G
O
O
D

SC
AR

F

SP
AR

T

U1 1 5 21

U2

35

5

1

4

U 35

3

1

4

U3

U4

3

5

5

4U6

U5

SMETISRESU

GLADIATORU1

BEN HUR

SPARTACUS

U4

U6

GODFATHERU2

GOODFELLASU3

SCARFACEU5

(a) Ratings matrix (b) User-item graphs of specified ratings

Figure 2.3: A ratings matrix and corresponding user-item graph

it is always possible to meaningfully define neighborhoods. Such user-item graphs can also
be used to directly predict ratings with the use of a variety of models. Such related methods
will be discussed in section 10.2.3.3 of Chapter 10.

2.7.1.2 Defining Neighborhoods with the Katz Measure

Rather than using a probabilistic measure, such as random walks, it is possible to use the
weighted number of walks between a pair of nodes in order to determine the affinity between
them. The weight of each walk is a discount factor in (0, 1), which is typically a decreasing
function of its length. The weighted number of walks between a pair of nodes is referred
to as the Katz measure. The weighted number of walks between a pair of nodes is often
used as a link-prediction measure. The intuition is that if two users belong to the same
neighborhood based on walk-based connectivity, then there is a propensity for a link to be
formed between them in the user-item graph. The specific level of propensity is measured
with the number of (discounted) walks between them.

Definition 2.7.1 (Katz Measure) Let n
(t)
ij be the number of walks of length t between

nodes i and j. Then, for a user-defined parameter β < 1, the Katz measure between nodes
i and j is defined as follows:

Katz(i, j) =

∞∑

t=1

βt · n(t)
ij (2.34)

The value of β is a discount factor that de-emphasizes walks of longer lengths. For small
enough values of β, the infinite summation of Equation 2.34 will converge.

Let K be the m × m matrix of Katz coefficients between pairs of users. If A is the
symmetric adjacency matrix of an undirected network, then the pairwise Katz coefficient
matrix K can be computed as follows:

K =

∞∑

i=1

(βA)i = (I − βA)−1 − I (2.35)

2.7. GRAPH MODELS FOR NEIGHBORHOOD-BASED METHODS 63

The value of β should always be selected to be smaller than the inverse of the largest
eigenvalue of A to ensure convergence of the infinite summation. The Katz measure is
closely rated to diffusion kernels in graphs. In fact, several collaborative recommendation
methods directly use diffusion kernels to make recommendations [205].

A weighted version of the measure can be computed by replacing A with the weight
matrix of the graph. This can be useful in cases where one wishes to weight the edges in
the user-item graph with the corresponding rating. The top-k nodes with the largest Katz
measures to the target node are isolated as its neighborhood. Once the neighborhood has
been determined, it is used to perform the prediction according to Equation 2.4. Many
variations of this basic principle are used to make recommendations:

1. It is possible to use a threshold on the maximum path length in Equation 2.34. This
is because longer path lengths generally become noisy for the prediction process.
Nevertheless, because of the use of the discount factor β, the impact of long paths on
the measure is generally limited.

2. In the aforementioned discussion, the Katz measure is used only to determine the
neighborhoods of users. Therefore, the Katz measure is used to compute the affinity
between pairs of users. After the neighborhood of a user has been determined, it is
used to make predictions in the same way as any other neighborhood-based method.

However, a different way of directly performing the prediction, without using neigh-
borhood methods, would be to measure the affinity between users and items. The
Katz measure can be used to compute these affinities. In such cases, the links are
weighted with ratings, and the problem is reduced to that of predicting links between
users and items. These methods will be discussed in more detail in section 10.4.6 of
Chapter 10.

The bibliographic notes contain a number of references to various path-based methods.

2.7.2 User-User Graphs

In user-item graphs, the user-user connectivity is defined by an even number of hops in
the user-item graph. Instead of constructing user-item graphs, one might instead directly
create user-user graphs based on 2-hop connectivity between users. The advantage of user-
user graphs over user-item graphs is that the edges of the graph are more informative in the
former. This is because the 2-hop connectivity can directly take the number and similarity of
common items between the two users into account, while creating the edges. These notions,
referred to as horting and predictability, will be discussed slightly later. The algorithm uses
the notion of horting to quantify the number of mutually specified ratings between two
users (nodes), whereas it uses the notion of predictability to quantify the level of similarity
among these common ratings.

The user-user graph is constructed as follows. Each node u corresponds to one of the m
users in the m× n user-item matrix. Let Iu be the set of items for which ratings have been
specified by user u, and let Iv be the set of items for which ratings have been specified by
user v. Edges are defined in this graph with the notion of horting. Horting is an asymmetric
relationship between users, which is defined on the basis of their having rated similar items.

64 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

RATINGS MATRIX
FIND
HORTING
EDGES

RETAIN PREDICTABLE EDGES

QUERY FOR RECOMMENDATIONS

Figure 2.4: The user-user predictability approach

Definition 2.7.2 (Horting) A user u is said to hort user v at level (F,G), if either of
the following are true:

|Iu ∩ Iv| ≥ F

|Iu ∩ Iv|/|Iu| ≥ G

Here, F and G are algorithm parameters. Note that it is sufficient for one of the two
aforementioned conditions to hold for user u to hort user v. The notion of horting is used
to further define predictability.

Definition 2.7.3 (Predictability) The user v predicts user u, if u horts v and there exists
a linear transformation function f(·) such that the following is true:

∑
k∈Iu∩Iv

|ruk − f(rvk)|
|Iu ∩ Iv|

≤ U

Here, U is another algorithm parameter. It is noteworthy that the distance∑
k∈Iu∩Iv

|ruk−f(rvk)|
|Iu∩Iv| between the ratings of user u and the transformed ratings of user v is a

variant of the Manhattan distance on their common specified ratings. The main difference
from the Manhattan distance is that the distance is normalized by the number of mutually
specified ratings between the two users. This distance is also referred to as the Manhattan
segmental distance.

2.7. GRAPH MODELS FOR NEIGHBORHOOD-BASED METHODS 65

The directions of horting and predictability are opposite one another. In other words,
for user v to predict user u, u must hort v. A directed graph G is defined, in which an edge
exists from u to v, if v predicts u. This graph is referred to as the user-user predictability
graph. Each edge in this graph corresponds to a linear transformation, as discussed in
Definition 2.7.3. The linear transformation defines a prediction, where the rating at the
head of the edge can be used to predict the rating at the tail of the edge. Furthermore,
it is assumed that one can apply these linear transformations in a transitive way over a
directed path in order to predict the rating of the source of the path from the rating at the
destination of the path.

Then, the rating of a target user u for an item k is computed by determining all the
directed shortest paths from user u to all other users who have rated item k. Consider a
directed path of length r from user u to a user v who has rated item k. Let f1 . . . fr represent
the sequence of linear transformations along the directed path starting from node u to this

user v. Then, the rating prediction r̂
(v)
uk of the rating of target user u for item k (based only

on user v) is given by applying the composition of the r linear mappings along this path
from user u to v, to the rating rvk of user v on item k:

r̂
(v)
uk = (f1 ◦ f2 . . . ◦ fr)(rvk) (2.36)

The rating prediction r̂
(v)
uk contains the superscript v because it is based only on the rating

of user v. Therefore, the final rating prediction r̂uk is computing by averaging the value of

r̂
(v)
uk over all users v that have rated item k, within a threshold distance D of the target
user u.

Given a target user (node) u, one only needs to determine directed paths from this user
to other users, who have rated the item at hand. The shortest path can be determined with
the use of a breadth-first algorithm, which is quite efficient. Another important detail is that
a threshold is imposed on the maximum path length that is usable for prediction. If no user,
who has rated item k is found within a threshold length D of the target node u, then the
algorithm terminates with failure. In other words, the rating of the target user u for item
k simply cannot be determined robustly with the available ratings matrix. It is important
to impose such thresholds to improve efficiency and also because the linear transformation
along very long path lengths might lead to increasing distortion in the rating prediction.
The overall approach is illustrated in Figure 2.4. Note that a directed edge exists from u to
v in the horting graph if u horts v. On the other hand, an edge exists in the predictability
graph if u horts v and v predicts u. Therefore, the predictability graph is obtained from
the horting graph by dropping a few edges. This graph is set up in an offline phase and it
is repeatedly queried for recommendations. In addition, a number of index data structures
are set up from the ratings matrix during the offline setup phase. These data structures
are used along with the predictability graph in order to resolve the queries efficiently. More
details on the horting approach may be found in [33].

This approach can work for very sparse matrices because it uses transitivity to predict
ratings. An important challenge in neighborhood methods is the lack of coverage of rating
prediction. For example, if none of John’s immediate neighbors have rated Terminator, it is
impossible to provide a rating prediction for John. However, structural transitivity allows us
to check whether the indirect neighbors of John have rated Terminator. Therefore, the main
advantage of this approach is that it has better coverage compared to competing methods.

66 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

AT
O
R

U
R

AT
H
ER

FE
LL
AS

G
LA

D
I

BE
N
H

G
O
D
F

G
O
O
D

U1 1 51

U2

35

5

1U 5

3

1U3

U4

3

5 4U6

U5

1
GLADIATOR GODFATHER

1

111 1
2

2

BEN HUR GOODFELLAS

1/4
GLADIATOR GODFATHER

11/4

1/2

2/3
1/2 1/2 1/3

BEN HUR GOODFELLAS

2

(a) Ratings matrix

(b) Unnormalized correlation graph (c) Normalized correlation graph

Figure 2.5: A ratings matrix and its correlation graphs

2.7.3 Item-Item Graphs

It is also possible to leverage item-item graphs to perform the recommendations. Such a
graph is also referred to as the correlation graph [232]. In this case, a weighted and directed
network G = (N,A) is constructed, in which each node in N corresponds to an item, and
each edge in A corresponds to a relationship between items. The weight wij is associated
with each edge (i, j). If items i and j have both been rated by at least one common user,
then both the directed edges (i, j) and (j, i) exist in the network. Otherwise, no edges exist
between nodes i and j. The directed network is, however, asymmetric because the weight
of edge (i, j) is not necessarily the same as that of edge (j, i). Let Ui be the set of users that
have specified ratings for item i and Uj be the set of users that have specified ratings for
item j. Then, the weight of the edge (i, j) is computed using the following simple algorithm.

First, we initialize the weight wij of each edge (i, j) to |Ui ∩Uj|. At this point, the edge
weights are symmetric because wij = wji. Then, the weights of the edges are normalized,
so that the sum of the weights of the outgoing edges of a node is equal to 1. This normal-
ization is achieved by dividing wij with the sum of the outgoing weights from node i. The
normalization step results in asymmetric weights, because each of the weights wij and wji

are divided by different quantities. This results in a graph in which the weights on edges
correspond to random-walk probabilities. An example of the correlation graph for a ratings
matrix is illustrated in Figure 2.5. It is clear that the weights on the normalized correlation
graph are not symmetric because of the scaling of the weights to transition probabilities.
Furthermore, it is noteworthy that the rating values are not used in the construction of
the correlation graph. Only the number of observed ratings in common between two items

2.9 BIBLIOGRAPHIC NOTES 67

is used. This is sometimes not desirable. It is, of course, possible to define the correlation
graph in other ways, such as with the use of the cosine function between the rating vectors
of the two items.

As discussed in Chapter 10, random-walk methods can be used to determine the neigh-
borhood of a given item. The resulting neighborhood can be used for item-based collabora-
tive filtering methods. Furthermore, personalized PageRank methods can be used to directly
determine the ratings on the item-item graph. This method is referred to as ItemRank, and
it is discussed in section 10.2.3.3 of Chapter 10.

2.8 Summary

Because collaborative filtering can be viewed as a generalization of classification and re-
gression problems, the methodologies for the latter classes of problems can also be applied
to the former. Neighborhood-based methods derive their inspiration from nearest neighbor
classification and regression methods. In user-based methods, the first step is to determine
the neighborhood of the target user. In order to compute the neighborhood, a variety of
similarity functions, such as the Pearson correlation coefficient or the cosine, are used. The
neighborhood is used in order to extrapolate the unknown ratings of a record. In item-
based methods, the most similar items are computed with respect to a target item. Then,
the user’s own ratings on these similar items are used in order to make a rating prediction.
Item-based methods are likely to have more relevant recommendations, but they are less
likely to yield diverse recommendations. In order to speed up neighborhood-based methods,
clustering is often used.

Neighborhood-based methods can be viewed as linear models, in which the weights
are chosen in a heuristic way with the use of similarity values. One can also learn these
weights with the use of linear regression models. Such methods have the advantage that
they can be combined with other optimization models, such as matrix factorization, for
better prediction. Such methods are discussed in the next chapter.

Neighborhood-based methods face numerous challenges because of data sparsity. Users
often specify only a small number of ratings. As a result, a pair of users may often have spec-
ified only a small number of ratings. Such situations can be addressed effectively with the
use of both dimensionality reduction and graph-based models. While dimensionality reduc-
tion methods are often used as standalone methods for collaborative filtering, they can also
be combined with neighborhood-based methods to improve the effectiveness and efficiency
of collaborative filtering. Various types of graphs can be extracted from rating patterns,
such as user-item graphs, user-user graphs, or item-item graphs. Typically, random-walk or
shortest-path methods are used in these cases.

2.9 Bibliographic Notes

Neighborhood-based methods were among the earliest techniques used in the field of rec-
ommender systems. The earliest user-based collaborative filtering models were studied
in [33, 98, 501, 540]. A comprehensive survey of neighborhood-based recommender sys-
tems may be found in [183]. Sparsity is a major problem in such systems, and various
graph-based systems have been designed to alleviate the problem of sparsity [33, 204, 647].
Methods that are specifically designed for the long tail in recommender algorithms are
discussed in [173, 463, 648].

68 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

User-based methods utilize the ratings of similar users on the same item in order to make
predictions. While such methods were initially quite popular, they are not easily scalable
and sometimes inaccurate. Subsequently, item-based methods [181, 360, 524] were proposed,
which compute predicted ratings as a function of the ratings of the same user on similar
items. Item-based methods provide more accurate but less diverse recommendations.

The notion of mean-centering for improving recommendation algorithms was proposed
in [98, 501]. A comparison of the use of the Z-score with mean-centering is studied in [245,
258], and these two studies provide somewhat conflicting results. A number of methods
which do not use the absolute ratings, but instead focus on ordering the ratings in terms
of preference weights, are discussed in [163, 281, 282]. The significance-weighting methods
of de-emphasizing the neighbors who have too few common ratings with a given neighbor
are discussed in [71, 245, 247, 380]. Many different variants of the similarity function are
used for computing the neighbor. Two such examples are the mean-squared distance [540]
and the Spearman rank correlation [299]. The specific advantage of these distance measures
is not quite clear because conflicting results have been presented in the literature [247,
258]. Nevertheless, the consensus seems to be that the Pearson rank correlation provides
the most accurate results [247]. Techniques for adjusting for the impact of very popular
items are discussed in [98, 280]. The use of exponentiated amplification for prediction in
neighborhood-based methods is discussed in [98]. A discussion of the use of voting techniques
in nearest neighbor methods may be found in [183]. Voting methods can be viewed as a
direct generalization of the nearest neighbor classifier, as opposed to a generalization of
nearest neighbor regression modeling.

Methods for item-based collaborative filtering were proposed in [181, 524, 526]. A de-
tailed study of different variations of item-based collaborative filtering algorithms is pro-
vided in [526], along with a comparison with respect to user-based methods. The item-based
method in [360] is notable because it describes one of Amazon.com’s collaborative filter-
ing methods. The user-based and item-based collaborative filtering methods have also been
unified with the notion of similarity fusion [622]. A more generic unification framework
may be found in [613]. Clustering methods are used frequently to improve the efficiency of
neighborhood-based collaborative filtering. A number of clustering methods are described
in [146, 167, 528, 643, 644, 647]. The extension of neighborhood methods to very large-scale
data sets has been studied in [51].

Dimensionality reduction techniques have a rich history of being used in missing-value
estimation [24, 472] and recommender systems [71, 72, 228, 252, 309, 313, 500, 517, 525].
In fact, most of these techniques directly use such latent models to predict the ratings
without relying on neighborhood models. However, some of these dimensionality reduction
techniques [71, 72, 309, 525] are specifically designed to improve the effectiveness and effi-
ciency of neighborhood-based techniques. A key contribution of [72] is to provide an insight
about the relationship between neighborhood methods and regression-based methods. This
relationship is important because it shows how one can formulate neighborhood-based meth-
ods as model-based methods with a crisp optimization formulation. Note that many other
model-based methods, such as latent factor models, can also be expressed as optimization
formulations. This observation paves the way for combining neighborhood methods with
latent factor models in a unified framework [309] because one can now combine the two
objective functions. Other regression-based models for recommender systems, such as slope-
one predictors and ordinary least-squares methods, are proposed in [342, 620]. Methods for
learning pairwise preferences over itemsets are discussed in [469]. Item-item regression mod-
els have also been studied in the context of Sparse Linear Models (SLIM) [455], where an
elastic-net regularizer is used on the linear model without restricting the coefficients to the

2.10 EXERCISES 69

neighborhood of the item. Higher-order sparse learning methods, which model the effects
of using combinations of items, are discussed in [159]. Efficient methods for training lin-
ear models and tuning regularization parameters are discussed in [347]. Constrained linear
regression methods are discussed in [430].

A general examination of linear classifiers, such as least-squares regression and support
vector machines, is provided in [669]. However, the approach is designed for implicit feedback
data sets in which only positive preferences are specified. It was observed that collaborative
filtering, in such cases, is similar to text categorization. However, because of the noise in
the data and the imbalanced nature of the class distribution, a direct use of SVM methods
is sometimes not effective. Changes to the loss function are suggested in [669] in order to
provide more accurate results.

Many graph-based methods have been proposed for improving collaborative filtering al-
gorithms. Most of these methods are based on either user-item graphs, but a few are also
based on user-user graphs. An important observation from the perspective of graph-based
methods is that they show an interesting relationship between the problems of ranking,
recommendation, and link-prediction. The use of random walks for determining the neigh-
borhood in recommendation systems is discussed in [204, 647]. A method, which uses the
number of discounted paths between a pair of nodes in a user-item graph for recommenda-
tions, was proposed in [262]. This approach is equivalent to using the Katz measure between
user-user pairs in order to determine whether they reside in each other’s neighborhoods.
This approach is related to link-prediction [354], because the Katz measure is often used to
determine the linkage affinity between a pair of nodes. A survey on link prediction meth-
ods may be found in [17]. Some graph-based methods do not directly use neighborhoods.
For example, the ItemRank method proposed in [232] shows how to use ranking directly
to make predictions, and the method in [261] shows how to use link-prediction methods
directly for collaborative filtering. These methods are also discussed in Chapter 10 of this
book. Techniques for leveraging user-user graphs are discussed in [33]. These methods have
the advantage that they directly encode the user-user similarity relationships in the edges
of the graph. As a result, the approach provides better coverage than competing methods.

2.10 Exercises

1. Consider the ratings matrix of Table 2.1. Predict the absolute rating of item 3 for user
2 using:

(a) User-based collaborative filtering with Pearson correlation and mean-centering

(b) Item-based collaborative filtering with adjusted cosine similarity

Use a neighborhood of size 2 in each case.

2. Consider the following ratings table between five users and six items:

Item-Id ⇒ 1 2 3 4 5 6

1 5 6 7 4 3 ?
2 4 ? 3 ? 5 4
3 ? 3 4 1 1 ?
4 7 4 3 6 ? 4
5 1 ? 3 2 2 5

70 CHAPTER 2. NEIGHBORHOOD-BASED COLLABORATIVE FILTERING

(a) Predict the values of unspecified ratings of user 2 using user-based collaborative
filtering algorithms. Use the Pearson correlation with mean-centering.

(b) Predict the values of unspecified ratings of user 2 using item-based collaborative
filtering algorithms. Use the adjusted cosine similarity.

Assume that a peer group of size at most 2 is used in each case, and negative corre-
lations are filtered out.

3. Discuss the similarity between a k-nearest neighbor classifier in traditional machine
learning and the user-based collaborative filtering algorithm. Describe an analogous
classifier to item-based collaborative filtering.

4. Consider an algorithm that performs clustering of users based on their ratings matrix
and reports the average ratings within a cluster as the predicted items ratings for
every user within a cluster. Discuss the effectiveness and efficiency trade-offs of such
an approach compared to a neighborhood model.

5. Propose an algorithm that uses random walks on a user-user graph to perform
neighborhood-based collaborative filtering. [This question requires a background in
ranking methods.]

6. Discuss various ways in which graph clustering algorithms can be used to perform
neighborhood-based collaborative filtering.

7. Implement the user-based and item-based collaborative filtering algorithms.

8. Suppose you had content-based profiles associated with users indicating their interests
and profiles associated with items corresponding to their descriptions. At the same
time, you had a ratings matrix between users and items. Discuss how you can incorpo-
rate the content-based information within the framework of graph-based algorithms.

9. Suppose that you had a unary ratings matrix. Show how collaborative filtering algo-
rithms can be solved using content-based methods by treating the ratings of an item
as its features. Refer to Chapter 1 for a description of content-based methods. What
type of a content-based classifier does an item-based collaborative filtering algorithm
correspond to?

Chapter 3

Model-Based Collaborative Filtering

“Do not quench your inspiration and your imagination; do not become the slave
of your model.”– Vincent van Gogh

3.1 Introduction

The neighborhood-based methods of the previous chapter can be viewed as generalizations
of k-nearest neighbor classifiers, which are commonly used in machine learning. These meth-
ods are instance-based methods, whereby a model is not specifically created up front for
prediction other than an optional preprocessing1 phase, which is required to ensure efficient
implementation. Neighborhood-based methods are generalizations of instance-based learn-
ing methods or lazy learning methods in which the prediction approach is specific to the
instance being predicted. For example, in user-based neighborhood methods, the peers of
the target user are determined in order to perform the prediction.

In model-based methods, a summarized model of the data is created up front, as with
supervised or unsupervised machine learning methods. Therefore, the training (or model-
building phase) is clearly separated from the prediction phase. Examples of such methods
in traditional machine learning include decision trees, rule-based methods, Bayes classifiers,
regression models, support vector machines, and neural networks [22]. Interestingly, almost
all these models can be generalized to the collaborative filtering scenario, just as k-nearest
neighbor classifiers can be generalized to neighborhood-based models for collaborative filter-
ing. This is because the traditional classification and regression problems are special cases
of the matrix completion (or collaborative filtering) problem.

In the data classification problem, we have an m× n matrix, in which the first (n − 1)
columns are feature variables (or independent variables), and the last (i.e., nth) column is

1From a practical point of view, preprocessing is essential for efficiency. However, one could implement
the neighborhood method without a preprocessing phase, albeit with larger latencies at query time.

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 3

71

72 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

TRAINING
ROWS

TEST
ROWS

INDEPENDENT
VARIABLES

DEPENDENT
VARIABLE

NO
DEMARCATION

BETWEEN
TRAINING AND
TEST ROWS

NO DEMARCATION BETWEEN DEPENDENT
AND INDEPENDENT VARIABLES

(a) Classification (b) Collaborative filtering

Figure 3.1: Revisiting Figure 1.4 of Chapter 1. Comparing the traditional classification
problem with collaborative filtering. Shaded entries are missing and need to be predicted.

the class variable (or dependent variable). All entries in the first (n− 1) columns are fully
specified, whereas only a subset of the entries in the nth column is specified. Therefore, a
subset of the rows in the matrix is fully specified, and these rows are referred to as the
training data. The remaining rows are referred to as the test data. The values of the missing
entries need to be learned for the test data. This scenario is illustrated in Figure 3.1(a),
where the shaded values represent missing entries in the matrix.

Unlike data classification, any entry in the ratings matrix may be missing, as illustrated
by the shaded entries in Figure 3.1(b). Thus, it can be clearly seen that the matrix com-
pletion problem is a generalization of the classification (or regression modeling) problem.
Therefore, the crucial differences between these two problems may be summarized as follows:

1. In the data classification problem, there is a clear separation between feature (inde-
pendent) variables and class (dependent) variables. In the matrix completion problem,
this clear separation does not exist. Each column is both a dependent and independent
variable, depending on which entries are being considered for predictive modeling at
a given point.

2. In the data classification problem, there is a clear separation between the training
and test data. In the matrix completion problem, this clear demarcation does not
exist among the rows of the matrix. At best, one can consider the specified (observed)
entries to be the training data, and the unspecified (missing) entries to be the test
data.

3. In data classification, columns represent features, and rows represent data instances.
However, in collaborative filtering, it is possible to apply the same approach to ei-
ther the ratings matrix or to its transpose because of how the missing entries are
distributed. For example, user-based neighborhood models can be viewed as direct

3.1. INTRODUCTION 73

generalizations of nearest neighbor classifiers. When such methods are applied to the
transpose of the ratings matrix, they are referred to as item-based neighborhood mod-
els. In general, many classes of collaborative filtering algorithms have both user-wise
and item-wise versions.

These differences between data classification and collaborative filtering are illustrated in
Figure 3.1. The greater generality of the collaborative filtering problem leads to a richer num-
ber of algorithmic possibilities in collaborative filtering, as compared to data classification.

The similarity between the collaborative filtering problem and the data classification
problem is useful to keep in mind when designing learning algorithms for the former. This
is because data classification is a relatively well-studied field, and the various types of
solutions to classification also provide important hints for the design of collaborative fil-
tering algorithms. In fact, most machine learning and classification algorithms have direct
analogs in the collaborative filtering literature. Understanding recommender systems in a
similar way to classification models enables the application of a significant number of meta-
algorithms from the classification literature. For example, classical meta-algorithms from
the classification literature, such as bagging, boosting or model combination, can be ex-
tended to collaborative filtering. Interestingly, much of the theory developed for ensemble
methods in classification continues to apply to recommender systems. In fact, the ensemble-
based methods [311, 704] were among the best performing methods in the Netflix challenge.
Ensemble methods are discussed in detail in Chapter 6.

It is not always easy, however, to generalize data classification models directly to the
matrix completion problem, especially when the vast majority of the entries are missing.
Furthermore, the relative effectiveness of the various models are different in different set-
tings. For example, a number of recent collaborative filtering models, such as latent factor
models, are particularly well suited to collaborative filtering. Such models are, however, not
considered competitive models in the context of data classification.

Model-based recommender systems often have a number of advantages over
neighborhood-based methods:

1. Space-efficiency: Typically, the size of the learned model is much smaller than the
original ratings matrix. Thus, the space requirements are often quite low. On the other
hand, a user-based neighborhood method might have O(m2) space complexity, where
m is the number of users. An item-based method will have O(n2) space complexity.

2. Training speed and prediction speed: One problem with neighborhood-based methods
is that the pre-processing stage is quadratic in either the number of users or the
number of items. Model-based systems are usually much faster in the preprocessing
phase of constructing the trained model. In most cases, the compact and summarized
model can be used to make predictions efficiently.

3. Avoiding overfitting: Overfitting is a serious problem in many machine learning algo-
rithms, in which the prediction is overly influenced by random artifacts in the data.
This problem is also encountered in classification and regression models. The sum-
marization approach of model-based methods can often help in avoiding overfitting.
Furthermore, regularization methods can be used to make these models robust.

Even though neighborhood-based methods were among the earliest collaborative filtering
methods and were also among the most popular because of their simplicity, they are not
necessarily the most accurate models available today. In fact, some of the most accurate
methods are based on model-based techniques in general, and on latent factor models in
particular.

74 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

This chapter is organized as follows. Section 3.2 discusses the use of decision and regres-
sion trees for recommender systems. Rule-based collaborative filtering methods are discussed
in section 3.3. The use of the naive Bayes model for recommender systems is discussed in
section 3.4. A general discussion of how other classification methods are extended to collab-
orative filtering is provided in section 3.5. Latent factor models are discussed in section 3.6.
The integration of latent factor models with neighborhood models is discussed in section 3.7.
A summary is given in section 3.8.

3.2 Decision and Regression Trees

Decision and regression trees are frequently used in data classification. Decision trees are
designed for those cases in which the dependent variable is categorical, whereas regression
trees are designed for those cases in which the dependent variable is numerical. Before
discussing the generalization of decision trees to collaborative filtering, we will first discuss
the application of decision trees to classification.

Consider the case in which we have anm×nmatrix R. Without loss of generality, assume
that the first (n − 1) columns are the independent variables, and the final column is the
dependent variable. For ease in discussion, assume that all variables are binary. Therefore,
we will discuss the creation of a decision tree rather than a regression tree. Later, we will
discuss how to generalize this approach to other types of variables.

The decision tree is a hierarchical partitioning of the data space with the use of a
set of hierarchical decisions, known as the split criteria in the independent variables. In a
univariate decision tree, a single feature is used at one time in order to perform a split. For
example, in a binary matrix R, in which the feature values are either 0 or 1, all the data
records in which a carefully chosen feature variable takes on the value of 0 will lie in one
branch, whereas all the data records in which the feature variable takes on the value of 1
will lie in the other branch. When the feature variable is chosen in such a way, so that it is
correlated with the class variable, the data records within each branch will tend to be purer.
In other words, most of the records belonging to the different classes will be separated out.
In other words, one of the two branches will predominantly contain one class, whereas the
other branch will predominantly contain the other class. When each node in a decision tree
has two children, the resulting decision tree is said to be a binary decision tree.

The quality of the split can be evaluated by using the weighted average Gini index of
the child nodes created from a split. If p1 . . . pr are the fractions of data records belonging
to r different classes in a node S, then the Gini index G(S) of the node is defined as follows:

G(S) = 1−
r∑

i=1

p2i (3.1)

The Gini index lies between 0 and 1, with smaller values being more indicative of greater
discriminative power. The overall Gini index of a split is equal to the weighted average of
the Gini index of the children nodes. Here, the weight of a node is defined by the number of
data points in it. Therefore, if S1 and S2 are the two children of node S in a binary decision
tree, with n1 and n2 data records, respectively, then the Gini index of the split S ⇒ (S1, S2)
may be evaluated as follows:

Gini (S ⇒ [S1, S2]) =
n1 ·G(S1) + n2 ·G(S2)

n1 + n2
(3.2)

3.2. DECISION AND REGRESSION TREES 75

ATTRIBUTE 2 = 1ATTRIBUTE 2 = 0

ATTR. 1 = 0 ATTR. 1 = 1
ATTR. 3 = 0 ATTR. 3 = 1

ATTR. 4 = 0 ATTR. 4 = 1
ATTR. 3 = 0 ATTR. 3 = 1

TEST INSTANCE A = 00 10

TEST INSTANCE B = 00 11

Figure 3.2: Example of a decision tree with four binary attributes

The Gini index is used for selecting the appropriate attribute to use for performing the
split at a given level of the tree. One can test each attribute to evaluate the Gini index of
its split according to Equation 3.2. The attribute with the smallest Gini index is selected
for performing the split. The approach is executed hierarchically, in top-down fashion, until
each node contains only data records belonging to a particular class. It is also possible to
stop the tree growth early, when a minimum fraction of the records in the node belong to a
particular class. Such a node is referred to as a leaf node, and it is labeled with the dominant
class of the records in that node. To classify a test instance with an unknown value of the
dependent variable, its independent variables are used to map a path in the decision tree
from the root to the leaf. Because the decision tree is a hierarchical partitioning of the data
space, the test instance will follow exactly one path from the root to the leaf. The label
of the leaf is reported as the relevant one for the test instance. An example of a decision
tree, constructed on four binary attributes, is illustrated in Figure 3.2. The leaf nodes of
the tree are shaded in the figure. Note that all attributes are not necessarily used for splits
by the decision tree. For example, the leftmost path uses attributes 1 and 2, but it does not
use attributes 3 and 4. Furthermore, different paths in the decision tree may use different
sequences of attributes. This situation is particularly common with high-dimensional data.
Examples of the mappings of test instances A= 0010 and B= 0110 to respective leaf nodes
are illustrated in Figure 3.2. Each of these test instances is mapped to a unique leaf node
because of the hierarchical nature of the data partitioning.

The approach can be extended to numerical dependent and independent variables with
minor modifications. To handle numerical independent (feature) variables, the attribute
values can be divided into intervals in order to perform the splits. Note that this approach
might result in a multi-way split, where each branch of the split corresponds to a different
interval. The split is then performed by choosing the attribute on the basis of the Gini index

76 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

criterion. Such an approach also applies to categorical feature variables, wherein each value
of the categorical attribute corresponds to a branch of the split.

To handle numeric dependent variables, the split criterion is changed from the Gini index
to a measure better suited to numeric attributes. Specifically, the variance of the numeric
dependent variable is used instead of the Gini index. A lower variances is more desirable
because it means that the node contains training instances that are discriminatively mapped
in the locality of the dependent variable. Either the average value in the leaf node, or a
linear regression model, is used at the leaf node to perform the prediction [22].

In many cases, the tree is pruned to reduce overfitting. In this case, a portion of the
training data is not used during the tree construction phase. Then, the effect of pruning
the node is tested on the portion of the training data that is held out. If the removal of the
node improves the accuracy of the decision tree prediction on the held out data, then the
node is pruned. Additionally, other variations of the split criteria, such as error rates and
entropy, are commonly used. Detailed discussions of various design choices in decision tree
construction may be found in [18, 22].

3.2.1 Extending Decision Trees to Collaborative Filtering

The main challenge in extending decision trees to collaborative filtering is that the predicted
entries and the observed entries are not clearly separated in column-wise fashion as feature
and class variables. Furthermore, the ratings matrix is very sparsely populated, where the
majority of entries are missing. This creates challenges in hierarchically partitioning the
training data during the tree-building phase. Furthermore, since the dependent and inde-
pendent variables (items) are not clearly demarcated in collaborative filtering, what item
should be predicted by the decision tree?

The latter issue is relatively easy to address by constructing separate decision trees to
predict the rating of each item. Consider an m × n ratings matrix R with m users and n
items. A separate decision tree needs to be constructed by fixing each attribute (item) to be
dependent and the remaining attributes as independent. Therefore, the number of decision
trees constructed is exactly equal to the number n of attributes (items). While predicting
the rating of a particular item for a user, the decision tree corresponding to the relevant
item is used for prediction.

On the other hand, the issue of missing independent features is more difficult to address.
Consider the case, where a particular item (say, a particular movie) is used as a splitting
attribute. All users whose rating is less than a threshold are assigned to one branch of the
tree, whereas the users whose ratings are larger than the threshold are assigned to the other
branch. Because ratings matrices are sparse, most users will not have specified ratings for
this item. Which branch should such users be assigned to? Logic dictates that such users
should be assigned to both branches. However, in such a case, the decision tree no longer
remains a strict partitioning of the training data. Furthermore, according to this approach,
test instances will map to multiple paths in the decision tree, and the possibly conflicting
predictions from the various paths will need to combined into a single prediction.

A second (and more reasonable) approach is to create a lower-dimensional representa-
tion of the data using the dimensionality reduction methods discussed in section 2.5.1.1 of
Chapter 2. Consider the scenario, where the rating of the jth item needs to be predicted.
At the very beginning, the m × (n − 1) ratings matrix, excluding the jth column, is con-
verted into a lower-dimensional m× d representation, in which d � n− 1 and all attributes
are fully specified. The covariance between each pair of items in the m × (n − 1) ratings
matrix is estimated using the methods discussed in section 2.5.1.1 of Chapter 2. The top-d

3.3. RULE-BASED COLLABORATIVE FILTERING 77

eigenvectors e1 . . . ed of the estimated (n − 1)× (n − 1) covariance matrix are determined.
Note that each eigenvector is a vector containing (n − 1) elements. Equation 2.17 is used
for projecting the ratings of each user on the eigenvectors, except that the jth item is not
included on the right-hand side of Equation 2.17. This results in a d-dimensional vector of
ratings for each user, which is completely specified. This reduced representation is used to
construct the decision tree for the jth item by treating the problem as a standard classifi-
cation or regression modeling problem. This approach is repeated by varying the value of
j from 1 to n, in order to construct a total of n decision trees. Therefore, the jth decision
tree is useful only for predicting the ratings of the jth item. Both the eigenvectors and the
trees for each of the n cases are stored as a part of the model.

To predict the rating of item j for a user i, the ith row of the m × d matrix is used as
the test instance, and the jth decision/regression tree is used as the model to predict the
value of the corresponding rating. The first step is to use the remaining n− 1 items (except
for the jth item) in order to create the reduced d-dimensional representation of the test
instance according to Equation 2.17. Note that the jth set of eigenvectors are used for the
projection and reduction process. This representation is then used with the corresponding
decision or regression tree for the jth item to perform the prediction. It is noteworthy that
this broader approach of combining dimensionality reduction with a classification model is
not restricted to decision trees. It is relatively easy to use this approach in conjunction with
virtually any classification model. Furthermore, dimensionality reduction methods are also
used in isolation to predict ratings in recommender systems. Both these issues are discussed
later in this chapter.

3.3 Rule-Based Collaborative Filtering

The relationship between association rules [23] and collaborative filtering is a natural one
because the association rule problem was first proposed in the context of discovering re-
lationships between supermarket data. Association rules are naturally defined over binary
data, although the approach can be extended to categorical and numerical data by con-
verting these data types to binary data. For the purpose of this discussion, we will assume
the simplified case of unary data, which are common in supermarket transactions and in
implicit feedback data sets.

Consider a transaction database T = {T1 . . . Tm}, containing m transactions, which are
defined on n items I. Therefore, I is the universal set of items, and each transaction Ti is
a subset of the items in I. The key in association rule mining is to determine sets of items
that are closely correlated in the transaction database. This is achieved with the notions of
support and confidence. These measures quantify the relationships between sets of items.

Definition 3.3.1 (Support) The support of an itemset X ⊆ I is the fraction of transac-
tions in T , of which X is a subset.

If the support of an itemset is at least equal to a predefined threshold s, then the itemset is
said to be frequent. This threshold is referred to as the minimum support. These itemsets
are referred to as frequent itemsets or frequent patterns. Frequent itemsets can provide
important insights about correlations in customer buying behavior.

For example, consider the data set illustrated in Table 3.1. In this table, the rows corre-
spond to customers and columns correspond to items. The 1s correspond to cases in which
a particular customer has bought an item. Although this data set is unary, and the 0s
correspond to missing values, a common practice in such implicit feedback data sets is to

78 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Table 3.1: Example of market basket data

Item ⇒ Bread Butter Milk Fish Beef Ham
Customer ⇓

Jack 1 1 1 0 0 0
Mary 0 1 1 0 1 0
Jane 1 1 0 0 0 0
Sayani 1 1 1 1 1 1
John 0 0 0 1 0 1
Tom 0 0 0 1 1 1
Peter 0 1 0 1 1 0

approximate missing values with 0s. It is evident that the columns of the table can be par-
titioned into two sets of closely related items. One of these sets is {Bread,Butter,Milk},
and the other set is {Fish,Beef,Ham}. These are the only itemsets with at least 3 items,
which also have a support of at least 0.2. Therefore, both of these itemsets are frequent
itemsets or frequent patterns. Finding such patterns with high support is useful to the
merchant, because she can use them to make recommendations and other target marketing
decisions. For example, it is reasonable to conclude that Mary is likely to eventually buy
Bread, because she has already bought {Butter,Milk}. Similarly, John is likely to buy Beef
because he has also bought {Fish,Ham}. Such inferences are very useful from the point of
view of a recommendation system.

A further level of insight may be obtained in terms of the directions of these correlations
by using the notion of association rules and confidence. An association rule is denoted in the
form X ⇒ Y , where the “⇒” is intended to give a direction to the nature of the correlation
between the set of items X and Y . For example, a rule such as {Butter,Milk} ⇒ {Bread}
would be very useful to recommend Bread to Mary, because it is already known that she
has bought Milk and Butter. The strength of such a rule is measured by its confidence.

Definition 3.3.2 (Confidence) The confidence of the rule X ⇒ Y is the conditional
probability that a transaction in T contains Y , given that it also contains X. Therefore, the
confidence is obtained by dividing the support of X ∪ Y with the support of X.

Note that the support of X ∪ Y will always be less than the support of X . This is because
if a transaction contains X ∪ Y , then it will always contain X . However, the reverse might
not be true. Therefore, the confidence of a rule must always lie in the range (0, 1). Higher
values of the confidence are always indicative of greater strength of the rule. For example,
if a rule X ⇒ Y is true, then a merchant, who knows that a specific set of customers has
bought the set of items X , can also target these customers with the set of items Y . An
association rule is defined on the basis of a minimum support s and minimum confidence c:

Definition 3.3.3 (Association Rules) A rule X ⇒ Y is said to be an association rule
at a minimum support of s and minimum confidence of c, if the following two conditions
are satisfied:

1. The support of X ∪ Y is at least s.

2. The confidence of X ⇒ Y is at least c.

3.3. RULE-BASED COLLABORATIVE FILTERING 79

The process of finding association rules is a two-phase algorithm. In the first phase, all
the itemsets that satisfy a minimum support threshold s are determined. From each of
these itemsets Z, all possible 2-way partitions (X,Z − X) are used to create a potential
rule X ⇒ Z − X . Those rules satisfying the minimum confidence are retained. The first
phase of determining the frequent itemsets is the computationally intensive one, especially
when the underlying transaction database is very large. Numerous computationally efficient
algorithms have been devoted to the problem of efficient frequent itemset discovery. The
discussion of these algorithms is beyond the scope of this book, because it is a distinct field of
data mining in its own right. Interested readers are referred to [23] for a detailed discussion
of frequent pattern mining. In this book, we will show how to use these algorithms as tools
for collaborative filtering.

3.3.1 Leveraging Association Rules for Collaborative Filtering

Association rules are particularly useful for performing recommendations in the context of
unary ratings matrices. As discussed in Chapters 1 and 2, unary ratings matrices are created
by customer activity (e.g., buying behavior), wherein there is a natural mechanism for the
customer to specify a liking for an item, but no mechanism to specify a dislike. In these
cases, the items bought by a customer are set to 1, whereas the missing items are set to 0
as an approximation. Setting missing values to 0 is not common for most types of ratings
matrices because doing so would cause bias in the predictions. However, it is generally
considered an acceptable practice in sparse unary matrices because the most common value
of an attribute is usually 0 in these cases. As a result, the effect of bias is relatively small,
and one can now treat the matrix as a binary data set.

The first step of rule-based collaborative filtering is to discover all the association rules
at a pre-specified level of minimum support and minimum confidence. The minimum sup-
port and minimum confidence can be viewed as parameters, which are tuned2 to maximize
predictive accuracy. Only those rules are retained in which the consequent contains exactly
one item. This set of rules is the model, which can be used to perform recommendations
for specific users. Consider a given customer A to which it desired to recommend relevant
items. The first step is to determine all association rules that have been fired by customer A.
An association rule is said to be fired by a customer A, if the itemset in the antecedent
of the rule is a subset of the items preferred by that customer. All of the fired rules are
then sorted in order of reducing confidence. The first k items discovered in the consequents
of these sorted rules are recommended as the top-k items to customer A. The approach
described here is a simplification of the algorithm described in [524]. Numerous other vari-
ations of this basic approach are used in the recommender systems literature. For example,
sparsity can be addressed using dimensionality reduction methods [524].

The aforementioned association rules are based on unary ratings matrices, which allow
the ability to specify likes, but they do not allow the ability to specify dislikes. However,
numeric ratings can be easily handled by using variations of this basic methodology. When
the number of possible ratings is small, each value of the rating-item combination can be
treated as a pseudo-item. An example of such as pseudo-item is (Item = Bread,Rating =
Dislike). A new set of transactions is created in terms of these pseudo-items. The rules are
then constructed in terms of these pseudo-items by using the approach as discussed earlier.

2Parameter-tuning methods, such as hold-out and cross-validation, are discussed in Chapter 7.

80 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Therefore, such rules could appear as follows:

(Item = Bread,Rating = Like) ⇒ (Item = Eggs,Rating = Like)

(Item = Bread,Rating = Like) AND (Item = Fish,Rating = Dislike)

⇒ (Item = Eggs,Rating = Dislike)

For a given customer, the set of fired rules is determined by identifying the rules whose
antecedents contain a subset of the pseudo-items for that user. The rules are sorted in
decreasing order of confidence. These sorted rules can be used to predict ratings for items
by selecting the top-k pseudo-items in the consequents of these rules. An additional step that
might be required in this case is to resolve the conflicts between the various rules because
different pseudo-items in the rules fired by a customer might be conflicting. For example,
the pseudo-items (Item = Bread,Rating = Like) and (Item = Bread,Rating = Dislike)
are conflicting pseudo-items. Such conflicts can be resolved by finding a way of aggregating
the ratings in the consequents in order to create the final sorted list of recommendations. It
is also possible to numerically aggregate the ratings in the consequents by using a variety of
heuristics. For example, one can first determine all the fired rules in which the consequents
correspond to an item of interest. The item ratings in the consequents of these fired rules are
voted on in a weighted way in order to make a prediction for that user-item combination.
One can weight the ratings in the fired rules by the corresponding confidence in the averaging
process. For example, if two rules contain the rating “like” in the consequent (for a particular
item), with confidences of 0.9 and 0.8, respectively, then the total number of votes for “like”
for that item is 0.9 + 0.8 = 1.7. The votes can be used to predict an average value of the
rating for that item. Such predicted values can be determined for all items in the consequents
of the fired rules. The resulting values can be used to sort the items in reducing order of
priority. The voting approach is more appropriate when the granularity of the rating scale is
very limited (e.g., like or dislike). In the case of interval-based ratings with high granularity,
it is possible to discretize the ratings into a smaller number of intervals, and then use the
same approach discussed above. Other heuristic methods for aggregating the predictions
from rule-based methods are discussed in [18]. In many cases, it has been shown that the
most effective results are not necessarily obtained by using the same support level for each
item. Rather, it is often desirable to make the support level specific to the item whose rating
is being predicted [358, 359, 365].

3.3.2 Item-Wise Models versus User-Wise Models

The dual relationship between user-wise and item-wise models is a recurrent theme in col-
laborative filtering. The neighborhood models of Chapter 2 provide the most well-known
example of this duality. In general, every user-wise model can be converted to an item-wise
model by applying it to the transpose of the rating matrix, and vice versa. Minor adjust-
ments might sometimes be required to account for the varying semantic interpretations
in the two cases. For example, one uses the adjusted cosine for similarity computation in
item-based neighborhood models rather than the Pearson correlation coefficient.

The aforementioned discussion focuses on item-wise models for rule-based collaborative
filtering. It is also possible to create user-wise models. These methods leverage user associ-
ations rather than item associations [358, 359]. In these cases, the rules associate the user
tastes with one another rather than associating the item tastes with one another. Therefore,
one works with pseudo-users corresponding to user-rating combinations. Examples of such

3.3. RULE-BASED COLLABORATIVE FILTERING 81

rules are as follows:

(User = Alice, Rating = Like) ⇒ (User = Bob,Rating = Disike)

(User = Alice, Rating = Like) AND (User = Peter,Rating = Dislike)

⇒ (User = John,Rating = Like)

The first rule implies that Bob is likely to dislike items that Alice likes. The second rule
implies that John is likely to like items that Alice likes and Peter dislikes. Such rules can
be mined by applying exactly the same approach as the previous case on the transpose
of the transaction matrix constructed from the pseudo-users. In other words, each list of
pseudo-users for an item is now treated as a “transaction.” Association rules are mined
from this database at the required level of minimum support and confidence. In order to
predict the rating of a user-item combination, the pseudo-user-based “transaction” for the
relevant item is determined. Rules are fired by this transaction when the antecedent of
this rule contains a subset of the pseudo-users in the transaction. All the fired rules are
determined. Among these fired rules, all those in which the consequents correspond to the
user of interest are determined. The ratings in the consequents of the fired rules may be
averaged or voted on to make a prediction. The averaging process can be weighted with the
confidence of the corresponding rule to provide a more robust prediction. Thus, the user-
based approach is exactly analogous to the item-based approach. It is noteworthy that the
two ways of performing collaborative filtering with association rules share a complimentary
relationship, which is reminiscent of user-based and item-based neighborhood algorithms.

The association rule approach is useful not only for collaborative filtering, but also for
content-based recommender systems, in which customer profiles are matched to specific
items. These rules are referred to as profile association rules, and are used popularly for
profile-based recommendations. It has been shown in [31, 32] how an efficient interactive
interface can be constructed for performing profile-based recommendations for a variety of
different types of queries.

Association rule-based recommender systems can be viewed as generalizations of rule-
based systems that are used commonly for the classification problem [18]. The main differ-
ence is that consequents of the generated rules in the classification problem always contain
the class variable. However, in the case of recommender systems, the consequents of the gen-
erated rules might contain3 any item. Furthermore, the heuristics for sorting the fired rules
and combining the possibly conflicting results from the rules are also similar in collaborative
filtering and classification. This natural relationship between these methods is a direct result
of the relationship between the classification and collaborative filtering problems. The main
distinction between the two cases is that there is no clear demarcation between the feature
variables and the class variables in collaborative filtering. This is why any association rule
can be generated, rather than simply rules that contain the class variable in the consequent.

A number of comparative studies have shown [358, 359] that association rule systems
can provide accurate results in certain types of settings. This is particularly true of unary
data, which is commonly encountered in Web recommender systems. Association rule-based
systems have found significant applications in Web-based personalization and recommender
systems [441, 552]. The approach is naturally suited to Web personalization systems because
it is specifically designed for sparse transaction data, which is commonly encountered in Web
click behavior. Such methods can even be extended to include temporal information by using
sequential pattern mining models [23].

3In the case of user-based associations, the consequents might contain any user.

82 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

3.4 Naive Bayes Collaborative Filtering

In the following, we will assume that there are a small number of distinct ratings, each of
which can be treated as a categorical value. Therefore, the orderings among the ratings will
be ignored in the following discussion. For example, three ratings, such as Like, Neutral,
and Dislike, will be treated as unordered discrete values. In the case where the number of
distinct ratings is small, such an approximation can be reasonably used without significant
loss in accuracy.

Assume that there are l distinct values of the ratings, which are denoted by v1 . . . vl.
As in the case of the other models discussed in this chapter, we assume that we have an
m × n matrix R containing the ratings of m users for n items. The (u, j)th entry of the
matrix is denoted by ruj .

The naive Bayes model is a generative model, which is commonly used for classification.
One can treat the items as features and users as instances in order to infer the missing entries
with a classification model. The main challenge in using this approach for collaborative
filtering is that any feature (item) can be the target class in collaborative filtering, and one
also has to work with incomplete feature variables. These differences can be handled with
minor modifications to the basic methodology of the naive Bayes model.

Consider the uth user, who has specified ratings for the set of items Iu. In other words,
if the uth row has specified ratings for the first, third, and fifth columns, then we have
Ii = {1, 3, 5}. Consider the case where the Bayes classifier needs to predict the unobserved
rating ruj of user u for item j. Note that ruj can take on any one of the discrete possibilities
in {v1 . . . vl}. Therefore, we would like to determine the probability that ruj takes on any
of these values conditional on the observed ratings in Iu. Therefore, for each value of s ∈
{1 . . . l}, we would like to determine the probability P (ruj = vs|Observed ratings in Iu).
This expression appears in the form P (A|B), where A and B are events corresponding to
the value of ruj , and the values of the observed ratings in Iu, respectively. The expression
can be simplified using the well-known Bayes rule in probability theory:

P (A|B) =
P (A) · P (B|A)

P (B)
(3.3)

Therefore, for each value of s ∈ {1 . . . l}, we have the following:

P (ruj = vs|Observed ratings in Iu) =
P (ruj = vs) · P (Observed ratings in Iu|ruj = vs)

P (Observed ratings in Iu)
(3.4)

We need to determine the value of s in the aforementioned expression for which the value of
P (ruj = vs|Observed ratings in Iu) on the left-hand side is as large as possible. It is note-
worthy that the denominator on the right-hand side of Equation 3.4 is independent of the
value of s. Therefore, in order to determine the value of s at which the right-hand side takes
on the maximum value, one can ignore the denominator and express the aforementioned
equation in terms of a constant of proportionality:

P (ruj = vs|Observed ratings in Iu) ∝ P (ruj = vs) · P (Observed ratings in Iu|ruj = vs)
(3.5)

If desired, the constant of proportionality can be derived by ensuring that all the result-
ing probability values P (ruj = vs|Observed ratings in Iu) for s ∈ {1 . . . l} sum to 1. A key
observation is that all the expressions on the right-hand side of Equation 3.5 can be es-
timated easily in a data-driven manner. The value of P (ruj = vs), which is also referred

3.4. NAIVE BAYES COLLABORATIVE FILTERING 83

to as the prior probability of rating ruj , is estimated to the fraction of the users that
have specified the rating vs for the jth item. Note that the fraction is computed only out
of those users that have rated item j, and the other users are ignored. The expression
P (Observed ratings in Iu|ruj = vs) is estimated with the use of the naive assumption. The
naive assumption is based on conditional independence between the ratings. The conditional
independence assumption says that the ratings of user u for various items in Iu are inde-
pendent of one another, conditional of the fact that the value of ruj was observed to be vs.
This condition may be mathematically expressed as follows:

P (Observed ratings in Iu|ruj = vs) =
∏

k∈Iu

P (ruk|ruj = vs) (3.6)

The value of P (ruk|ruj = vs) is estimated as the fraction of users that have specified the
rating of ruk for the kth item, given that they have specified the rating of their jth item to vs.
By plugging in the estimation of the prior probability P (ruj = vs) and that of Equation 3.6
into Equation 3.5, it is possible to obtain an estimate of the posterior probability of the
rating of item j for user u as follows:

P (ruj = vs|Observed ratings in Iu) ∝ P (ruj = vs) ·
∏

k∈Iu

P (ruk|ruj = vs) (3.7)

This estimate of the posterior probability of the rating ruj can be used to estimate its value
in one of the following two ways:

1. By computing each of the expressions on the right-hand side of Equation 3.7 for
each s ∈ {1 . . . l}, and determining the value of s at which it is the largest, one can
determine the most likely value r̂uj of the missing rating ruj . In other words, we have:

r̂uj = argmaxvsP (ruj = vs|Observed ratings in Iu)

= argmaxvsP (ruj = vs) ·
∏

k∈Iu

P (ruk|ruj = vs)

Such an approach, however, treats a rating purely as a categorical value and ignores
all ordering among the various ratings. When the number of possible ratings is small,
this is a reasonable approach to use.

2. Rather than determining the rating that takes on the maximum probability, one can
estimate the predicted value as the weighted average of all the ratings, where the
weight of a rating is its probability. In other words, the weight of the rating vs is pro-
portional to the value of P (ruj = vs|Observed ratings in Iu), as computed in Equa-
tion 3.7. Note that the constant of proportionality in the equation is irrelevant for
computing the weighted average. Therefore, the estimated value r̂uj of the missing
rating ruj in the matrix R is as follows:

r̂uj =

∑l
s=1 vs · P (ruj = vs|Observed ratings in Iu)
∑l

s=1 P (ruj = vs|Observed ratings in Iu)

=

∑l
s=1 vs · P (ruj = vs) · P (Observed ratings in Iu|ruj = vs)
∑l

s=1 P (ruj = vs) · P (Observed ratings in Iu|ruj = vs)

=

∑l
s=1 vs · P (ruj = vs) ·

∏
k∈Iu

P (ruk|ruj = vs)
∑l

s=1 P (ruj = vs) ·
∏

k∈Iu
P (ruk|ruj = vs)

This approach is preferable when the granularity of the ratings distribution is greater.

84 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

For a given user u, all her unobserved ratings are estimated using this approach. The items
with the top-k estimated values of the ratings are reported.

It is noteworthy that this approach computes the conditional probability of a rating,
based on the ratings of the other items (or dimensions). Therefore, this approach is an
item-based Bayes approach. This approach is a straightforward adaptation of traditional
classification methods, except that the predicted (class) dimension is fixed in traditional
classification, whereas the predicted dimension varies in collaborative filtering. This differ-
ence occurs because collaborative filtering is a generalization of classification (cf. Figure 3.1).
In the particular case of collaborative filtering, it is also possible to compute the probability
of a rating based on the ratings of the other users for the same item (see Exercise 4). Such
an approach can be viewed as a user-based Bayes approach. It is even possible to combine
the predictions from the user-based and item-based Bayes methods. In virtually all forms
of collaborative filtering, such as neighborhood-based and rule-based methods, it is possi-
ble to provide a solution from the user-based perspective, the item-based perspective, or a
combination of the two methods.

3.4.1 Handling Overfitting

A problem arises when the underlying ratings matrix is sparse and the number of observed
ratings is small. In such cases, the data-driven estimations may not remain robust. For ex-
ample, the estimation of the prior probability P (ruj = vs) is unlikely to be robust if a small
number of users have specified ratings for the jth item. For example, if no user has specified
a rating for the jth item, the estimation is of the form 0/0, which is indeterminate. Further-
more, the estimation of each value P (ruk|ruj = vs) on the right-hand side of Equation 3.6
is likely to be even less robust than the estimation of the prior probability. This is because
only a small portion of the ratings matrix will be conditional on the event ruj = vs. In this
case, the portion of the ratings matrix that needs to be analyzed is only those users that
have specified the rating vs for item j. If the number of such users is small, the estimation
will be inaccurate and the multiplicative terms in Equation 3.6 will produce a large error.
For example, for any value of k ∈ Iu, if no user has specified the rating ruk in cases where
the rating of the jth item is set to vs, the entire expression of Equation 3.6 will be set to 0
because of its multiplicative nature. This is, of course, an erroneous and overfitting result,
which is obtained because of the estimation of the model parameters from a small amount
of data.

In order to handle this problem, the method of Laplacian smoothing is commonly used.
For example, let q1 . . . ql be the number of users that have respectively specified the ratings
v1 . . . vl for the jth item. Then, instead of estimating P (ruj = vs) in a straightforward way

to qs/
∑l

t=1 qt, it is smoothed with a Laplacian smoothing parameter α:

P (ruj = vs) =
qs + α

∑l
t=1 qt + l · α

(3.8)

Note that if no ratings are specified for the jth item, then such an approach will set the prior
probability of each possible rating to 1/l. The value of α controls the level of smoothing.
Larger values of α will lead to more smoothing, but the results will become insensitive to
the underlying data. An exactly similar approach can be used to smooth the estimation of
P (ruk|ruj = vs), by adding α and l · α to the numerator and denominator, respectively.

3.4. NAIVE BAYES COLLABORATIVE FILTERING 85

Table 3.2: Illustration of the Bayes method with a binary ratings matrix

Item-Id ⇒ 1 2 3 4 5 6
User-Id ⇓

1 1 -1 1 -1 1 -1
2 1 1 ? -1 -1 -1
3 ? 1 1 -1 -1 ?
4 -1 -1 -1 1 1 1
5 -1 ? -1 1 1 1

3.4.2 Example of the Bayes Method with Binary Ratings

In this section, we will illustrate the Bayes method with a binary ratings matrix on 5
users and 6 items. The ratings are drawn from {v1, v2} = {−1, 1}. This matrix is shown
in Table 3.2. For ease in discussion, we will not use Laplacian smoothing although it is
essential to do so in practice. Consider the case in which we wish to predict the ratings of
the two unspecified items of user 3. Therefore, we need to compute the probabilities of the
unspecified ratings r31 and r36 taking on each of the values from {−1, 1}, conditional on
the observed values of the other ratings of user 3. By using Equation 3.7, we obtain the
following posterior probability for the rating of item 1 by user 3:

P (r31 = 1|r32, r33, r34, r35) ∝ P (r31 = 1) · P (r32 = 1|r31 = 1) · P (r33 = 1|r31 = 1)·
· P (r34 = −1|r31 = 1) · P (r35 = −1|r31 = 1)

The values of the individual terms on the right-hand side of the aforementioned equation
are estimated using the data in Table 3.2 as follows:

P (r31 = 1) = 2/4 = 0.5

P (r32 = 1|r31 = 1) = 1/2 = 0.5

P (r33 = 1|r31 = 1) = 1/1 = 1

P (r34 = −1|r31 = 1) = 2/2 = 1

P (r35 = −1|r31 = 1) = 1/2 = 0.5

Upon substituting these values in the aforementioned equation, we obtain the following:

P (r31 = 1|r32, r33, r34, r35) ∝ (0.5)(0.5)(1)(1)(0.5) = 0.125

Upon performing the same steps for the probability of r31 taking on the value of −1, we
obtain:

P (r31 = −1|r32, r33, r34, r35) ∝ (0.5)

(
0

1

)(
0

2

)(
0

2

)(
0

2

)

= 0

86 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Therefore, the rating r31 has a higher probability of taking on the value of 1, as compared
to -1, and its predicted value is set to 1. One can use a similar argument to show that the
predicted value of the rating r36 is −1. Therefore, in a top-1 recommendation scenario, item
1 should be prioritized over item 6 in a recommendation to user 3.

3.5 Using an Arbitrary Classification Model
as a Black-Box

Many other classification (or regression modeling) methods can be extended to the case of
collaborative filtering. The main challenge in these methods is the incomplete nature of the
underlying data. In the case of some classifiers, it is more difficult to adjust the model to
handle the case of missing attribute values. An exception is the case of unary data, in which
missing values are often estimated to be 0, and the specified entries are set to 1. Therefore,
the underlying matrix resembles sparse binary data of high dimensionality. In such cases,
the data can be treated as a complete data set and any classifiers that are designed for
sparse and high dimensional data can be used. Fortunately, many forms of data, including
customer transaction data, Web click data, or other activity data, can be formulated as
a unary matrix. It is noteworthy that text data is also sparse and high-dimensional; as a
result, many of the classification algorithms used in text mining can be directly adapted
to these data sets. In fact, it has been shown in [669] that one can directly leverage the
success of support vector machines in text data to (unary) collaborative filtering, albeit
with a squared form of the loss function. The squared form of the loss function makes
the model more akin to regularized linear regression. It has also been suggested in [669]
that the use of rare class learning methods can be effective in collaborative filtering due to
the imbalanced nature of the class distribution. For example, one might use different loss
functions for the majority and minority classes while adapting the support vector machine
to the collaborative filtering scenario. Numerous ad hoc methods have also been proposed to
extend various classification and regression methods to collaborative filtering. For example,
smoothing support vector machines [638] have been used to estimate the missing values in
the user-item matrix in an iterative way.

For cases in which the ratings matrix is not unary, it is no longer possible to fill in the
missing entries of the matrix with 0s without causing significant bias. This issue is discussed
in detail in section 2.5 of Chapter 2. Nevertheless, as discussed in the same section, several
dimensionality reduction methods can be used to create a low-dimensional representation
of the data, which is fully specified. In such cases, any known classification method can be
used effectively by treating the low-dimensional representation as the feature variables of the
training data. Any column that needs to be completed is treated as the class variable. The
main problem with this approach is a loss of interpretability in the classification process.
When the reduced representation represents a linear combination of the original columns,
it is difficult to provide any type of explanation of the predictions.

In order to work in the original feature space, it is possible to use classification methods
as meta-algorithms in conjunction with iterative methods. In other words, an off-the-shelf
classification algorithm is used as a black-box to predict the ratings of one of the items with
the ratings of other items. How does one overcome the problem that the training columns
haven been incompletely specified? The trick is to iteratively fill in the missing values of the

3.5. USING AN ARBITRARY CLASSIFICATION MODEL AS A BLACK-BOX 87

training columns with successive refinement. This successive refinement is achieved with
the use of our black-box, which is an off-the-shelf classification (or regression modeling)
algorithm.

Consider an arbitrary classification/regression modeling algorithm A, which is designed
to work with a completely specified matrix. The first step is to initialize the missing entries
in the matrix with row averages, column averages, or with any simple collaborative filtering
algorithm. For example, one might use a simple user-based algorithm for the initialization
process. As an optional enhancement, one might center each row of the ratings matrix as
a preprocessing step to remove user bias. In this case, the bias of each user needs to be
added back to the predicted values in a post-processing phase. Removing user bias during
pre-processing often makes4 the approach more robust. If the user bias is removed, then the
missing entries are always filled in with row averages, which are 0.

These simple initializations and bias removal methods will still lead to prediction bias,
when one attempts to use the artificially filled in values as training data. Then, the bias
in the predicted entries can be iteratively reduced by using the following two-step iterative
approach:

1. (Iterative step 1): Use algorithm A to estimate the missing entries of each column
by setting it as the target variable and the remaining columns as the feature variables.
For the remaining columns, use the current set of filled in values to create a complete
matrix of feature variables. The observed ratings in the target column are used for
training, and the missing ratings are predicted.

2. (Iterative step 2): Update all the missing entries based on the prediction of algo-
rithm A on each target column.

These two steps are iteratively executed to convergence. The approach can be sensitive
to the quality of the initialization and the algorithm A. Nevertheless, the merit of the
approach is that it is a simple method that can easily be implemented with any off-the-
shelf classification or regression model. Numerical ratings can also be handled with a linear
regression model. The work in [571] uses a similar approach in which the ratings matrix is
imputed with artificial entries predicted by an ensemble of different classifiers.

3.5.1 Example: Using a Neural Network as a Black-Box

In this section, we will provide a simple example of the aforementioned approach, when
neural networks are used as black-boxes to implement the approach. For the purpose of the
following discussion, we will assume that the reader is already familiar with the basics of
neural networks [87]. Nevertheless, we will introduce them very briefly to ensure continuity
of discussion.

Neural networks simulate the human brain with the use of neurons, which are connected
to one another via synaptic connections. In biological systems, learning is performed by
changing the strength of synaptic connections in response to external stimuli. In artificial
neural networks, the basic computation unit is also referred to as a neuron, and the strengths
of the synaptic connections correspond to weights. These weights define the parameters

4It is also possible to use more sophisticated ways of removing bias for better performance. For example,
the bias Bij , which is specific to user i and item j, can be computed using the approach discussed in
section 3.7.1. This bias is subtracted from observed entries and all missing entries are initialized to 0s
during pre-processing. After computing the predictions, the biases Bij are added back to the predicted
values during postprocessing.

88 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

used by the learning algorithm. The most basic architecture of the neural network is the
perceptron, which contains a set of input nodes and an output node. An example of a
perceptron is shown in Figure 3.3(a). For a data set containing d different dimensions, there
are d different input units. The output node is associated with a set of weights W , which
is used to compute a function f(·) of the d inputs. A typical example of such a function is
the signed linear function, which would work well for binary output:

zi = sign{W ·Xi + b} (3.9)

INPUT NODES

X 2

Xi
1

OUTPUT NODE
w1

Xi
3

Xi

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

LAYERHIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

(b) Multilayer(a) Perceptron

Figure 3.3: Single and multilayer neural networks

G
LA

DI
AT

O
R

BE
N

-H
U

R

G
O

DF
AT

HE
R

G
O

O
DF

EL
LA

S

U1

U2

2

4

1

5

3

1

1

1

5

U3

U6

U5

U4

MEAN-CENTER EACH ROW
AND FILL MISSING ENTRIES

WITH ZEROS

5

4 4

5

1 1

G
LA

DI
AT

O
R

BE
N

-H
U

R

G
O

DF
AT

HE
R

G
O

O
DF

EL
LA

S

U1

U2

-2

1

-2

1

U3

U6

U5

U4

1

1 1

-1

2 -2

-1 -1 2

 2 -2

0

0

0 0

0 0

0 0

0

Figure 3.4: Pre-processing the ratings matrix. Shaded entries are iteratively updated.

3.5. USING AN ARBITRARY CLASSIFICATION MODEL AS A BLACK-BOX 89

NEURAL
NETWORK

GLADIATOR

BEN-HUR

GODFATHER

GOODFELLAS

(PREDICTION)

NEURAL
NETWORK

GLADIATOR BEN-HUR

GODFATHER

GOODFELLAS

(PREDICTION)

NEURAL
NETWORK

GLADIATOR

BEN-HUR

GODFATHER

GODFATHER

GOODFELLAS

(PREDICTION)

NEURAL
NETWORK

GLADIATOR

BEN-HUR

GOODFELLAS (PREDICTION)

Figure 3.5: Neural networks for predicting and updating missing entries. Shaded entries of
Figure 3.4 are iteratively updated by the neural networks.

Here, Xi is a d-dimensional row vector defining the d inputs of the ith training instance, and
W is the coefficient vector. In the context of collaborative filtering, the d inputs correspond
to the (n−1) items, which are used to predict the rating of the remaining item. Assume that
the label of the ith instance is yi. In the context of collaborative filtering, yi represents the
observed ratings of the items being predicted. The parameter b denotes the bias. One can
already notice the similarity of this approach with linear regression although the prediction
function is slightly different. The value of zi is the predicted output, and the error (zi−yi)

2

of this predicted output is used to update the weights in W in a manner similar to linear
regression. This update is similar to the updates in gradient descent, which are made for
least-squares optimization. In the case of neural networks, the update function is as follows:

W
t+1

= W
t
+ α(yi − zi)Xi (3.10)

Here, α > 0 denotes the learning rate and W
t
is the value of the weight vector in the

tth iteration. It is not difficult to show that the incremental update vector, is the negative
gradient of (yi − zi)

2 with respect to W . We iterate through all the observed ratings in the
item being predicted in order to make these updates. Since it was assumed that yi is binary,
this approach is designed for binary ratings matrices. One can also design neural networks
in which the output need not be binary, and the prediction function need not be linear.

In general, a neural network can have multiple layers, and the intermediate nodes can
compute nonlinear functions. An example of such a multi-layer neural network is illus-
trated in Figure 3.3(b). Of course, such a network would have a larger number of learning

90 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

parameters. The corresponding learning algorithm is referred to as the back-propagation
algorithm [87]. The main advantage of neural networks is that the multi-layer architecture
provides the ability to compute complex nonlinear functions that are not easily computable
with other classification methods. Therefore, neural networks are also referred to as univer-
sal function approximators. For noisy data like ratings matrices, regularization can be used
to reduce the impact of noise.

Consider a ratings matrix with four items, illustrated on the left-hand side of Figure 3.4.
In this example, the items correspond to movies. The first step is to mean-center each row, in
order to remove user biases. The resulting mean-centered matrix is shown on the right-hand
side of Figure 3.4. Note that the missing values are replaced with the corresponding row
average, which is 0 after mean-centering. Since there are four items, there are four possible
neural network models, whereby each model is constructed by using the ratings input of
the other three items as training columns, and the fourth as the test column. These four
neural networks are shown in Figure 3.5. The completed matrix of Figure 3.4 is used to train
each of these neural networks in the first iteration. For each column of the ratings matrix,
the relevant neural network in Figure 3.5 is used for prediction purposes. The resulting
predictions made by the neural networks are then used to create a new matrix in which the
missing entries are updated with the predicted values. In other words, the neural networks
are used only to update the values in the shaded entries of Figure 3.4 with the use of an
off-the-shelf neural network training and prediction procedure. After the update, the shaded
entries of Figure 3.4 will no longer be zeros. This matrix is now used to predict the entries
for the next iteration. This approach is repeated iteratively until convergence. Note that
each iteration requires the application of n training procedures, where n is the number of
items. However, one does not need to learn the parameters of the neural networks from
scratch in each iteration. The parameters from the previous iteration can be used as a good
starting point. It is important to use regularization because of the high dimensionality of
the underlying data [220].

This model can be considered an item-wise model, in which the inputs represent the
ratings of various items. It is also possible to create a user-wise model [679], in which
the inputs correspond to the ratings of various users. The main challenge with such an
approach is that the number of inputs to the neural network becomes very large. Therefore,
it is recommended in [679] that not all users should be used as input nodes. Rather, only
users who have rated at least a minimum threshold number of items are used. Furthermore,
the users should not all be highly similar to one another. Therefore, heuristics are proposed
in [679] to preselect mutually diverse users in the initial phase. This approach can be
considered a type of feature selection for neural networks, and it can also be used in the
item-wise model.

3.6 Latent Factor Models

In section 2.5 of Chapter 2, we discussed some dimensionality reduction methods to create
a new fully specified representation of an incomplete data set. In Chapter 2, a number of
heuristic methods were discussed, which create a full dimensional representation for enabling
the use of neighborhood algorithms [525]. Such data reduction techniques are also used to
enable other model-based methods, which use classification algorithms as a subroutine.
Therefore, in all the methods previously discussed, dimensionality reduction only plays
an enabling role of creating a more convenient data representation for other model-based
methods. In this chapter, more sophisticated methods will be discussed, because the goal is
to use dimensionality reduction methods to directly estimate the data matrix in one shot.

3.6. LATENT FACTOR MODELS 91

The earliest discussions on the use of latent factor models as a direct method for matrix
completion may be found in [24, 525]. The basic idea is to exploit the fact that significant
portions of the rows and columns of data matrices are highly correlated. As a result, the data
has built-in redundancies and the resulting data matrix is often approximated quite well by
a low-rank matrix. Because of the inherent redundancies in the data, the fully specified low-
rank approximation can be determined even with a small subset of the entries in the original
matrix. This fully-specified low rank approximation often provides a robust estimation of
the missing entries. The approach in [24] combines the expectation-maximization (EM)
technique with dimensionality reduction to reconstruct the entries of the incomplete data
matrix.

Latent factor models are considered to be state-of-the-art in recommender systems.
These models leverage well-known dimensionality reduction methods to fill in the missing
entries. Dimensionality reduction methods are used commonly in other areas of data ana-
lytics to represent the underlying data in a small number of dimensions. The basic idea of
dimensionality reduction methods is to rotate the axis system, so that pairwise correlations
between dimensions are removed. The key idea in dimensionality reduction methods is that
the reduced, rotated, and completely specified representation can be robustly estimated
from an incomplete data matrix. Once the completely specified representation has been
obtained, one can rotate it back to the original axis system in order to obtain the fully
specified representation [24]. Under the covers, dimensionality reduction methods leverage
the row and column correlations to create the fully specified and reduced representation.
The use of such correlations is, after all, fundamental to all collaborative filtering methods,
whether they are neighborhood methods or model-based methods. For example, user-based
neighborhood methods leverage user-wise correlations, whereas item-based neighborhood
methods leverage item-wise correlations. Matrix factorization methods provide a neat way
to leverage all row and column correlations in one shot to estimate the entire data matrix.
This sophistication of the approach is one of the reasons that latent factor models have
become the state-of-the-art in collaborative filtering. In order to understand why latent
factor models are effective, we will provide two pieces of intuition, one of which is geo-
metric and the other elucidates the semantic interpretation directly. Both these intuitions
show how data redundancies in highly correlated data can be exploited to create a low-rank
approximation.

3.6.1 Geometric Intuition for Latent Factor Models

We will first provide a geometric intuition for latent factor models, based on a discussion
provided in [24]. In order to understand the intuition of how the notions of low-rank, re-
dundancy, and correlation are related, consider a ratings matrix with three items, in which
all three items are positively correlated. Assume a movie rating scenario, in which the three
items correspond to Nero, Gladiator, and Spartacus. For ease of discussion, assume that the
ratings are continuous values, which lie in the range [−1, 1]. If the ratings are positively
correlated, then the 3-dimensional scatterplot of the ratings might be roughly arranged
along a 1-dimensional line, as shown in Figure 3.6. Since the data is mostly arranged along
a 1-dimensional line, it means that the original data matrix has a rank of approximately 1
after removing the noisy variations. For example, the rank-1 approximation of Figure 3.6
would be the 1-dimensional line (or latent vector) that passes through the center of the
data and aligned with the elongated data distribution. Note that dimensionality reduc-
tion methods such as Principal Component Analysis (PCA) and (mean-centered) Singular
Value Decomposition (SVD) typically represent the projection of the data along this line
as an approximation. When the m× n ratings matrix has a rank of p � min{m,n} (after

92 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

−1

−0.5

0

0.5

1

−0.8−0.6−0.4−0.200.20.40.60.81
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

NERO RATING
GLADIATOR RATING

S
P

A
R

T
A

C
U

S
 R

A
T

IN
G

LATENT VECTOR

THE UNSPECIFIED RATINGS OF
GLADIATOR AND NERO CAN BE
ESTIMATED AT THE INTERSECTION
OF LATENT VECTOR WITH THE
HYPERPLANE SPARTACUS=0.5

Figure 3.6: Leveraging correlation-based redundancies in missing data estimation for a user
whose only specified rating is a value of 0.5 for the movie Spartacus

removing noisy variations), the data can be approximately represented on a p-dimensional
hyperplane. In such cases, the missing ratings of a user can often be robustly estimated
with as few as p specified entries as long as the p-dimensional hyperplane is known. For
example, in the case of Figure 3.6, only one rating needs to be specified in order to de-
termine the other two ratings, because the rank of the ratings matrix is only 1 after noise
removal. For example, if the rating of Spartacus is fixed at 0.5, then the ratings of Nero and
Gladiator can be estimated5 as the intersection of the 1-dimensional latent vector with the
axis-parallel hyperplane, in which the rating of Spartacus is fixed to 0.5. This hyperplane is
illustrated in Figure 3.6. Therefore, dimensionality reduction methods such as SVD leverage
the inter-attribute correlations and redundancies in order to infer unspecified entries.

In this case, it was assumed that a specified data matrix was available to estimate the
relevant latent vector. In practice, the data matrix does not need to be fully specified in
order to estimate the dominant latent vectors, such as the line aligned with the elongated
shape of the data distribution in Figure 3.6. The ability to estimate such latent vectors with
missing data is the key to the success of the latent factor approach. The basic idea in all
these methods is to find a set of latent vectors, in which the average squared distance of
the data points (representing individual user ratings) from the hyperplane defined by these
latent vectors is as small as possible. Therefore, we must use a partially specified data set to
recover the low-dimensional hyperplane on which the data approximately lies. By doing so,
we can implicitly capture the underlying redundancies in the correlation structure of the
data and reconstruct all the missing values in one shot. It is the knowledge of these implicit
redundancies that helps us to predict the missing entries in the matrix. It is noteworthy
that if the data does not have any correlations or redundancies, then a latent factor model
will simply not work.

5A detailed description of the method used for performing this estimation in various scenarios is discussed
in section 3.6.5.3.

3.6. LATENT FACTOR MODELS 93

3.6.2 Low-Rank Intuition for Latent Factor Models

The geometric intuition of the previous section is helpful in understanding the impact of
latent vectors when they are mutually orthogonal. However, latent vectors are not always
mutually orthogonal. In such cases, it is helpful to obtain some intuition from linear algebra.
One way of understanding the effectiveness of latent factor models is by examining the role
that factorization plays in such matrices. Factorization is, in fact, a more general way of
approximating a matrix when it is prone to dimensionality reduction because of correlations
between columns (or rows). Most dimensionality reduction methods can also be expressed
as matrix factorizations.

First, let us consider the simple case in which all entries in the ratings matrix R are
observed. The key idea is that any m× n matrix R of rank k � min{m,n} can always be
expressed in the following product form of rank-k factors:

R = UV T (3.11)

Here, U is an m × k matrix, and V is an n × k matrix. Note that the rank of both the
row space6 and the column space of R is k. Each column of U be viewed as one of the
k basis vectors of the k-dimensional column space of R, and the jth row of V contains
the corresponding coefficients to combine these basis vectors into the jth column of R.
Alternatively, one can view the columns of V as the basis vectors of the row space of R, and
the rows of U as the corresponding coefficients. The ability to factorize any rank-k matrix
in this form is a fundamental fact of linear algebra [568], and there are an infinite number
of such factorizations corresponding to various sets of basis vectors. SVD is one example of
such a factorization in which the basis vectors represented by the columns of U (and the
columns of V) are orthogonal to one another.

Even when the matrix R has rank larger than k, it can often be approximately expressed
as the product of rank-k factors:

R ≈ UV T (3.12)

As before, U is an m× k matrix, and V is an n× k matrix. The error of this approximation
is equal to ||R − UV T ||2, where || · ||2 represents the sum of the squares of the entries in
the resulting residual matrix (R− UV T). This quantity is also referred to as the (squared)
Frobenius norm of the residual matrix. The residual matrix typically represents the noise
in the underlying ratings matrix, which cannot be modeled by the low-rank factors. For
simplicity in discussion, let us consider the straightforward case in which R is fully observed.
We will first examine the intuition behind the factorization process, and then we will discuss
the implication of this intuition in the context of matrices with missing entries.

What is the implication of the factorization process, and its impact on a matrix with
highly correlated rows and columns? In order to understand this point, consider the ratings
matrix illustrated in Figure 3.7. In this figure, a 7 × 6 ratings matrix with 7 users and 6
items is illustrated. All ratings are drawn from {1,−1, 0}, which correspond to like, dislike,
and neutrality. The items are movies, and they belong to the romance and history genres,
respectively. One of the movies, titled Cleopatra, belongs to both genres. Because of the
nature of the genres of the underlying movies, users also show clear trends in their ratings.
For example, users 1 to 3 typically like historical movies, but they are neutral to the romance
genre. User 4 likes movies of both genres. Users 5 to 7 like movies belonging to the romance
genre, but they explicitly dislike historical movies. Note that this matrix has a significant

6The row space of a matrix is defined by all possible linear combinations of the rows of the matrix. The
column space of a matrix is defined by all possible linear combinations of the columns of the matrix.

94 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

number of correlations among the users and items, although the ratings of movies belonging
to the two distinct genres seem to be relatively independent. As a result, this matrix can
be approximately factorized into rank-2 factors, as shown in Figure 3.7(a). The matrix U
is a 7 × 2 matrix, which shows the proclivity of users towards the two genres, whereas the
matrix V is a 6 × 2 matrix, which shows the membership of the movies in the two genres.
In other words, the matrix U provides the basis for the column space, whereas the matrix
V provides the basis for the row space. For example, the matrix U shows that user 1 likes
history movies, whereas user 4 likes both genres. A similar inference can be made using
the rows of V . The columns of V correspond to the latent vectors, such as those shown in
Figure 3.6. Unlike SVD, however, the latent vectors in this case are not mutually orthogonal.

The corresponding residual matrix for the factorization is shown in Figure 3.7(b). The
residual matrix typically corresponds to the ratings of users for Cleopatra, which do not
follow the set pattern. It needs to be pointed out that in real-world applications, the matrix
entries in the factors are typically real numbers (rather than integral). An example with
integral factors is shown here for visual simplicity. Furthermore, a neat semantic interpre-
tation of the factors in terms of genres or categories is sometimes not possible, especially
when the factors contain both positive and negative values. For example, if we multiply
both U and V with −1 in Figure 3.7, the factorization is still valid, but the interpretation
becomes more difficult. Nevertheless, the k columns of U and V do represent key correla-
tions among the users and items, respectively, and they can be viewed abstractly as latent
concepts, whether or not they are semantically interpretable. In some forms of factorization,
such as non-negative matrix factorization, the interpretability of these concepts is retained
to a greater degree.

In this example, the matrix R was fully specified, and therefore the factorization is not
particularly helpful from the perspective of missing value estimation. The key usefulness
of the approach arises when the matrix R is not fully specified, but one can still robustly
estimate all entries of the latent factors U and V , respectively. For low values of the rank,
this is still possible from sparsely specified data. This is because one does not need too
many observed entries to estimate the latent factors from inherently redundant data. Once
the matrices U and V have been estimated, the entire ratings matrix can be estimated as
UV T in one shot, which provides all the missing ratings.

3.6.3 Basic Matrix Factorization Principles

In the basic matrix factorization model, the m × n ratings matrix R is approximately
factorized into an m× k matrix U and an n× k matrix V , as follows:

R ≈ UV T (3.13)

Each column of U (or V) is referred to as a latent vector or latent component, whereas each
row of U (or V) is referred to as a latent factor. The ith row ui of U is referred to as a
user factor, and it contains k entries corresponding to the affinity of user i towards the k
concepts in the ratings matrix. For example, in the case of Figure 3.7, ui is a 2-dimensional
vector containing the affinity of user i towards the history and romance genres in the ratings
matrix. Similarly, each row vi of V is referred to as an item factor, and it represents the
affinity of the ith item towards these k concepts. In Figure 3.7, the item factor contains the
affinity of the item towards the two categories of movies.

From Equation 3.13, it follows that each rating rij in R can be approximately expressed
as a dot product of the ith user factor and jth item factor:

rij ≈ ui · vj (3.14)

3.6. LATENT FACTOR MODELS 95

 1

 2

 3

 4

 5

 6

 7
HI

ST
O

RY

RO
M

AN
CE

 X
HISTORY

 ROMANCE

ROMANCE

BOTH

HISTORY

 1 1 1

1 1 1

1 1 1

- 1

- 1

- 1

- 1

- 1

- 1 - 1 - 1

1 1 1 1 1 1

1 1 1

1 1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

N
ER

O

JU
LI

U
S

CA
ES

AR

CL
EO

PA
TR

A

SL
EE

PL
ES

S
IN

 S
EA

TT
LE

PR
ET

TY
 W

O
M

AN

CA
SA

BL
AN

CA

 R U

VT

N
ER

O

JU
LI

U
S

CA
ES

AR

CL
EO

PA
TR

A

SL
EE

PL
ES

S
IN

 S
EA

TT
LE

PR
ET

TY
 W

O
M

AN

CA
SA

BL
AN

CA

0

0

0

- 1

- 1

- 1

1

1

1

1

1

1

1

1
1 1 1

1 1 1 1 0 0

 0 0 0

 6

 7

 5

 4

 3

 2

 1

AT
TL

E

N

O U
S

CA
ES

AR

O
PA

TR
A

PL
ES

S
IN

SE
A

T T
Y

W
O

M
AN

AB
LA

N
CA

0 0 0

0 0 0

0 0 0

0 0 0

N
ER

O

JU
LI

U

CL
EO

SL
EE

P

PR
ET

CA
SA

1

BOTH

HISTORY
0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

1

2

3

4

ROMANCE

0

0

0

0

0 0

1

0 0 0

1

0 0 0

0 0 0

15

6
0 0 1 0 0 0

R

7

(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix

96 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Since the latent factors ui = (ui1 . . . uik) and vj = (vj1 . . . vjk) can be viewed as the affinities
of the users for k different concepts, an intuitive way of expressing Equation 3.14 would be
as follows:

rij ≈
k∑

s=1

uis · vjs

=

k∑

s=1

(Affinity of user i to concept s)× (Affinity of item j to concept s)

In the case of Figure 3.7, the two concepts in the aforementioned summation correspond to
the romance and historical genres. Therefore, the summation may be expressed as follows:

rij ≈(Affinity of user i to history)× (Affinity of item j to history)

+ (Affinity of user i to romance)× (Affinity of item j to romance)

It needs to be pointed out that the notion of concepts is often not semantically interpretable,
as illustrated in Figure 3.7. A latent vector may often be an arbitrary vector of positive
and negative values and it becomes difficult to give it a semantic interpretation. However,
it does represent a dominant correlation pattern in the ratings matrix, just as the latent
vector of Figure 3.6 represents a geometric correlation pattern. As we will see later, some
forms of factorization, such as non-negative matrix factorization, are explicitly designed to
achieve greater interpretability in the latent vectors.

The key differences among various matrix factorization methods arise in terms of the
constraints imposed on U and V (e.g., orthogonality or non-negativity of the latent vectors)
and the nature of the objective function (e.g., minimizing the Frobenius norm or maximizing
the likelihood estimation in a generative model). These differences play a key role in the
usability of the matrix factorization model in various real-world scenarios.

3.6.4 Unconstrained Matrix Factorization

The most fundamental form of matrix factorization is the unconstrained case, in which
no constraints are imposed on the factor matrices U and V . Much of the recommenda-
tion literature refers to unconstrained matrix factorization as singular value decomposition
(SVD). Strictly speaking, this is technically incorrect; in SVD, the columns of U and V
must be orthogonal. However, the use of the term “SVD” to refer to unconstrained matrix
factorization7 is rather widespread in the recommendation literature, which causes some
confusion to practitioners from outside the field. In this chapter, we will deviate from this
incorrect practice and treat unconstrained matrix factorization and SVD in a distinct way.
This section will discuss unconstrained matrix factorization, and the following section will
discuss SVD.

Before discussing the factorization of incomplete matrices, let us first visit the problem
of factorizing fully specified matrices. How can one determine the factor matrices U and V ,

7In SVD [568], the basis vectors are also referred to as singular vectors, which, by definition, must be
mutually orthonormal.

3.6. LATENT FACTOR MODELS 97

so that the fully specified matrix R matches UV T as closely as possible? One can formulate
an optimization problem with respect to the matrices U and V in order to achieve this goal:

Minimize J =
1

2
||R − UV T ||2

subject to:

No constraints on U and V

Here, ||.||2 represents the squared Frobenius norm of the matrix, which is equal to the sum
of the squares of the matrix entries. Thus, the objective function is equal to the sum of the
squares of the entries in the residual matrix (R−UV T). The smaller the objective function
is, the better the quality of the factorization R ≈ UV T will be. This objective function can
be viewed as a quadratic loss function, which quantifies the loss of accuracy in estimating
the matrix R with the use of low-rank factorization. A variety of gradient descent methods
can be used to provide an optimal solution to this factorization.

However, in the context of a matrix with missing entries, only a subset of the entries
of R are known. Therefore, the objective function, as written above, is undefined as well.
After all, one cannot compute the Frobenius norm of a matrix in which some of the entries
are missing! The objective function, therefore, needs to be rewritten only in terms of the
observed entries in order to learn U and V . The nice part about this process is that once
the latent factors U and V are learned, the entire ratings matrix can be reconstructed as
UV T in one shot.

Let the set of all user-item pairs (i, j), which are observed in R, be denoted by S. Here,
i ∈ {1 . . .m} is the index of a user, and j ∈ {1 . . . n} is the index of an item. Therefore, the
set S of observed user-item pairs is defined as follows:

S = {(i, j) : rij is observed} (3.15)

If we can somehow factorize the incomplete matrix R as the approximate product UV T of
fully specified matrices U = [uis]m×k and V = [vjs]n×k, then all the entries in R can be
predicted as well. Specifically, the (i, j)th entry of matrix R can be predicted as follows:

r̂ij =

k∑

s=1

uis · vjs (3.16)

Note the “hat” symbol (i.e., circumflex) on the rating on the left-hand side to indicate that it
is a predicted value rather than an observed value. The difference between the observed and
predicted value of a specified entry (i, j) is given by eij = (rij − r̂ij) = (rij −

∑k
s=1 uis ·vjs).

Then, the modified objective function, which works with incomplete matrices, is computed
only over the observed entries in S as follows:

Minimize J =
1

2

∑

(i,j)∈S

e2ij =
1

2

∑

(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)2

subject to:

No constraints on U and V

Note that the aforementioned objective function sums up the error only over the observed
entries in S. Furthermore, each of the terms (rij −

∑k
s=1 uis · vjs)2 is the squared error

e2ij between the observed and predicted values of the entry (i, j). Here, uis and vjs are the

98 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Algorithm GD(Ratings Matrix: R, Learning Rate: α)
begin

Randomly initialize matrices U and V ;
S = {(i, j) : rij is observed};
while not(convergence) do
begin

Compute each error eij ∈ S as the observed entries of R − UV T ;
for each user-component pair (i, q) do u+

iq ⇐ uiq + α · j:(i,j)∈S eij · vjq ;
for each item-component pair (j, q) do v+jq ⇐ vjq + α · i:(i,j)∈S eij · uiq;
for each user-component pair (i, q) do uiq ⇐ u+

iq;
for each item-component pair (j, q) do vjq ⇐ v+jq ;
Check convergence condition;

end
end

Figure 3.8: Gradient descent

unknown variables, which need to be learned to minimize the objective function. This can
be achieved simply with gradient descent methods. Therefore, one needs to compute the
partial derivative of J with respect to the decision variables uiq and vjq :

∂J

∂uiq
=

∑

j:(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)

(−vjq) ∀i ∈ {1 . . .m}, q ∈ {1 . . . k}

=
∑

j:(i,j)∈S

(eij)(−vjq) ∀i ∈ {1 . . .m}, q ∈ {1 . . . k}

∂J

∂vjq
=

∑

i:(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)

(−uiq) ∀j ∈ {1 . . . n}, q ∈ {1 . . . k}

=
∑

i:(i,j)∈S

(eij)(−uiq) ∀j ∈ {1 . . . n}, q ∈ {1 . . . k}

Note that the entire vector of partial derivatives provides us with the gradient with respect
to the vector of (m · k+ n · k) decision variables in the matrices U and V . Let this gradient
vector be denoted by ∇J . Let the vector of (m · k + n · k) decision variables corresponding
to the entries in U and V be denoted by V AR. Then, one can update the entire vector of
decision variables as V AR ⇐ V AR − α · ∇J . Here, α > 0 is the step size, which can be
chosen using standard numerical methods in nonlinear programming [76]. In many cases, the
step sizes are set to small constant values. The iterations are executed to convergence. This
approach is referred to as gradient descent. The algorithmic framework for gradient-descent
is illustrated in Figure 3.8. It is noteworthy that the intermediate variables u+

iq and v+jq are
used to ensure that all updates to the entries in U and V are performed simultaneously.

One can also perform the updates in Figure 3.8 using a matrix representation. The first
step is to compute an error matrix E = R−UV T in which the unobserved entries of E (i.e.,
entries not in S) are set to 0. Note that E is a very sparse matrix, and it makes sense to
compute the value of eij for only the observed entries (i, j) ∈ S and store the matrix using

3.6. LATENT FACTOR MODELS 99

a sparse data structure. Subsequently, the updates can be computed as follows:

U ⇐ U + αEV

V ⇐ V + αETU

These updates can be executed to convergence, while taking care to update all entries in
both matrices simultaneously with the use of intermediate variables (as in Figure 3.8).

3.6.4.1 Stochastic Gradient Descent

The aforementioned method is referred to as the batch update method. An important obser-
vation is that the updates are linear functions of the errors in the observed entries of the
ratings matrix. The update can be executed in other ways by decomposing it into smaller
components associated with the errors in individual observed entries rather than all entries.
This update can be stochastically approximated in terms of the error in a (randomly chosen)
observed entry (i, j) as follows:

uiq ⇐ uiq − α ·
[
∂J

∂uiq

]

Portion contributed by (i, j)
∀q ∈ {1 . . . k}

vjq ⇐ vjq − α ·
[
∂J

∂vjq

]

Portion contributed by (i, j)
∀q ∈ {1 . . . k}

One can cycle through the observed entries in R one at a time (in random order) and update
only the relevant set of 2 · k entries in the factor matrices rather than all (m · k + n · k)
entries in the factor matrices. In such a case, the 2 · k updates specific to the observed entry
(i, j) ∈ S, are as follows:

uiq ⇐ uiq + α · eij · vjq ∀q ∈ {1 . . . k}
vjq ⇐ vjq + α · eij · uiq ∀q ∈ {1 . . . k}

For each observed rating rij , the error eij is used to update the k entries in row i of U and
the k entries in the row j of V . Note that eij · vjq is the component of partial derivative of
J with respect to uiq, that is specific to a single observed entry (i, j). For better efficiency,
each of these k entries can be updated simultaneously in vectorized form. Let ui be the ith
row of U and vj be the jth row of V . Then, the aforementioned updates can be rewritten
in k-dimensional vectorized form as follows:

ui ⇐ ui + α eij vj

vj ⇐ vj + α eij ui

We cycle through all the observed entries multiple times (i.e., use multiple iterations) until
convergence is reached. This approach is referred to as stochastic gradient descent in which
the gradient is approximated by that computed on the basis of the error of a single randomly
chosen entry in the matrix. The pseudo-code for the stochastic gradient descent method is
illustrated in Figure 3.9. It is noteworthy that temporary variables u+

iq and v+jq are used to
store intermediate results during an update, so that the 2 · k updates do not affect each
other. This is a general approach that should be used in all group-wise updates discussed
in this book, although we might not state it explicitly.

In practice, faster convergence is achieved by the stochastic gradient descent method as
compared to the batch method, although the convergence is much smoother in the latter.

100 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Algorithm SGD(Ratings Matrix: R, Learning Rate: α)
begin

Randomly initialize matrices U and V ;
S = {(i, j) : rij is observed};
while not(convergence) do
begin

Randomly shuffle observed entries in S;
for each (i, j) ∈ S in shuffled order do
begin

eij ⇐ rij − k
s=1 uisvjs;

for each q ∈ {1 . . . k} do u+
iq ⇐ uiq + α · eij · vjq;

for each q ∈ {1 . . . k} do v+jq ⇐ vjq + α · eij · uiq;
for each q ∈ {1 . . . k} do uiq = u+

iq and vjq = v+jq ;
end
Check convergence condition;

end
end

Figure 3.9: Stochastic gradient descent

This is because the entries of U and V are updated simultaneously in the latter case with
the use of all observed entries, rather than a single randomly chosen observed entry. This
noisy approximation of stochastic gradient descent can sometimes impact solution quality
and smoothness of convergence. In general, stochastic gradient descent is preferable when
the data size is very large and computational time is the primary bottleneck. In other
“compromise” methods, mini-batches are used in which a subset of observed entries is
used to construct the update. These different methods provide different trade-offs between
solution quality and computational efficiency.

As one repeatedly cycles through the observed entries in the matrix to update the factor
matrices, convergence will eventually be reached. In general, the global method is known to
have guaranteed convergence, even though it is generally slower than the local method. A
typical value of the step size (or learning rate) is a small constant value such as α = 0.005.
A more effective approach to avoid local minima and speed up convergence is to use the
bold driver algorithm [58, 217] to select α adaptively in each iteration. It is also possible,
in principle, to use different step sizes for different factors [586]. An interesting observation
about some of these models is that executing them until convergence for too many iterations
can sometimes lead to slight worsening of the solution quality on the unobserved entries.
Therefore, it is sometimes advisable not to set the convergence criteria too strictly.

Another issue with these latent factor models is that of initialization. For example,
one can initialize the factor matrices to small numbers in (−1, 1). However, the choice of
initialization can affect the final solution quality. It is possible to use a number of heuristics
to improve quality. For example, one can use some simple SVD-based heuristics, discussed
later in this section, to create an approximate initialization.

3.6.4.2 Regularization

One of the main problems with this approach arises when the ratings matrix R is sparse
and relatively few entries are observed. This is almost always the case in real settings.

3.6. LATENT FACTOR MODELS 101

In such cases, the observed set S of ratings is small, which can cause overfitting. Note
that overfitting is also a common problem in classification when training data are limited.
A common approach for addressing this problem is to use regularization. Regularization
reduces the tendency of the model to overfit at the expense of introducing a bias8 in the
model.

In regularization, the idea is to discourage very large values of the coefficients in U and V
in order to encourage stability. Therefore, a regularization term, λ

2 (||U ||2 + ||V ||2), is added
to the objective function, where λ > 0 is the regularization parameter. Here, || · ||2 denotes
the (squared) Frobenius norm of the matrix. The basic idea is to create a bias in favor of
simpler solutions by penalizing large coefficients. This is a standard approach, which is used
in many forms of classification and regression, and also leveraged by collaborative filtering.
The parameter λ is always non-negative and it controls the weight of the regularization
term. The method for choosing λ is discussed later in this section.

As in the previous case, assume that eij = (rij −
∑k

s=1 uis ·vjs) represents the difference
between the observed value and predicted value of specified entry (i, j) ∈ S. The regularized
objective function is as follows:

Minimize J =
1

2

∑

(i,j)∈S

e2ij +
λ

2

m∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js

=
1

2

∑

(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)2

+
λ

2

m∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js

Upon taking the partial derivative of J with respect to each of the decision variables, one
obtains almost the same result as the unregularized case, except that the terms λuiq and
λvjq , respectively, are added to the corresponding gradients in the two cases.

∂J

∂uiq
=

∑

j:(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)

(−vjq) + λuiq ∀i ∈ {1 . . .m}, q ∈ {1 . . . k}

=
∑

j:(i,j)∈S

(eij)(−vjq) + λuiq ∀i ∈ {1 . . .m}, q ∈ {1 . . . k}

∂J

∂vjq
=

∑

i:(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)

(−uiq) + λvjq ∀j ∈ {1 . . . n}, q ∈ {1 . . . k}

=
∑

i:(i,j)∈S

(eij)(−uiq) + λvjq ∀j ∈ {1 . . . n}, q ∈ {1 . . . k}

The steps for performing the gradient descent remain similar to those discussed in the case
without regularization. Either the batch or the local methods may be used. For example,
consider the global update method. Let the vector of (m · k + n · k) decision variables
corresponding to the entries in U and V be denoted by V AR and let the corresponding
gradient vector be denoted by ∇J . Then, one can update the entire vector of decision
variables as V AR ⇐ V AR − α · ∇J . This can be effectively achieved by modifying the

8Refer to Chapter 6 for a discussion of the bias-variance trade-off.

102 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

(unregularized) updates in Figure 3.8 to include regularization terms. The modified updates
may be written as follows:

uiq ⇐ uiq + α

⎛

⎝
∑

j:(i,j)∈S

eij · vjq − λ · uiq

⎞

⎠ ∀q ∈ {1 . . . k}

vjq ⇐ vjq + α

⎛

⎝
∑

i:(i,j)∈S

eij · uiq − λ · vjq

⎞

⎠ ∀q ∈ {1 . . . k}

The updates can be executed to convergence. One can also write these updates in terms of
the m× n error matrix E = [eij] in which unobserved entries of E are set to 0:

U ⇐ U(1− α · λ) + αEV

V ⇐ V (1− α · λ) + αETU

Note that the multiplicative term (1− α · λ) shrinks the parameters in each step, which is
a result of regularization. If the matrix form is to be used for updates, care must be taken
to compute and use sparse representations of E. It makes sense to compute the value of eij
for only the observed entries (i, j) ∈ S and store E using a sparse data structure.

In the case of local updates (i.e., stochastic gradient descent), the partial derivatives
are computed with respect to the error in a randomly chosen observed entry (i, j) rather
than all the entries. The following 2 · k updates may be executed for each observed entry
(i, j) ∈ S, which are processed in random order:

uiq ⇐ uiq + α(eij · vjq − λ · uiq) ∀q ∈ {1 . . . k}
vjq ⇐ vjq + α(eij · uiq − λ · vjq) ∀q ∈ {1 . . . k}

For better efficiency, these updates are executed in vectorized form over the k-dimensional
factor vectors of user i and item j as follows:

ui ⇐ ui + α(eijvj − λui)

vj ⇐ vj + α(eijui − λvj)

These updates are used within the framework of the algorithm described in Figure 3.9. It
is noteworthy that the local updates are not exactly equivalent9 to the vectorized global
updates in terms of how the regularization term is treated. This is because the regularization
components of the updates, which are −λuiq and −λvjq , are used multiple times in a
cycle of local updates through all the observed entries; updates are executed to uiq for
each observed entry in row i and updates are executed to vjq for each observed entry in
column j. Furthermore, different rows and columns may have different numbers of observed
entries, which can further affect the relative level of regularization of various user and

9A more precise update should be ui ⇐ ui +α(eijvj −λui/n
user
i) and vj ⇐ vj +α(eijui −λvj/n

item
j).

Here, nuser
i represents the number of observed ratings for user i and nitem

j represents the number of observed

ratings for item j. Here, the regularization terms for various user/item factors are divided equally among
the corresponding observed entries for various users/items. In practice, the (simpler) heuristic update rules
discussed in the chapter are often used. We have chosen to use these (simpler) rules throughout this chapter
to be consistent with the research literature on recommender systems. With proper parameter tuning, λ
will automatically adjust to a smaller value in the case of the simpler update rules.

3.6. LATENT FACTOR MODELS 103

item factors. In the vectorized global method, the regularization is done more gently and
uniformly because each entry uiq and vjq is updated only once. Nevertheless, since λ is
chosen adaptively during parameter tuning, the local update method will automatically
select smaller values of λ than the global method. From a heuristic point of view, the two
methods provide roughly similar results, but with different trade-offs between quality and
efficiency.

As before, α > 0 represents the step size, and λ > 0 is the regularization parameter.
For example, a small constant value of α, such as 0.005, is known to work reasonably
well in the case of the Netflix Prize data set. Alternatively, one might use the bold driver
algorithm [58, 217] to select α adaptively in each iteration in order to avoid local optima and
speed up convergence. It remains to discuss how the regularization parameter λ is selected.
The simplest method is to hold out a fraction of the observed entries in the ratings matrix
and not use them to train the model. The prediction accuracy of the model is tested over
this subset of held out entries. Different values of λ are tested, and the value of λ that
provides the highest accuracy is used. If desired, the model can be retrained on the entire
set of specified entries (with no hold outs), once the value of λ is selected. This method of
parameter tuning is referred to as the hold out method. A more sophisticated approach is
to use a method referred to as cross-validation. This method is discussed in Chapter 7 on
evaluating recommender systems. For better results, different regularization parameters λ1

and λ2 may be used for the user factors and item factors.
Often, it can be expensive to try different values of λ on the hold-out set in order to

determine the optimal value. This restricts the ability to try many choices of λ. As a result,
the values of λ are often not well-optimized. One approach, proposed in [518], is to treat
the entries of matrices U and V as parameters, and the regularization parameters as hyper-
parameters, which are optimized jointly with a probabilistic approach. A Gibbs sampling
approach is proposed in [518] to jointly learn the parameters and hyper-parameters.

3.6.4.3 Incremental Latent Component Training

One variant of these training methods is to train the latent components incrementally. In
other words, we first perform the updates uiq ⇐ uiq + α(eij · vjq − λ · uiq) and vjq ⇐
vjq + α(eij · uiq − λ · vjq) only for q = 1. The approach repeatedly cycles through all the
observed entries in S while performing these updates for q = 1 until convergence is reached.
Therefore, we can learn the first pair of columns, U1 and V1, of U and V , respectively.

Then, the m×n outer-product10 matrix U1 V1
T
is subtracted from R (for observed entries).

Subsequently, the updates are performed for q = 2 with the (residual) ratings matrix to

learn the second pair of columns, U2 and V2, of U and V , respectively. Then, U2 V2
T

is
subtracted from R. This process is repeated each time with the residual matrix until q = k.
The resulting approach provides the required matrix factorization because the overall rank-k
factorization can be expressed as the sum of k rank-1 factorizations:

R ≈ UV T =

k∑

q=1

Uq Vq
T

(3.17)

10The inner-product of two column-vectors x and y is given by the scalar xT y, whereas the outer-product
is given by the rank-1 matrix x yT . Furthermore, x and y need not be of the same size in order to compute
an outer-product.

104 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Algorithm ComponentWise-SGD(Ratings Matrix: R, Learning Rate: α)
begin

Randomly initialize matrices U and V ;
S = {(i, j) : rij is observed};
for q = 1 to k do
begin
while not(convergence) do
begin

Randomly shuffle observed entries in S;
for each (i, j) ∈ S in shuffled order do
begin

eij ⇐ rij − uiqvjq ;
u+

iq ⇐ uiq + α · (eij · vjq − λ · uiq);
v+jq ⇐ vjq + α · (eij · uiq − λ · vjq);
uiq = u+

iq; vjq = v+jq ;
end
Check convergence condition;

end
{ Element-wise implementation of R ⇐ R − Uq Vq

T }
for each (i, j) ∈ S do rij ⇐ rij − uiqvjq ;

end
end

Figure 3.10: Component-wise implementation of stochastic gradient descent

A description of this procedure is illustrated in Figure 3.10. The differences of this
approach from the version discussed earlier can be understood in terms of the differences in
their nested loop structures. Incremental component training loops through various values
of q in the outermost loops and cycles through the observed entries repeatedly in the inner
loops to reach convergence for each value of q (cf. Figure 3.10). The earlier method loops
through the observed entries repeatedly to reach convergence in the outer loops and cycles
though various values of q in the inner loop (cf. Figure 3.9). Furthermore, the incremental
method needs to adjust the ratings matrix between two executions of the outer loop. This
approach leads to faster and more stable convergence in each component because a smaller
number of variables is optimized at one time.

It is noteworthy that different strategies for gradient descent will lead to solutions with
different properties. This particular form of incremental training will lead to the earlier
latent components being the dominant ones, which provides a similar flavor to that of SVD.
However, the resulting columns in U (or V) might not be mutually orthogonal. It is also
possible to force mutual orthogonality of the columns of U (and V) by using projected
gradient descent for q > 1. Specifically, the gradient vector with respect to the variables in
column Uq (or Vq) is projected in an orthogonal direction to the (q−1) columns of U (or V)
found so far.

3.6. LATENT FACTOR MODELS 105

3.6.4.4 Alternating Least Squares and Coordinate Descent

The stochastic gradient method is an efficient methodology for optimization. On the other
hand, it is rather sensitive, both to the initialization and the way in which the step sizes
are chosen. Other methods for optimization include the use of alternating least squares
(ALS) [268, 677], which is generally more stable. The basic idea of this approach to use the
following iterative approach, starting with an initial set of matrices U and V :

1. Keeping U fixed, we solve for each of the n rows of V by treating the problem as
a least-squares regression problem. Only the observed ratings in S can be used for
building the least-squares model in each case. Let vj be the jth row of V . In order to

determine the optimal vector vj , we wish to minimize
∑

i:(i,j)∈S(rij −
∑k

s=1 uisvjs)
2,

which is a least-squares regression problem in vj1 . . . vjk. The terms ui1 . . . uik are
treated as constant values, whereas vj1 . . . vjk are treated as optimization variables.
Therefore, the k latent factor components in vj for the jth item are determined with
least-squares regression. A total of n such least-squares problems need to be executed,
and each least-squares problem has k variables. Because the least-squares problem for
each item is independent, this step can be parallelized easily.

2. Keeping V fixed, solve for each of the m rows of U by treating the problem as a least-
squares regression problem. Only the specified ratings in S can be used for building
the least-squares model in each case. Let ui be the ith row of U . In order to determine
the optimal vector ui, we wish to minimize

∑
j:(i,j)∈S(rij −

∑k
s=1 uisvjs)

2, which is
a least-squares regression problem in ui1 . . . uik. The terms vj1 . . . vjk are treated as
constant values, whereas ui1 . . . uik are treated as optimization variables. Therefore,
the k latent factor components for the ith user are determined with least-squares
regression. A total of m such least-squares problems need to be executed, and each
least-squares problem has k variables. Because the least-squares problem for each user
is independent, this step can be parallelized easily.

These two steps are iterated to convergence. When regularization is used in the objective
function, it amounts to using Tikhonov regularization [22] in the least-squares approach.
The value of the regularization parameter λ > 0 can be fixed across all the independent
least-squares problems, or it can be chosen differently. In either case, one might need to
determine the optimal value of λ by using a hold-out or cross-validation methodology. A
brief discussion of linear regression with Tikhonov regularization is provided in section 4.4.5
of Chapter 4. Although the linear regression discussion in Chapter 4 is provided in the
context of content-based models, the basic regression methodology is invariant across the
different scenarios in which it is used.

Interestingly, a weighted version ALS is particularly well-suited to implicit feedback
settings in which the matrix is assumed to be fully specified with many zero values. Fur-
thermore, the nonzero entries are often weighted more heavily in these settings. In such
cases, stochastic gradient descent becomes too expensive. When most of the entries are
zeros, some tricks can be used to make weighted ALS an efficient option. The reader is
referred to [260].

106 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

The drawback of ALS is that it is not quite as efficient as stochastic-gradient descent
in large-scale settings with explicit ratings. Other methods such as coordinate descent can
effectively address the trade-off between efficiency and stability [650]. In coordinate-descent,
the approach of fixing a subset of variables (as in ALS) is pushed to the extreme. Here,
all entries in U and V are fixed except for a single entry (or coordinate) in one of the two
matrices, which is optimized using the objective function of section 3.6.4.2. The resulting
optimization solution can be shown to have closed form because it is a quadratic objective
function in a single variable. The corresponding value of uiq (or vjq) can be determined
efficiently according to one of the following two updates:

uiq ⇐
∑

j:(i,j)∈S(eij + uiqvjq)vjq

λ+
∑

j:(i,j)∈S v2jq

vjq ⇐
∑

i:(i,j)∈S(eij + uiqvjq)uiq

λ+
∑

i:(i,j)∈S u2
iq

Here, S denotes the set of observed entries in the ratings matrix and eij = rij − r̂ij is the
prediction error of entry (i, j). One cycles through the (m + n) · k parameters in U and V
with these updates until convergence is reached. It is also possible to combine coordinate
descent with incremental latent component training just as stochastic gradient descent is
combined with increment component training (cf. section 3.6.4.3).

3.6.4.5 Incorporating User and Item Biases

A variation on the unconstrained model was introduced by Paterek [473] to incorporate
variables that can learn user and item biases. Assume for the purpose of discussion that
the ratings matrix is mean-centered by subtracting the global mean μ of the entire ratings
matrix from all the entries as a preprocessing step. After predicting the entries with the
latent factor model, the value μ is added back to the predicted values as a postprocessing
step. Therefore, in this section, we will simply assume that the ratings matrix R has already
been centered in this way, and ignore the preprocessing and postprocessing steps.

Associated with each user i, we have a variable oi, which indicates the general bias of
users to rate items. For example, if user i is a generous person, who tends to rate all items
highly, then the variable oi will be a positive quantity. On the other hand, the value of oi
will be negative for a curmudgeon who rates most items negatively. Similarly, the variable
pj denotes the bias in the ratings of item j. Highly liked items (e.g., a box-office hit) will
tend to have larger (positive) values of pj , whereas globally disliked items will have negative
values of pj . It is the job of the factor model to learn the values of oi and pj in a data-driven
manner. The main change to the original latent factor model is that a part of the (i, j)th
rating is explained by oi + pj and the remainder by the (i, j)th entry of the product UV T

of the latent factor matrices. Therefore, the predicted value of the rating of entry (i, j) is
given by the following:

r̂ij = oi + pj +

k∑

s=1

uis · vjs (3.18)

3.6. LATENT FACTOR MODELS 107

Thus, the error eij of an observed entry (i, j) ∈ S is given by the following:

eij = rij − r̂ij = rij − oi − pj −
k∑

s=1

uis · vjs (3.19)

Note that the values oi and pj are also variables that need to be learned in a data-driven
manner along with the latent factor matrices U and V . Then, the minimization objective
function J may be formulated by aggregating the squared errors over the observed entries
of the ratings matrix (i.e., set S) as follows:

J =
1

2

∑

(i,j)∈S

e2ij +
λ

2

m∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js +
λ

2

m∑

i=1

o2i +
λ

2

n∑

j=1

p2j

=
1

2

∑

(i,j)∈S

(

rij − oi − pj −
k∑

s=1

uis · vjs

)2

+
λ

2

⎛

⎝
m∑

i=1

k∑

s=1

u2
is +

n∑

j=1

k∑

s=1

v2js +

m∑

i=1

o2i +

n∑

j=1

p2j

⎞

⎠

It turns out that this problem is different from unconstrained matrix factorization to only
a minor degree. Instead of having separate bias variables oi and pj for users and items, we
can increase the size of the factor matrices to incorporate these bias variables. We need to
add two additional columns to each factor matrix U and V , to create larger factor matrices
of size m× (k+2) and n× (k+2), respectively. The last two columns of each factor matrix
are special, because they correspond to the bias components. Specifically, we have:

ui,k+1 = oi ∀i ∈ {1 . . .m}
ui,k+2 = 1 ∀i ∈ {1 . . .m}
vj,k+1 = 1 ∀j ∈ {1 . . . n}
vj,k+2 = pj ∀j ∈ {1 . . . n}

Note that the conditions ui,k+2 = 1 and vj,k+1 = 1 are constraints on the factor matrices.
In other words, we need to constrain the last column of the user-factor matrix to all 1s,
and the second last column of the item-factor matrix to all 1s. This scenario is pictorially
shown in Figure 3.11. Then, the modified optimization problem with these enlarged factor
matrices is as follows:

Minimize J =
1

2

∑

(i,j)∈S

(

rij −
k+2∑

s=1

uis · vjs

)2

+
λ

2

k+2∑

s=1

⎛

⎝
m∑

i=1

u2
is +

n∑

j=1

v2js

⎞

⎠

subject to:

(k + 2)th column of U contains only 1s

(k + 1)th column of V contains only 1s

It is noteworthy that the summations in the objective are up to (k + 2) rather than k.
Note that this problem is virtually identical to the unconstrained case except for the minor

108 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

k
k + 2

1o2

o1 1 n

X
m USER LATENT

FACTORS

ITEM LATENT
FACTORS

1
.
.

o3
.
. k

XFACTORS .
.
.
.

.

.

.

.
1 1 1 1
p p p p

k + 2

U

VT

.

.

1

.

.
om

p1 p2 p3 pn

U
USER BIAS
VARIABLES

ITEM BIAS
VARIABLES

Figure 3.11: Incorporating user and item biases in the latent factor model

constraints on the factors. The other change is the increase in the sizes of the factor matrices
to incorporate the user and item bias variables. Because of the minor change in the problem
formulation, one only needs to make corresponding changes to the gradient descent method.
For initialization, the (k + 1)th column of V and the (k + 2)th column of U are set to 1s.
Exactly the same (local) update rules are used as in the unconstrained case, except that
the two perturbed entries in the (k + 1)th column of V and the (k + 2)th column of U are
reset to their fixed values after each update (or simply not updated). The following updates
may be executed by cycling over each specified entry (i, j) ∈ S:

uiq ⇐ uiq + α(eij · vjq − λ · uiq) ∀q ∈ {1 . . . k + 2}
vjq ⇐ vjq + α(eij · uiq − λ · vjq) ∀q ∈ {1 . . . k + 2}
Reset perturbed entries in (k + 2)th column of U and (k + 1)th column of V to 1s

This group of updates is performed simultaneously as a group. It is also possible to use
the alternating least-squares method with minor variations (see Exercise 11). The afore-
mentioned discussion uses the same regularization parameters and learning rates for each
type of variable. It is sometimes recommended to use different regularization parameters
and learning rates for the user biases, item biases, and factor variables [586]. This can be
achieved with minor modifications of the aforementioned updates.

A natural question that arises is why this formulation should perform better than un-
constrained matrix factorization. The addition of constraints on the last two columns of the
factor matrices should only reduce the global solution quality, because one is now optimizing
over a smaller space of solutions. However, in many cases, adding such constraints biases
the solution while reducing overfitting. In other words, the addition of such intuitive con-
straints can often improve the generalizability of the learning algorithm to unseen entries,
even though the error over the specified entries may be higher. This is particularly helpful
when the number of observed ratings for a user or for an item is small [473]. Bias variables
add a component to the ratings that are global to either the users or the items. Such global

3.6. LATENT FACTOR MODELS 109

properties are useful when limited data is available. As a specific example, consider the case
in which a user has provided ratings for only a small number (1 or 2) items. In such cases,
many recommendation algorithms, such as neighborhood-based methods, will not give reli-
able predictions for the user. On the other hand, the (non-personalized) predictions of the
item bias variables will be able to give reasonable predictions. After all, if a particular movie
is a box-office hit on a global basis, then the relevant user is also more likely to appreciate it.
The bias variables will also reflect this fact and incorporate it into the learning algorithm.

In fact, it has been shown [73, 310, 312] that using only the bias variables (i.e., k = 0)
can often provide reasonably good rating predictions. This point was emphasized as one of
the practical lessons learned from the Netflix Prize contest [73]:

“Of the numerous new algorithmic contributions, I would like to highlight one
– those humble baseline predictors (or biases), which capture main effects in
the data. While the literature mostly concentrates on the more sophisticated
algorithmic aspects, we have learned that an accurate treatment of main effects
is probably at least as significant as coming up with modeling breakthroughs.”

This means that a significant part of the ratings can be explained by user generosity and
item popularity, rather than any specific personalized preferences of users for items. Such a
non-personalized model is discussed in section 3.7.1, which is equivalent to setting k = 0 in
the aforementioned model. As a result, only the biases of users and items are learned, and a
baseline rating Bij is predicted for user i and item j by summing their biases. One can use
such a baseline rating to enhance any off-the-shelf collaborative filtering model. To do so,
one can simply subtract each Bij from the (i, j)th (observed) entry of the ratings matrix
before applying collaborative filtering. These values are added back in a postprocessing
phase to the predicted values. Such an approach is especially useful for models in which one
cannot easily parameterize bias variables. For example, (traditional) neighborhood models
accomplish these bias-correction goals with row-wise mean-centering, although the use of
Bij to correct the matrix entries would be a more sophisticated approach because it adjusts
for both user and item biases.

3.6.4.6 Incorporating Implicit Feedback

Generally, implicit feedback scenarios correspond to the use of unary ratings matrices in
which users express their interests by buying items. However, even in cases in which users
explicitly rate items, the identity of the items they rate can be viewed as an implicit feedback.
In other words, a significant predictive value is captured by the identity of the items that
users rate, irrespective of the actual values of the ratings. A recent paper [184] describes this
phenomenon elegantly in the context of the music domain:

“Intuitively, a simple process could explain the results [showing the predictive
value of implicit feedback]: users chose to rate songs they listen to, and listen
to music they expect to like, while avoiding genres they dislike. Therefore, most
of the songs that would get a bad rating are not voluntarily rated by the users.
Since people rarely listen to random songs, or rarely watch random movies, we
should expect to observe in many areas a difference between the distribution
of ratings for random items and the corresponding distribution for the items
selected by the users.”

Various frameworks such as asymmetric factor models and SVD++ have been proposed to
incorporate implicit feedback. These algorithms use two different item factor matrices V

110 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

and Y , corresponding to explicit and implicit feedback, respectively. The user latent fac-
tors are either wholly or partially derived using a linear combination of those rows of the
(implicit) item latent factor matrix Y that correspond to rated items of the user. The idea
is that user factors correspond to user preferences, and user preferences should therefore
be influenced by the items they have chosen to rate. In the simplest version of asymmetric
factor models, a linear combination of the (implicit) factor vectors of the rated items is
used to create the user factors. This results in an asymmetric approach in which we no
longer have independent variables for user factors. Instead, we have two sets of independent
item factors (i.e., explicit and implicit), and user factors are derived as a linear combina-
tion of the implicit item factors. Many variants [311] of this methodology are discussed in
the literature, although the original idea is credited to Paterek [473]. The SVD++ model
further combines this asymmetric approach with (explicit) user factors and a traditional
factorization framework. The asymmetric approach can, therefore, be viewed as a simplified
precursor to SVD++. For clarity in exposition, we will first discuss the asymmetric model
briefly.

Asymmetric Factor Models: To capture the implicit feedback information, we first de-
rive an implicit feedback matrix from the explicit ratings matrix. For an m×n ratings matrix
R, the m × n implicit feedback matrix F = [fij] is defined by setting it to 1, if the value
rij is observed, and 0, if it is missing. The feedback matrix F is subsequently normalized so
that the L2-norm of each row is 1. Therefore, if Ii is the set of indices of the items rated by
user i, then each nonzero entry in the ith row is 1/

√
|Ii|. An example of a ratings matrix

R together with its corresponding implicit feedback matrix F is illustrated below:

⎛

⎜
⎜
⎝

1 −1 1 ? 1 2
? ? −2 ? −1 ?
0 ? ? ? ? ?

−1 2 −2 ? ? ?

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
R

⇒

⎛

⎜
⎜
⎝

1/
√
5 1/

√
5 1/

√
5 0 1/

√
5 1/

√
5

0 0 1/
√
2 0 1/

√
2 0

1/
√
1 0 0 0 0 0

1/
√
3 1/

√
3 1/

√
3 0 0 0

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
F

An n× k matrix Y = [yij] is used as the implicit item-factor matrix and the matrix F
provides the linear combination coefficients to create a user-factor matrix from it. The vari-
ables in Y encode the propensity of each factor-item combination to contribute to implicit
feedback. For example, if |yij | is large, then it means that simply the act of rating item i
contains significant information about the affinity of that action for the jth latent compo-
nent, no matter what the actual value of the rating might be. In the simplified asymmetric
model, user factors are encoded as linear combinations of the implicit item factors of rated
items; the basic idea is that linear combinations of user actions are used to define their
preferences (factors). Specifically, the matrix product FY is an m × k user-factor matrix,
and each (user-specific) row in it is a (user-specific) linear combination of implicit item
factors depending on the items rated by the user. The matrix FY is used in lieu of the
user-factor matrix U , and the ratings matrix is factorized as R ≈ [FY]V T , where V is the
n×k explicit item-factor matrix. If desired, bias variables can be incorporated in the model
by mean-centering the ratings matrix and appending two additional columns to each of Y
and V , as discussed in section 3.6.4.5 (see Exercise 13).

This simple approach often provides excellent11 results because it reduces the redun-
dancy in user factors by deriving them as linear combinations of item factors. The basic

11In many cases, this approach can outperform SVD++, especially when the number of observed ratings
is small.

3.6. LATENT FACTOR MODELS 111

idea here is that two users will have similar user factors if they have rated similar items,
irrespective of the values of the ratings. Note that the n × k matrix Y contains fewer pa-
rameters than an m × k user-factor matrix U because n � m. Another advantage of this
approach is that it is possible to incorporate other types of independent implicit feedback
(such as buying or browsing behavior) by incorporating it in the implicit feedback matrix
F . In such cases, the approach can usually do better than most other forms of matrix factor-
ization (with explicit ratings) because of its ability to use both explicit and implicit ratings.
Nevertheless, even in cases where no independent implicit feedback is available, this model
seems to be perform better than straightforward variations of matrix factorization for very
sparse matrices with a large number of users (compared to the number of items). An addi-
tional advantage of this model is that no user parameterizations are needed; therefore, the
model can work well for out-of-sample users, although it cannot be used for out-of-sample
items. In other words, the model is at least partially inductive unlike most matrix factor-
ization methods. We omit discussing the gradient-descent steps of this model, because the
generalization of this model is discussed in the next section. The corresponding steps are,
nevertheless, enumerated in the problem statement of Exercise 13.

The item-based parametrization of asymmetric factor models also provides it the merit
of explainability. Note that one can re-write the factorization [FY]V T as F [Y V T]. The ma-
trix Y V T can be viewed as an n×n item-to-item prediction matrix in which [Y V T]ij tells us
how much the act of rating item i contributes to the predicted rating of item j. The matrix
F provides the corresponding m× n user-to-item coefficients and, therefore, multiplying F
with [Y V T] provides user-to-item predictions. Therefore, one can now explain, which items
previously consumed/rated by the user contribute most to the prediction in F [Y V T]. This
type of explainability is inherent to item-centric models.

SVD++: The derivation of user factors purely on the basis of the identities of rated items
seems like a rather extreme use of implicit feedback in asymmetric factor models. This is
because such an approach does not discriminate at all between pairs of users who have rated
exactly the same set of items but have very different observed values of the ratings. Two
such users will receive exactly the same rating prediction for an item that is not rated by
both.

In SVD++, a more nuanced approach is used. The implicit user-factor matrix FY is
used only to adjust the explicit user-factor matrix U rather than to create it. Therefore, FY
needs to be added to U before multiplying with V T . Then, the reconstructed m×n ratings
matrix R is given by (U + FY)V T , and the implicit feedback component of the predicted
rating is given by (FY)V T . The price for the additional modeling flexibility in SVD++
is that the number of parameters is increased, which can cause overfitting in very sparse
ratings matrices. The implicit feedback matrix can be derived from the ratings matrix (as
in asymmetric factor models), although other forms of implicit feedback (e.g., buying or
browsing behavior) can also be included.

The user and item biases are included in this model in a manner similar to section 3.6.4.5.
We can assume, without loss12 of generality, that the ratings matrix is mean-centered around
the global mean μ of all the entries. Therefore, we will work with m× (k+2) and n× (k+2)
factor matrices U and V , respectively, in which the last two columns contain either 1s or
bias variables according to section 3.6.4.5. We also assume13 that Y is an n×(k+2) matrix,

12For matrices, which are not mean-centered, the global mean can be subtracted during preprocessing
and then added back at prediction time.

13We use a slightly different notation than the original paper [309], although the approach described
here is equivalent. This presentation simplifies the notation by introducing fewer variables and viewing bias

112 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

and the last two columns of Y contain 0s. This is because the bias component is already
addressed by the last two columns of U , but we need the last two dummy columns in Y
to ensure that we can add U and FY as matrices of the same dimensions. Therefore, the
predicted rating r̂ij can be expressed in terms of these variables as follows:

r̂ij =
k+2∑

s=1

(uis + [FY]is) · vjs (3.20)

=

k+2∑

s=1

(

uis +
∑

h∈Ii

yhs
√
|Ii|

)

· vjs (3.21)

The first term
∑k+2

s=1 uisvjs on the right-hand side of the aforementioned equation is the

(i, j)th term of UV T , and the second term
∑k+2

s=1

∑
h∈Ii

yhs√
|Ii|

vjs is the (i, j)th term of

[FY]V T . Note that the (i, s)th entry of [FY] is given by
∑

h∈Ii
yhs√
|Ii|

. One can view this

model as a combination of the unconstrained matrix factorization model (with biases) and
the asymmetric factorization model discussed in the previous section. Therefore, it combines
the strengths of both models.

The corresponding optimization problem, which minimizes the aggregate squared error
e2ij = (rij − r̂ij)

2 over all observed entries (denoted by set S) in the ratings matrix, may be
stated as follows:

Min. J=
1

2

∑

(i,j)∈S

(

rij −
k+2∑

s=1

[

uis +
∑

h∈Ii

yhs√
|Ii|

]

· vjs

)2

+
λ

2

k+2∑

s=1

⎛

⎝
m∑

i=1

u2
is +

n∑

j=1

v2js +

n∑

j=1

y2js

⎞

⎠

subject to:

(k + 2)th column of U contains only 1s

(k + 1)th column of V contains only 1s

Last two columns of Y contain only 0s

Note that this optimization formulation is different from that in the previous section in
terms of its having an implicit feedback term together with its regularizer. One can use the
partial derivative of this objective function to derive the update rules for matrices U and
V , as well as the variables in Y . The update rules are then expressed in terms of the error
values eij = rij − r̂ij of the observed entries. The following updates14 may be used for each

variables as constraints on the factorization process.
14The literature often describes these updates in vectorized form. These updates may be applied to the

rows of U , V , and Y as follows:

ui ⇐ ui + α(eijvj − λui)

vj ⇐ vj + α

⎛
⎝eij ·

⎡
⎣ui +

∑
h∈Ii

yh√|Ii|

⎤
⎦− λ · vj

⎞
⎠

yh ⇐ yh + α

(
eij · vj√|Ii|

− λ · yh
)

∀h ∈ Ii

Reset perturbed entries in fixed columns of U , V , and Y

3.6. LATENT FACTOR MODELS 113

observed entry (i, j) ∈ S in the ratings matrix:

uiq ⇐ uiq + α(eij · vjq − λ · uiq) ∀q ∈ {1 . . . k + 2}

vjq ⇐ vjq + α

(

eij ·
[

uiq +
∑

h∈Ii

yhq√
|Ii|

]

− λ · vjq

)

∀q ∈ {1 . . . k + 2}

yhq ⇐ yhq + α

(
eij · vjq√

|Ii|
− λ · yhq

)

∀q ∈ {1 . . . k + 2}, ∀h ∈ Ii

Reset perturbed entries in fixed columns of U , V , and Y

The updates are executed by repeatedly looping over all the observed ratings in S. The
perturbed entries in the fixed columns of U , V , and Y are reset by these rules to either
1s and 0s. A more efficient (and practical) alternative would be to simply not update the
fixed entries by keeping track of them during the update. Furthermore, these columns are
always initialized to fixed values that respect the constraints of the optimization model. The
nested loop structure of stochastic-gradient descent is similar across the family of matrix
factorization methods. Therefore, the basic framework described in Figure 3.9 may be used,
although the updates are based on the aforementioned discussion. Better results may be
obtained by using different regularization parameters for different factor matrices. A fast
variation of stochastic gradient descent is described in [151]. It is also possible to develop an
alternating least-squares approach to solve the aforementioned problem (see Exercise 12).
Although this model is referred to as SVD++ [309], the name is slightly misleading because
the basis vectors of the factorized matrices are not orthogonal. Indeed, the term “SVD” is
often loosely applied in the literature on latent factor models. In the next section, we will
discuss the use of singular value decomposition with orthogonal vectors.

3.6.5 Singular Value Decomposition

Singular value decomposition (SVD) is a form of matrix factorization in which the columns
of U and V are constrained to be mutually orthogonal. Mutual orthogonality has the ad-
vantage that the concepts can be completely independent of one another, and they can be
geometrically interpreted in scatterplots. However, the semantic interpretation of such a
decomposition is generally more difficult, because these latent vectors contain both posi-
tive and negative quantities, and are constrained by their orthogonality to other concepts.
For a fully specified matrix, it is relatively easy to perform SVD with the use of eigen-
decomposition methods. We will first briefly recap the discussion on singular value decom-
position in section 2.5.1.2 of Chapter 2.

Consider the case in which the ratings matrix is fully specified. One can approximately
factorize the ratings matrix R by using truncated SVD of rank k � min{m,n}. Truncated
SVD is computed as follows:

R ≈ QkΣkP
T
k (3.22)

Here, Qk, Σk, and Pk are matrices of size m×k, k×k, and n×k, respectively. The matrices
Qk and Pk respectively contain the k largest eigenvectors of RRT and RTR, whereas the
(diagonal) matrix Σk contains the (non-negative) square roots of the k largest eigenvalues
of either matrix along its diagonal. It is noteworthy that the nonzero eigenvalues of RRT

and RTR are the same, even though they will have a different number of zero eigenvalues
when m = n. The matrix Pk contains the top eigenvectors of RTR, which is the reduced

114 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

basis representation required for dimensionality reduction of the row space. These eigenvec-
tors contain information about the directions of item-item correlations among ratings, and
therefore they provide the ability to represent each user in a reduced number of dimensions
in a rotated axis system. For example, in Figure 3.6, the top eigenvector corresponds to the
latent vector representing the dominant directions of item-item correlations. Furthermore,
the matrix QkΣk contains the transformed and reduced m×k representation of the original
ratings matrix in the basis corresponding to Pk. Therefore, in Figure 3.6, the matrix QkΣk

would be a 1-dimensional column vector containing the coordinates of the ratings along the
dominant latent vector.

It is easy to see from Equation 3.22 that SVD is inherently defined as a matrix factor-
ization. Of course, the factorization here is into three matrices rather than two. However,
the diagonal matrix Σk can be absorbed in either the user factors Qk or the item factors
Pk. By convention, the user factors and item factors are defined as follows:

U = QkΣk

V = Pk

As before, the factorization of the ratings matrix R is defined as R = UV T . As long as the
user and item factor matrices have orthogonal columns, it is easy to convert the resulting
factorization into a form that is compliant with SVD (see Exercise 9). Therefore, the goal
of the factorization process is to discover matrices U and V with orthogonal columns.
Therefore, SVD can be formulated as the following optimization problem over the matrices
U and V :

Minimize J =
1

2
||R− UV T ||2

subject to:

Columns of U are mutually orthogonal

Columns of V are mutually orthogonal

It is easy to see that the only difference from the case of unconstrained factorization is the
presence of orthogonality constraints. In other words, the same objective function is being
optimized over a smaller space of solutions compared to unconstrained matrix factorization.
Although one would expect that the presence of constraints would increase the error J of
the approximation, it turns out that the optimal value of J is identical in the case of SVD
and unconstrained matrix factorization, if the matrix R is fully specified and regularization
is not used. Therefore, for fully specified matrices, the optimal solution to SVD is one of
the alternate optima of unconstrained matrix factorization. This is not necessarily true in
the cases in which R is not fully specified, and the objective function J = 1

2 ||R−UV T ||2 is
computed only over the observed entries. In such cases, unconstrained matrix factorization
will typically provide lower error on the observed entries. However, the relative performance
on the unobserved entries can be unpredictable because of varying levels of generalizability
of different models.

3.6.5.1 A Simple Iterative Approach to SVD

In this section, we discuss how to solve the optimization problem when the matrix R is
incompletely specified. The first step is to mean-center each row of R by subtracting the
average rating μi of the user i from it. These row-wise averages are stored because they will
eventually be needed to reconstruct the raw ratings of the missing entries. Let the centered

3.6. LATENT FACTOR MODELS 115

matrix be denoted by Rc. Then, the missing entries of Rc are set to 0. This approach
effectively sets the missing entries to the average rating of the corresponding user, because
the missing entries of the centered matrix are set to 0. SVD is then applied to Rc to obtain
the decomposition Rc = QkΣkP

T
k . The resulting user factors and item factors are given by

U = QkΣk and V = Pk. Let the ith row of U be the k-dimensional vector denoted by ui

and the jth row of V be the k-dimensional vector denoted by vj . Then, the rating r̂ij of
user i for item j is estimated as the following adjusted dot product of ui and vj :

r̂ij = ui · vj + μi (3.23)

Note that the mean μi of user i needs to added to the estimated rating to account for the
mean-centering applied to R in the first step.

The main problem with this approach is that the substitution of missing entries with
row-wise means can lead to considerable bias. A specific example of how column-wise mean
substitution leads to bias is provided in section 2.5.1 of Chapter 2. The argument for row-
wise substitution is exactly similar. There are several ways of reducing this bias. One of
the methods is to use maximum-likelihood estimation [24, 472], which is discussed in sec-
tion 2.5.1.1 of Chapter 2. Another approach is to use a method, which reduces the bias
iteratively by improving the estimation of the missing entries. The approach uses the fol-
lowing steps:

1. Initialization: Initialize the missing entries in the ith row of R to be the mean μi of
that row to create Rf .

2. Iterative step 1: Perform rank-k SVD of Rf in the form QkΣkP
T
k .

3. Iterative step 2: Readjust only the (originally) missing entries of Rf to the corre-
sponding values in QkΣkP

T
k . Go to iterative step 1.

The iterative steps 1 and 2 are executed to convergence. In this method, although the ini-
tialization step causes bias in the early SVD iterations, later iterations tend to provide more
robust estimates. This is because the matrix QkΣkP

T
k will differ from R to a greater degree

in the biased entries. The final ratings matrix is then given by QkΣkP
T
k at convergence.

The approach can become stuck in a local optimum when the number of missing entries
is large. In particular, the local optimum at convergence can be sensitive to the choice of
initialization. It is also possible to use the baseline predictor discussed in section 3.7.1 to
perform more robust initialization. The idea is to compute an initial predicted value Bij for
user i and item j with the use of learned user and item biases. This approach is equivalent
to applying the method in section 3.6.4.5 at k = 0, and then adding the bias of user i to
that of item j to derive Bij . The value of Bij is subtracted from each observed entry (i, j)
in the ratings matrix, and missing entries are set to 0 at initialization. The aforementioned
iterative approach is applied to this adjusted matrix. The value of Bij is added back to
entry (i, j) at prediction time. Such an approach tends to be more robust because of better
initialization.

Regularization can be used in conjunction with the aforementioned iterative method.
The idea is to perform regularized SVD of Rf in each iteration rather than using only
vanilla SVD. Because the matrix Rf is fully specified in each iteration, it is relatively easy
to apply regularized SVD methods to these intermediate matrices. Regularized singular
value decomposition methods for complete matrices are discussed in [541]. The optimal
values of the regularization parameters λ1 and λ2 are chosen adaptively by using either the
hold-out or the cross-validation methods.

116 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

3.6.5.2 An Optimization-Based Approach

The iterative approach is quite expensive because it works with fully specified matrices. It
is simple to implement for smaller matrices but does not scale well in large-scale settings. A
more efficient approach is to add orthogonality constraints to the optimization model of the
previous sections. A variety of gradient-descent methods can be used for solve the model.
Let S be the set of specified entries in the ratings matrix. The optimization problem (with
regularization) is stated as follows:

Minimize J =
1

2

∑

(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)2

+
λ1

2

m∑

i=1

k∑

s=1

u2
is +

λ2

2

n∑

j=1

k∑

s=1

v2js

subject to:

Columns of U are mutually orthogonal

Columns of V are mutually orthogonal

The primary difference of this model from unconstrained matrix factorization is the ad-
dition of orthogonality constraints, which makes the problem more difficult. For example,
if one tries to directly use the update equations of the previous section on unconstrained
matrix factorization, the orthogonality constraints will be violated. However, a variety of
modified update methods exist to handle this case. For example, one can use a projected
gradient descent [76] method, wherein all components of a particular column of U or V
are updated at one time. In projected gradient descent, the descent direction for the pth
column of U (or V), as indicated by the equations of the previous section, is projected in
a direction that is orthogonal to the first (p − 1) columns of U (or V). For example, the
implementation of section 3.6.4.3 can be adapted to learn orthogonal factors by projecting
each factor in a direction orthogonal to those learned so far at each step. One can easily
incorporate user and item biases by computing the baseline predictions Bij (discussed in
the previous section) and subtracting them from the observed entries in the ratings ma-
trix before modeling. Subsequently, the baseline values can be added back to the predicted
values as a postprocessing step.

3.6.5.3 Out-of-Sample Recommendations

Many matrix completion methods like matrix factorization are inherently transductive, in
which predictions can be made only for users and items already included in the ratings
matrix at the time of training. It is often not easy to make predictions for new users and
items from the factors U and V , if they were not included in the original ratings matrix
R at factorization time. One advantage of orthogonal basis vectors is that they can be
leveraged more easily to perform out-of-sample recommendations for new users and items.
This problem is also referred to as inductive matrix completion.

The geometric interpretation provided in Figure 3.6 is helpful in understanding why or-
thogonal basis vectors are helpful in predicting missing ratings. Once the latent vectors have
been obtained, one can project the information in the specified ratings on the corresponding
latent vectors; this is much easier when the vectors are mutually orthogonal. Consider a
situation where SVD has obtained latent factors U and V , respectively. The columns of
V define a k-dimensional hyperplane, H1, passing through the origin. In Figure 3.6, the
number of latent factors is 1, and therefore the single latent vector (i.e., 1-dimensional
hyperplane) is shown. If two factors had been used, it would have been a plane.

3.6. LATENT FACTOR MODELS 117

Now imagine a new user whose ratings have been added into the system. Note that
this new user is not represented in the latent factors in U or V . Consider the scenario in
which the new user has specified a total of h ratings. The space of possibilities of ratings
for this user is an (n− h)-dimensional hyperplane in which h values are fixed. An example
is illustrated in Figure 3.6, where one rating for Spartacus is fixed, and the hyperplane is
defined on the other two dimensions. Let this hyperplane be denoted by H2. The goal is
then to determine the point on H2, which is as close to H1 as possible. That point on H2

yields the values of all the other ratings. Three possibilities arise:

1. H1 and H2 do not intersect: The point on H2 that is closest to H1 is returned. The
smallest distance between a pair of hyperplanes can be formulated as a simple sum-
of-squares optimization problem.

2. H1 and H2 intersect at a unique point: This case is similar to that of Figure 3.6. In
that case, the values of the ratings of the intersection point can be used.

3. H1 and H2 intersect on an t-dimensional hyperplane, where t ≥ 1: All ratings, which
are as close as possible to the t-dimensional hyperplane, should be found. The average
values of the ratings of the corresponding users are returned. Note that this approach
combines latent factor and neighborhood methods. The main difference from neigh-
borhood methods is that the neighborhood is discovered in a more refined way with
the use of feedback from latent factor models.

Orthogonality has significant advantages in terms of geometric interpretability. The ability
to discover out-of-sample recommendations is one example of such an advantage.

3.6.5.4 Example of Singular Value Decomposition

In order to illustrate the use of singular value decomposition, let us apply this approach
to the example of Table 3.2. We will use the iterative approach of estimating the missing
entries repeatedly. The first step is to fill in the missing entries with the average of each
row. As a result, the filled in ratings matrix Rf becomes:

Rf =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 1 −1 1 −1
1 1 −0.2 −1 −1 −1
0 1 1 −1 −1 0

−1 −1 −1 1 1 1
−1 0.2 −1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

Upon applying rank-2 truncated SVD to the matrix, and absorbing the diagonal matrix
within the user factors, we obtain the following:

Rf ≈

⎛

⎜
⎜
⎜
⎜
⎝

1.129 −2.152
1.937 0.640
1.539 0.873

−2.400 −0.341
−2.105 0.461

⎞

⎟
⎟
⎟
⎟
⎠

(
0.431 0.246 0.386 −0.518 −0.390 −0.431

−0.266 0.668 −0.249 0.124 −0.578 0.266

)

=

⎛

⎜
⎜
⎜
⎜
⎝

1.0592 −1.1604 0.9716 −0.8515 0.8040 −1.0592
0.6636 0.9039 0.5881 −0.9242 −1.1244 −0.6636
0.4300 0.9623 0.3764 −0.6891 −1.1045 −0.4300

−0.9425 −0.8181 −0.8412 1.2010 1.1320 0.9425
−1.0290 −0.2095 −0.9270 1.1475 0.5535 1.0290

⎞

⎟
⎟
⎟
⎟
⎠

118 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Note that even after the first iteration, a reasonable estimate is obtained of the missing
entries. In particular, the estimated values are r̂23 ≈ 0.5581, r̂31 ≈ 0.43, r̂36 ≈ −0.43,
and r̂52 ≈ −0.2095. Of course, these entries are biased by the fact that the initial filled-
in entries were based on the row averages, and thus did not accurately reflect the correct
values. Therefore, in the next iteration, we fill in these four missing values in the original
matrix to obtain the following matrix:

Rf =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 1 −1 1 −1
1 1 0.5581 −1 −1 −1

0.43 1 1 −1 −1 −0.43
−1 −1 −1 1 1 1
−1 −0.2095 −1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

This matrix is still biased, but it is better than filling in missing entries with row averages.
In the next iteration, we apply SVD with this new matrix, which is clearly a better starting
point. Upon applying the entire process of rank-2 SVD again, we obtain the following matrix
in the next iteration:

Rf =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 1 −1 1 −1
1 1 0.9274 −1 −1 −1

0.6694 1 1 −1 −1 −0.6694
−1 −1 −1 1 1 1
−1 −0.5088 −1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

Note that the newly estimated entries have further changed in the next iteration. The
new estimated values are r̂23 ≈ 0.9274, r̂31 ≈ 0.6694, r̂36 ≈ −0.6694, and r̂52 ≈ −0.5088.
Furthermore, the entries have changed to a smaller degree than in the first iteration. Upon
applying the process for one more iteration to the latest value of Rf , we obtain the following:

Rf =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1 1 −1 1 −1
1 1 0.9373 −1 −1 −1

0.7993 1 1 −1 −1 −0.7993
−1 −1 −1 1 1 1
−1 −0.6994 −1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

The estimated values are now r̂23 ≈ 0.9373, r̂31 ≈ 0.7993, r̂36 ≈ −0.7993, and r̂52 ≈ −0.6994.
Note that the change is even smaller than in the previous iteration. In fact, the change in
entry r̂23 is very small. Over successive iterations, the changes in the entries tend to become
smaller and smaller, until convergence is reached. The resulting entries can be used as the
predicted values. A large number of iterations are typically not required in the process. In
fact, for ranking the items for a given user, only 5 to 10 iterations might be sufficient. In this
particular example, one can correctly rank the two missing ratings for user 3 after the very
first iteration. The approach can also be applied after mean-centering the rows or columns,
or both. This approach has the effect of removing user and item biases before the estimation
process. Applying such bias correction methods often has a positive effect on prediction.

The approach is not guaranteed to converge to a global optimum, especially if poor
initialization points have been used. This is especially true when a large fraction of the
entries in the matrix are missing. In these cases, the initial bias can be significant enough to
affect the quality of the final solution. Therefore, it is sometimes advisable to use a simple
heuristic, such as a neighborhood model, in order to obtain a first estimate of the missing
entries. Choosing such a robust estimate as a starting point will speed up the convergence,

3.6. LATENT FACTOR MODELS 119

and it will also lead to more accurate results. Furthermore, one could easily apply this entire
process with regularized singular value decomposition of the filled-in matrices. The main
difference is that each iteration uses regularized singular value decomposition of the current
matrix, which is filled in with the estimated values. The work in [541] may be used as the
relevant subroutine for regularized singular value decomposition.

3.6.6 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) may be used for ratings matrices that are non-
negative. The major advantage of this approach is not necessarily one of accuracy, but that
of the high level of interpretability it provides in understanding the user-item interactions.
The main difference from other forms of matrix factorization is that the factors U and
V must be non-negative. Therefore, the optimization formulation in non-negative matrix
factorization is stated as follows:

Minimize J =
1

2
||R− UV T ||2

subject to:

U ≥ 0

V ≥ 0

Although non-negative matrix factorization can be used for any non-negative ratings matrix
(e.g., ratings from 1 to 5), its greatest interpretability advantages arise in cases in which
users have a mechanism to specify a liking for an item, but no mechanism to specify a
dislike. Such matrices include unary ratings matrices or matrices in which the non-negative
entries correspond to the activity frequency. These data sets are also referred to as implicit
feedback data sets [260, 457]. Some examples of such matrices are as follows:

1. In customer transaction data, the purchase of an item corresponds to expressing a
liking for an item. However, not buying an item does not necessarily imply a dislike
because the user might have purchased the item elsewhere or they may not be aware of
the item. When amounts are associated with transactions, the matrix R may contain
arbitrary non-negative numbers. However, all these numbers specify the degree of
liking for an item, but they do not indicate dislike. In other words, the numerical
quantities in implicit feedback indicate confidence, whereas the numerical quantities
in explicit feedback indicate preference.

2. Similar to the case of purchasing an item, the browsing of an item may be indicative
of a like. In some cases, the frequency of the buying or browsing behavior can be
quantified as a non-negative value.

3. In Web click data, the selection of an item corresponds to a unary rating of liking an
item.

4. A “like” button on Facebook can be considered a mechanism to provide a unary rating
for an item.

The implicit feedback setting can be considered the matrix completion analog to the
positive-unlabeled (PU) learning problem in classification and regression modeling. In clas-
sification and regression modeling, reasonable results can often be obtained by treating the
unlabeled entries as belonging to the negative class when the positive class is already known

120 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

to be a very small minority class. Similarly, a helpful aspect of such matrices and problem
settings is that it is often reasonably possible to set the unspecified entries to 0, rather than
treat them as missing values. For example, consider a customer transaction data set, in
which values indicate quantities purchased by a customer. In such a case, it is reasonable
to set a value to 0, when that item has not been bought by the customer. Therefore, in this
case, one only has to perform non-negative matrix factorization of a fully specified matrix,
which is a standard problem in the machine learning literature. This problem is also referred
to as one class collaborative filtering. Although some recent works argue that the missing
values should not be set to 0 in such cases [260, 457, 467, 468] to reduce bias, a considerable
amount of work in the literature shows that reasonably robust solutions can be obtained by
treating the missing entries as 0 in the modeling process. This is especially the case when
the prior probability of an entry to be 0 is very large. For instance, in the supermarket
scenario, a customer would typically never buy the vast majority of items in the store. In
such cases, setting the missing values to 0 (in the initial matrix for factorization purposes
but not in the final prediction) would result in a small amount of bias, but explicitly treat-
ing the entries as unspecified in the initial matrix will lead to greater solution complexity.
Unnecessary complexity always leads to overfitting. These effects are especially significant15

in smaller data sets.
Note that the optimization formulation of non-negative matrix factorization is a con-

strained optimization formulation, which can be solved using standard methods such as La-
grangian relaxation. Although a detailed derivation of the algorithm used for non-negative
matrix factorization is beyond the scope of this book, we refer the reader to [22] for de-
tails. Here, we present only a brief discussion of how non-negative matrix factorization is
performed.

An iterative approach is used to update the matrices U and V . Let uij and vij , respec-
tively, be the (i, j)th entries of the matrices U and V . The following multiplicative update
rules for uij and vij are used:

uij ⇐
(RV)ijuij

(UV TV)ij + ε
∀i ∈ {1 . . .m}, ∀j ∈ {1 . . . k} (3.24)

vij ⇐
(RTU)ijvij

(V UTU)ij + ε
∀i ∈ {1 . . . n}, ∀j ∈ {1 . . . k} (3.25)

Here, ε is a small value such as 10−9 to increase numerical stability. All entries in U and
V on the right-hand side of the update equations are fixed to the values obtained at the
end of the previous iteration during the course of a particular iteration. In other words,
all entries in U and V are updated “simultaneously.” Small values are sometimes added to
the denominator of the update equations to prevent division by 0. The entries in U and V
are initialized to random values in (0, 1), and the iterations are executed to convergence.
It is possible to obtain better solutions by performing the initialization in a more judicious
way [331, 629].

As in the case of other types of matrix factorization, regularization can be used to
improve the quality of the underlying solution. The basic idea is to add the penalties
λ1||U||2

2 + λ2||V ||2
2 to the objective function. Here λ1 > 0 and λ2 > 0 are the regularization

15These effects are best understood in terms of the bias-variance trade-off in machine learning [22].
Setting the unspecified values to 0 increases bias, but it reduces variance. When a large number of entries
are unspecified, and the prior probability of a missing entry to be 0 is very high, the variance effects can
dominate.

3.6. LATENT FACTOR MODELS 121

parameters. This results in a modification [474] of the update equations as follows:

uij ⇐ max

{[
(RV)ij − λ1uij

(UV TV)ij + ε

]

uij , 0

}

∀i ∈ {1 . . .m}, ∀j ∈ {1 . . . k} (3.26)

vij ⇐ max

{[
(RTU)ij − λ2vij
(V UTU)ij + ε

]

vij , 0

}

∀i ∈ {1 . . . n}, ∀j ∈ {1 . . . k} (3.27)

The maximization function is used to impose non-negativity and the small additive term
ε ≈ 10−9 in the denominator is used to ensure numerical stability. The parameters λ1

and λ2 can be determined using the same approach as described earlier. Instead of using
the gradient-descent method, one can also use alternating least-squares methods in which
non-negative linear regression is used. Tikhonov regularization can be used within the re-
gression model to prevent overfitting. Details of the alternating least-squares method for
non-negative matrix factorization may be found in [161, 301]. The main challenges with
these off-the-shelf methods is their lack of computational efficiency with large ratings ma-
trices, because all entries are treated as observed. In section 3.6.6.3, we will discuss how
these issues can be addressed.

3.6.6.1 Interpretability Advantages

The main advantage of non-negative matrix factorization is that a high degree of inter-
pretability is achieved in the solution. It is always useful to pair recommender systems
with explanations for the recommendations, and this is provided by non-negative matrix
factorization. In order to better understand this point, consider a situation in which the
preference matrix contains quantities of items bought by customers. An example of a toy
6× 6 matrix with 6 items and 6 customers is illustrated in Figure 3.12. It is clear that there
are two classes of products corresponding to dairy products and drinks, respectively. It is
clear that the customer buying behavior is highly correlated on the basis of the classes of
items although all customers seem to like juice. These classes of items are referred to as
aspects. The corresponding factor matrices also provide a clear interpretability about the
affinity of customers and items to these aspects. For example, customers 1 to 4 like dairy
products, whereas customers 4 to 6 like drinks. This is clearly reflected in the 6 × 2 user-
factor matrix U . In this simplified example, we have shown all the factored values in U and
V to be integral for visual simplicity. In practice, the optimal values are almost always real
numbers. The magnitude of the entry of a user in each of the two columns quantifies her
level of interest in the relevant aspect. Similarly, the factor matrix V shows how the items
are related to the various aspects. Therefore, in this case, the condition rij ≈

∑k
s=1 uis · vjs

can be semantically interpreted in terms of the k = 2 aspects:

rij ≈(Affinity of user i to dairy aspect)× (Affinity of item j to dairy aspect)

+ (Affinity of user i to drinks aspect)× (Affinity of item j to drinks aspect)

This way of predicting the value of rij shows a “sum-of-parts” decomposition of the ma-
trix. Each of these parts can also be viewed as a user-item co-cluster. This is also one of
the reasons that non-negative matrix factorization is often used in clustering. In practical
applications, it is often possible to look at each of these clusters and semantically interpret
the associations between users and items. When semantic labels can be manually attached
to the various clusters, the factorization process provides a neat explanation of the ratings
in terms of the contributions of various semantic “genres” of items.

122 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

SO
DA

 DAIRY

BOTH

 DRINKS

CH
EE

SE

M
IL

K

JU
IC

E

BE
ER

0

0

0 0

0 0

0 0

0 0

2

1

1

1

2

1

0 0

3

1

2
 Y

O
G

U
RT

R

2 2 3 1 1

2

X

 Y
O

G
U

RT

 DAIRY

M
IL

K

 C
HE

ES
E

JU
I C

E

SO
DA

BE
ER

1 1 1 1

1 1 1 0 0 0

 0 0

VT

2

0

 0 3

 1 0

0

0

 1

 0

 0

 1

 2

DA
IR

Y

DR
IN

KS

 U

2

 1

 2

 3

 4

 5

 6

 1

 2

 3

 4

 5

 6

 DRINKS

2 2 1

2 3 3

1 1 1

Figure 3.12: An example of non-negative matrix factorization

This sum-of-parts decomposition can be represented mathematically as follows. The
rank-k matrix factorization UV T can be decomposed into k components by expressing the
matrix product in terms of the k columns Ui and Vi, respectively, of U and V :

UV T =

k∑

i=1

Ui Vi
T

(3.28)

Each m × n matrix Ui Vi
T

is a rank-1 matrix that corresponds to an aspect in the data.
Because of the interpretable nature of non-negative decomposition, it is easy to map these
aspects to clusters. For example, the two latent components of the aforementioned example
corresponding to dairy products and drinks, respectively, are illustrated in Figure 3.13.
Note that Equation 3.28 decomposes the factorization in terms of the columns of U and V ,
whereas Equation 3.14 is a different way of understanding the factorization in terms of the
rows of U and V . For a given user-item combination, the rating prediction is given by the
sum of the contributions of these aspects, and one can even gain a better understanding of
why a rating is predicted in a certain way by the approach.

3.6.6.2 Observations about Factorization with Implicit Feedback

Non-negative matrix factorization is particularly well suited to implicit feedback matrices
in which ratings indicate positive preferences. Unlike explicit feedback data sets, it is not
possible to ignore the missing entries in the optimization model because of the lack of
negative feedback in such data. It is noteworthy that the non-negative matrix factorization
model treats missing entries as negative feedback by setting them to 0s. Not doing so would
grossly increase the error on the unobserved entries. In order to understand this point,
consider a unary ratings matrix in which likes are specified by 1s. The factorization shown
in Figure 3.14 will provide 100% accuracy on an arbitrary unary matrix when computed
only over observed entries. This is because the multiplication of U and V T in Figure 3.14
leads to a matrix containing only 1s and no 0s. Of course, such a factorization will have
very high error on the unobserved entries because many unobserved entries may correspond
to negative preferences. This example is a manifestation of overfitting caused by lack of
negative feedback data. Therefore, for ratings matrices in which negative preferences are
missing and it is known that negative preferences vastly outnumber positive preferences, it
is important to treat missing entries as 0s. For example, in a customer transaction data set,

3.6. LATENT FACTOR MODELS 123

 DAIRY =

M
IL

K

 Y
O

G
U

RT

 C
HE

ES
E

JU
IC

E

SO
DA

BE

ER

 DAIRY ASPECT (USER-ITEM CLUSTER)

 DRINKS =

 S
O

DA

M
IL

K

JU
IC

E

BE
ER

YO

G
U

RT

 DRINKS ASPECT (USER-ITEM CLUSTER)
ESEEHC

ESEEHC

M
IL

K

 JU
IC

E

BE
ER

 2

YO

G
U

RT

SO
DA

 2 2 2 0 0

 3 3 3 3 0 0
 0 0

 0 0

 0 0

 1 1 1 1

 2 2 2

 0 0 0 0
 0 0 0 0 0 0

M
IL

K

 Y
O

G
U

RT

 C
HE

ES
E

JU
IC

E

SO
DA

BE

ER
 0 0 0

 0
 0 0 0

 0 0

 0 0
 0

 0
 0

 0
 0

 0

 0

 0 0 0
 0 0 0
 0 0 0

 X

DAIRY

 3

1
 1

 2

 0
 0

 2

1 1 1 1 0 0

0 0 1 1 1

 2 2 2
 1 1 1

1
2
3

4
5
6

1
2
3

4
5
6

 X

DRINKS

 0
 0

 1
 1

 2

 0

1
2

3
4
5

6

1

4

3
2

5
6

 2

 1 1 1 0

Figure 3.13: The sum-of-parts interpretation of NMF

X

k

m

U

VT

USER LATENT
FACTORS

[ALL ENTRIES ARE
EQUAL TO 1]

ITEM LATENT FACTORS
[ALL ENTRIES ARE
EQUAL TO 1] k

 n

Figure 3.14: Overfitting caused by ignoring missing entries in a unary matrix

124 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

if the values indicate the amounts bought by various users and most items are not bought
by default, then one can approximate the value of a missing entry as 0.

3.6.6.3 Computational and Weighting Issues with Implicit Feedback

The treatment of missing entries as 0s leads to computational challenges with large ma-
trices. There are several solutions to this dilemma. For example, a sample of the missing
entries can be treated as 0s. The gradient-descent solution for the sampled case is similar
to that discussed in the next section. It is possible to further improve the accuracy with an
ensemble approach. The matrix is factorized multiple times with a different sample of 0s,
and each factorization is used to predict (a slightly different) value of the rating. The differ-
ent predictions of a particular rating are then averaged to create the final result. By using
samples of varying sizes, it is also possible to weight the negative feedback entries differently
from the positive feedback entries. Such an approach can be important in cost-sensitive set-
tings where false positives and false negatives are weighted differently. Typically, the zero
entries should be weighted less than the nonzero entries, and therefore down-sampling the
zero entries is useful.

It is also possible to incorporate such weights directly in the objective function and treat
all missing entries as 0s. The errors on the zero entries should be weighted less than those on
the nonzero entries in the objective function to prevent the zero entries from dominating the
optimization. The relative weights can be determined using cross-validation with respect
to a particular accuracy measure. Alternatively, the work in [260] suggests the following
heuristic to select the weight wij of entry (i, j):

wij = 1+ θ · rij (3.29)

Note that all missing values of rij are treated as 0s in Equation 3.29, and a typical value
of θ is 40. This approach also works in settings, where the ratings rij represent quantities
that are bought, rather than binary indicators. In such cases, the weights wij are computed
by treating these quantities as the ratings in Equation 3.29, but the factorized matrix is
a derivative binary indicator matrix RI of the quantity matrix R = [rij]. This indicator
matrix RI is derived from R by copying the zero entries and substituting the nonzero
entries with 1s. This approach of weighted factorization of the indicator matrix is therefore
slightly different from the example of Figure 3.12, which was presented purely for illustrative
purposes.

When working with weighted entries, it is possible to modify stochastic gradient descent
methods with weights (cf. section 6.5.2.1 of Chapter 6). However, the problem is that implicit
feedback matrices are fully specified, and many of the gradient-descent methods no longer
remain computationally viable in large-scale settings. An efficient (weighted) ALS method
was proposed in [260] for the factorization process in order to avoid the computational
challenge of handing the large number of zero entries. Although this approach does not
impose non-negativity on the factors, it can be easily generalized to the non-negative setting.

3.6.6.4 Ratings with Both Likes and Dislikes

Our discussion of non-negative matrix factorization so far has focussed only on implicit
feedback matrices in which there is a mechanism to specify a liking for an item but no
mechanism to specify a dislike. As a result, the underlying “ratings” matrices are always
non-negative. Although one can use non-negative matrix factorization for nominally non-
negative ratings (e.g., from 1 to 5), which explicitly specify both likes and dislikes, there

3.6. LATENT FACTOR MODELS 125

are no special interpretability advantages of using non-negative matrix factorization in such
cases. For example, the rating scale might be from 1 to 5, wherein a value of 1 indicates
extreme dislike. In this case, one cannot treat the unspecified entries as 0, and one must
work only with the set of observed entries. As before, we denote the set of observed entries
in the ratings matrix R = [rij] by S:

S = {(i, j) : rij is observed} (3.30)

The optimization problem (with regularization) is stated in terms of these observed
entries as follows:

Minimize J =
1

2

∑

(i,j)∈S

(

rij −
k∑

s=1

uis · vjs

)2

+
λ

2

m∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js

subject to:

U ≥ 0

V ≥ 0

This formulation is similar to the regularized formulation in unconstrained matrix factor-
ization. The only difference is the addition of the non-negativity constraints. In such cases,
modifications are required to the update equations that are used for unconstrained matrix
factorization. First, one must initialize the entries of U and V to non-negative values in
(0, 1). Then, a similar update can be made, as in the section on unconstrained matrix fac-
torization. In fact, the update equations in section 3.6.4.2 can be used directly. The main
modification is to ensure that non-negativity is maintained during updates. If any compo-
nent of U or V violates the non-negativity constraint as a result of the update, then it is
set to 0. The updates are performed to convergence as in all stochastic gradient descent
methods.

Other solution methodologies are often used to compute optimal solutions to such mod-
els. For example, it is possible to adapt an alternating least-squares approach to non-negative
matrix factorization. The main difference is that the coefficients of the least-squares re-
gression are constrained to be non-negative. A wide variety of projected gradient descent,
coordinate descent, and nonlinear programming methods are also available to handle such
optimization models [76, 357].

In the setting where ratings specify both likes and dislikes, non-negative matrix fac-
torization has no special advantages over unconstrained matrix factorization in terms of
interpretability. This is because one can no longer interpret the solution from a sum-of-
parts perspective. For example, the addition of three dislike ratings cannot be interpreted as
leading to a like rating. Furthermore, because of the addition of non-negativity constraints,
the quality of the solution is reduced over that of unconstrained matrix factorization when
computed over the observed entries. However, this does not always mean that the quality
of the solution will be worse when computed over the unobserved entries. In real settings,
positive relationships between users and items are more important than negative relation-
ships between users and items. As a result, non-negativity constraints often introduce a bias
which is beneficial in avoiding overfitting. As in the case of unconstrained matrix factoriza-
tion, one can also incorporate user and item biases to further improve the generalization
performance.

126 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

3.6.7 Understanding the Matrix Factorization Family

It is evident that the various forms of matrix factorization in the previous sections share a
lot in common. All of the aforementioned optimization formulations minimize the Frobenius
norms of the residual matrix (R − UV T) subject to various constraints on the factor ma-
trices U and V . Note that the goal of the objective function is to make UV T approximate
the ratings matrix R as closely as possible. The constraints on the factor matrices achieve
different interpretability properties. In fact, the broader family of matrix factorization mod-
els can use any other objective function or constraint to force a good approximation. This
broader family can be written as follows:

Optimize J = [Objective function quantifying matching between R and UV T]

subject to:

Constraints on U and V

The objective function of a matrix factorization method is sometimes referred to as the
loss function, when it is in minimization form. Note that the optimization formulation
may be either a minimization or a maximization problem, but the goal of the objective
function is always to force R to match UV T as closely as possible. The Frobenius norm is an
example of a minimization objective, and some probabilistic matrix factorization methods
use a maximization formulation such as the maximum-likelihood objective function. In most
cases, regularizers are added to the objective function to prevent overfitting. The various
constraints often impose different types of interpretability on the factors. Two examples
of such interpretability are orthogonality (which provides geometric interpretability) and
non-negativity (which provides sum-of-parts interpretability). Furthermore, even though
constraints increase the error on the observed entries, they can sometimes improve the
errors on the unobserved entries when they have a meaningful semantic interpretation.
This is because constraints reduce the variance16 on the unobserved entries while increasing
bias. As a result, the model has better generalizability. For example, fixing the entries in
a column in each of U and V to ones almost always results in better performance (cf.
section 3.6.4.5). Selecting the right constraints to use is often data-dependent and requires
insights into the application-domain at hand.

Other forms of factorization exist in which one can assign probabilistic interpretability to
the factors. For example, consider a scenario in which a non-negative unary ratings matrix
R is treated as a relative frequency distribution, whose entries sum to 1.

m∑

i=1

n∑

j=1

rij = 1 (3.31)

Note that it is easy to scale R to sum to 1 by dividing it with the sum of its entries. Such
a matrix can be factorized in a similar way to SVD:

R ≈ (QkΣk)P
T
k

= UV T

As in SVD, the diagonal matrix Σk is absorbed in the user factor matrix U = QkΣk, and
the item factor matrix V is set to Pk. The main difference from SVD is that the columns
of Qk and Pk are not orthogonal, but they are non-negative values summing to 1. Fur-
thermore, the entries of the diagonal matrix Σk are non-negative and they also sum to 1.

16Refer to Chapter 6 for a discussion of the bias-variance trade-off in collaborative filtering.

3.6. LATENT FACTOR MODELS 127

Table 3.3: The family of matrix factorization methods
Method Constraints Objective Advantages/Disadvantages

Unconstrained No constraints Frobenius Highest quality solution
+ Good for most matrices

regularizer Regularization prevents
overfitting
Poor interpretability

SVD Orthogonal Basis Frobenius Good visual interpretability
+ Out-of-sample recommendations

regularizer Good for dense matrices
Poor semantic interpretability
Suboptimal in sparse matrices

Max. Margin No constraints Hinge loss Highest quality solution
+ Resists overfitting

margin Similar to unconstrained
regularizer Poor interpretability

Good for discrete ratings
NMF Non-negativity Frobenius Good quality solution

+ High semantic interpretability
regularizer Loses interpretability with

both like/dislike ratings
Less overfitting in some cases
Best for implicit feedback

PLSA Non-negativity Maximum Good quality solution
Likelihood High semantic interpretability

+ Probabilistic interpretation
regularizer Loses interpretability with

both like/dislike ratings
Less overfitting in some cases
Best for implicit feedback

Such a factorization has a probabilistic interpretation; the matrices Qk, Pk and Σk contain
the probabilistic parameters of a generative process that creates the ratings matrix. The
objective function learns the parameters of this generative process so that the likelihood
of the generative process creating the ratings matrix is as large as possible. Therefore, the
objective function is in maximization form. Interestingly, this method is referred to as Prob-
abilistic Latent Semantic Analysis (PLSA), and it can be viewed as a probabilistic variant
of non-negative matrix factorization. Clearly, the probabilistic nature of this factorization
provides it with a different type of interpretability. A detailed discussion of PLSA may
be found in [22]. In many of these formulations, optimization techniques such as gradient
descent (or ascent) are helpful. Therefore, most of these methods use very similar ideas in
terms of formulating the optimization problem and the underlying solution methodology.

Similarly, maximum margin factorization [180, 500, 569, 624] borrows ideas from support
vector machines to add a maximum margin regularizer to the objective function and some
of its variants [500] are particularly effective for discrete ratings. This approach shares a
number of conceptual similarities with the regularized matrix factorization method discussed
in section 3.6.4. In fact, the maximum margin regularizer is not very different than that
used in unconstrained matrix factorization. However, hinge loss is used to quantify the
errors in the approximation, rather than the Frobenius norm. While it is beyond the scope
of this book to discuss these variants in detail, a discussion may be found in [500, 569]. The
focus on maximizing the margin often provides higher quality factorization than some of
the other models in the presence of overfitting-prone data. In Table 3.3, we have provided a
list of various factorization models and their characteristics. In most cases, the addition of

128 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

constraints such as non-negativity can reduce the quality of the underlying solution on the
observed entries, because it reduces the space of feasible solutions. This is the reason that
unconstrained and maximum margin factorization are expected to have the highest quality
of global optima. Nevertheless, since the global optimum cannot be easily found in most
cases by the available (iterative) methods, a constrained method can sometimes perform
better than an unconstrained method. Furthermore, the accuracy over observed entries may
be different from that over unobserved entries because of the effects of overfitting. In fact,
non-negativity constraints can sometimes improve the accuracy over unobserved entries in
some domains. Some forms of factorization such as NMF cannot be applied to matrices
with negative entries. Clearly, the choice of the model depends on the problem setting, the
noise in the data, and the desired level of interpretability. There is no single solution that
can achieve all these goals. A careful understanding of the problem domain is important for
choosing the correct model.

3.7 Integrating Factorization and Neighborhood
Models

Neighborhood-based methods are generally considered inherently different from other opti-
mization models because of their heuristic nature. Nevertheless, it was shown in section 2.6
of Chapter 2 that neighborhood methods can also be understood in the context of optimiza-
tion models. This is a rather convenient framework because it paves the way for integration
of neighborhood models with other optimization models, such as latent factor models. The
approach in [309] integrates the item-wise model of section 2.6.2 in Chapter 2 with the
SVD++ model of section 3.6.4.6.

Assume that the ratings matrix R is mean centered. In other words, the global mean μ
of the ratings matrix is already subtracted from all the entries, and all predictions will be
performed on mean-centered values. The global mean μ can be added back to the predicted
values in a postprocessing phase. With this assumption on the ratings matrix R = [rij], we
will re-visit the various portions of the model.

3.7.1 Baseline Estimator: A Non-Personalized Bias-Centric Model

The non-personalized bias-centric model predicts the (mean-centered) ratings in R purely
as an addition of user and item biases. In other words, ratings are explained completely by
user generosity and item popularity, rather than specific and personalized interests of users
in items. Let buseri be the bias variable for user i, and bitemj be the bias variable for item j.
Then, the prediction of such a model is as follows:

r̂ij = buseri + bitemj (3.32)

Let S be the pairs of indices corresponding to the observed entries in the ratings matrix.

S = {(i, j) : rij is observed} (3.33)

Then, buseri and bitemj can be determined by formulating an objective function over the
errors eij = rij − r̂ij in the observed entries as follows:

Minimize J =
1

2

∑

(i,j)∈S

(rij − r̂ij)
2
+

λ

2

⎛

⎝
m∑

u=1

(buseru)2 +

n∑

j=1

(bitemj)2

⎞

⎠

3.7. INTEGRATING FACTORIZATION AND NEIGHBORHOOD MODELS 129

This optimization problem can be solved via gradient descent using the following update
rules over each observed entry (i, j) in S in a stochastic gradient descent method:

buseri ⇐ buseri + α(eij − λbuseri)

bitemj ⇐ bitemj + α(eij − λbitemj)

The basic framework of the gradient-descent method is similar to that in Figure 3.9, except
for the differences in the choice of optimization variables and corresponding update steps.
Interestingly, a pure bias-centric model can often provide reasonable predictions in spite of
its non-personalized nature. This is especially the case when the amount of ratings data is
limited. After solving for the values of buseri and bitemj , we set Bij to the predicted value of
r̂ij according to Equation 3.32. This value of Bij is then treated as a constant throughout
this section rather than as a variable. Therefore, the first step of the integrated model
solution is to determine the constant value Bij by solving the non-personalized model. This
non-personalized model can also be viewed as a baseline estimator because Bij is a rough
baseline estimate to the values of the rating rij . In general, subtracting the value of Bij from
each observed entry rij results in a new matrix that can often be estimated more robustly
by most of the models discussed in earlier sections and chapters. This section provides a
specific example of how neighborhood models may be adjusted with the use of the baseline
estimator though its applicability is much broader.

3.7.2 Neighborhood Portion of Model

We replicate the neighborhood-based prediction relationship of Equation 2.29 (cf. sec-
tion 2.6.2 of Chapter 2) as follows:

r̂ij = buseri + bitemj +

∑
l∈Qj(i)

witem
lj · (ril − buseri − biteml)
√
|Qj(i)|

(3.34)

Although the aforementioned equation is that same as Equation 2.29 of Chapter 2, the
subscript notations have been changed to ensure consistency with the latent factor models
in this section. Here buseri is the user bias and bitemj is the item bias. The variable witem

lj

represents the item-item regression coefficient between item l and item j. The set Qj(i)
represents17 the subset of the K nearest items to item j, that have been rated by user i.
Furthermore, one of the occurrences of buseri + biteml in Equation 3.34 is replaced with
the constant value Bil (derived using the approach of the previous section). The resulting
prediction is as follows:

r̂ij = buseri + bitemj +

∑
l∈Qj(i)

witem
lj · (ril −Bil)

√
|Qj(i)|

(3.35)

It is noteworthy that the bias variables buseri and bitemj are parameters to be optimized,
whereas Bil is a constant. One can set up an optimization model that sums up the squared
errors e2ij = (rij − r̂ij)

2 in addition to regularization terms. A stochastic gradient-descent
approach can be used to determine a solution to the neighborhood portion of the model.

17Note that we use upper-case variable K to represent the size of the neighborhood that defines Qj(i).
This is a deviation from section 2.6.2 of Chapter 2. We use lower-case variable k to represent the dimen-
sionality of the factor matrices. The values of k and K are generally different.

130 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

The resulting gradient-descent steps are as follows:

buseri ⇐ buseri + α(eij − λbuseri)

bitemj ⇐ bitemj + α(eij − λbitemj)

witem
lj ⇐ witem

lj + α2

(
eij · (ril −Bil)
√
|Qj(i)|

− λ2 · witem
lj

)

∀l ∈ Qj(i)

This neighborhood model can be enhanced further with implicit feedback by introducing
item-item implicit feedback variables clj . The basic idea is that if item j is rated together
with many neighboring items by the same user i, then it should have an impact on the
predicted rating r̂ij . This impact is irrespective of the actual values of the ratings of these

neighbor items of j. This impact is equal to

∑
l∈Qj(i)

clj√
|Qj(i)|

. Note that the scaling of the ex-

pression with
√
|Qj(i)| is done in order to adjust for varying levels of sparsity in different

user-item combinations. Then, the neighborhood model with implicit feedback can be writ-
ten as follows:

r̂ij = buseri + bitemj +

∑
l∈Qj(i)

witem
lj · (ril −Bil)

√
|Qj(i)|

+

∑
l∈Qj(i)

clj
√
|Qj(i)|

(3.36)

On creating a least-squares optimization model with respect to the error eij = rij − r̂ij , one
can compute the gradient and derive the stochastic gradient-descent steps. This results in
the following modified set of updates:

buseri ⇐ buseri + α(eij − λbuseri)

bitemj ⇐ bitemj + α(eij − λbitemj)

witem
lj ⇐ witem

lj + α2

(
eij · (ril −Bil)
√
|Qj(i)|

− λ2 · witem
lj

)

∀l ∈ Qj(i)

clj ⇐ clj + α2

(
eij

√
|Qj(i)|

− λ2 · clj

)

∀l ∈ Qj(i)

The work in [309] assumes a more general framework, in which the implicit feedback matrix
is not necessarily derived from only the ratings matrix. For example, a retailer might create
the implicit ratings matrix based on users who have browsed, rated, or bought an item.
This generalization is relatively straightforward to incorporate in our models by changing

the final term of Equation 3.36 to

∑
l∈Q′

j
(i) clj√|Q′
j(i)|

. Here, Q′
j(i) is the set of closest neighbors of

user i (based on explicit ratings), who have also provided some form of implicit feedback
for item j. This modification can also be applied to the latent factor portion of the model,
although we will consistently work with the simplified assumption that the implicit feedback
matrix is derived from the ratings matrix.

3.7.3 Latent Factor Portion of Model

The aforementioned prediction is made on the basis of the neighborhood model. A corre-
sponding latent factor model is introduced in section 3.6.4.6, in which implicit feedback is

3.7. INTEGRATING FACTORIZATION AND NEIGHBORHOOD MODELS 131

integrated with ratings information to make predictions. We replicate Equation 3.21 from
that section here:

r̂ij =
k+2∑

s=1

(

uis +
∑

h∈Ii

yhs
√
|Ii|

)

· vjs (3.37)

As in section 3.6.4.6, Ii represents the set of items rated by user i. The m× (k + 2) matrix
Y = [yhs] contains the implicit feedback variables, and its construction is described in
section 3.6.4.6. Furthermore, the (k + 2)th column of U contains only 1s, the (k + 1)th
column of V contains only 1s, and the last two columns of Y are 0s. Note that the right-
hand side of Equation 3.37 already accounts for the user and item biases. Since the last
two columns of the factor matrices contain the bias variables, the component

∑k+2
s=1 uisvjs

of Equation 3.37 includes the bias terms.

3.7.4 Integrating the Neighborhood and Latent Factor Portions

One can now integrate the two models in Equations 3.36 and 3.37 to create a single predicted
value as follows:

r̂ij =

∑
l∈Qj(i)

witem
lj · (ril −Bil)

√
|Qj(i)|

+

∑
l∈Qj(i)

clj
√
|Qj(i)|

︸ ︷︷ ︸
Neighborhood Component

+
k+2∑

s=1

(

uis +
∑

h∈Ii

yhs
√
|Ii|

)

· vjs
︸ ︷︷ ︸
Latent Factor Comp.+Bias

(3.38)

Note that the initial bias terms buseri + bitemj of Equation 3.36 are missing here because they
are included in the final term corresponding to the latent factor model. The same user and
item biases are now shared by both components of the model.

The corresponding optimization problem, which minimizes the aggregated squared error
e2ij = (rij − r̂ij)

2 over the entries in (observed set) S is as follows:

Minimize J =
1

2

∑

(i,j)∈S

(rij − r̂ij)
2 +

λ

2

k+2∑

s=1

⎛

⎝
m∑

i=1

u2
is +

n∑

j=1

v2js +
n∑

j=1

y2js

⎞

⎠+

+
λ2

2

n∑

j=1

∑

l∈∪iQj(i)

[
(witem

lj)2 + c2lj
]

subject to:

(k + 2)th column of U contains only 1s

(k + 1)th column of V contains only 1s

Last two columns of Y contain only 0s

The value of r̂ij in the aforementioned objective function can be materialized with the help
of Equation 3.38. As in all latent factor models, the sum of squares of the optimization
variables are included for regularization. Note that the different parameters λ and λ2 are
used for regularizing the sets of variables from the latent factor model and the neighborhood
model, respectively, for better flexibility in the optimization process.

3.7.5 Solving the Optimization Model

As in the case of all the other optimization models discussed in this chapter, a gradient
descent approach is used to solve the optimization problem. In this case, the optimization

132 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

model is rather complex because it contains a relatively large number of terms, and a large
number of variables. Nevertheless, the approach for solving the optimization model is exactly
the same as in the case of the latent factor model of section 3.6.4.6. A partial derivative
with respect to each optimization variable is used to derive the update step. We omit the
derivation of the gradient descent steps, and simply state them here in terms of the error
values eij = rij − r̂ij . The following rules may be used for each observed entry (i, j) ∈ S in
the ratings matrix:

uiq ⇐ uiq + α(eij · vjq − λ · uiq) ∀q ∈ {1 . . . k + 2}

vjq ⇐ vjq + α

(

eij ·
[

uiq +
∑

h∈Ii

yhq
√
|Ii|

]

− λ · vjq

)

∀q ∈ {1 . . . k + 2}

yhq ⇐ yhq + α

(
eij · vjq
√
|Ii|

− λ · yhq

)

∀q ∈ {1 . . . k + 2}, ∀h ∈ Ii

witem
lj ⇐ witem

lj + α2

(
eij · (ril −Bil)
√
|Qj(i)|

− λ2 · witem
lj

)

∀l ∈ Qj(i)

clj ⇐ clj + α2

(
eij

√
|Qj(i)|

− λ2 · clj

)

∀l ∈ Qj(i)

Reset perturbed entries in fixed columns of U , V , and Y

The first three updates can also be written in (k + 2)-dimensional vectorized form. Refer
to the section on SVD++ for a footnote containing these updates. We repeatedly loop
over all the observed ratings in S with a stochastic gradient descent method. The basic
algorithmic framework for stochastic gradient descent is described in Figure 3.9. The value
of α regulates the step size for variables associated with the latent factor portion of the
model, whereas α2 regulates the step size for variables associated with the neighborhood
portion of the model. The fixed columns of U , V , and Y should not be updated by these
rules, according to the constraints in the optimization model. This is achieved in practice
by always resetting them to their fixed values at the end of an iteration. Furthermore, these
columns are always initialized to their fixed values, as required by the constraints of the
optimization model. The regularization parameters can be selected by holding out a fraction
of the observed entries during training, and tuning the accuracy on the held out entries.
A more effective approach is to use the cross-validation method discussed in Chapter 7. It
is particularly important to use different step-sizes and regularization parameters for the
neighborhood and latent factor portions of the model to avoid poor performance.

3.7.6 Observations about Accuracy

It was shown in [309] that the combined model provided superior results to those of each
of the individual models. This is a result of the ability of the combined model to adapt to
varying characteristics of different portions of the data set. The basic idea is similar to that
used often in hybrid recommender systems (cf. Chapter 6) for combining different types of
models. One can try to approximate the results of the integrated model by using a weighted
average of the predictions of the two different component models. The relative weights
can be learned using the aforementioned hold-out or cross-validation techniques. However,
compared to the averaged model, the integrated model of this section is more powerful.
One reason is that the bias variables are shared by the two components, which prevents

3.7. INTEGRATING FACTORIZATION AND NEIGHBORHOOD MODELS 133

the overfitting of the bias variables to the specific nuances of each model. Furthermore,
the use of the prediction function of Equation 3.38 implicitly regulates the importance of
each portion of the model by automatically choosing appropriate values for each of the
variables in the optimization process. As a result, this type of integration often provides
superior accuracy. However, the model provides only slightly superior performance to that
given by SVD++, and the results are data-set dependent. One issue to keep in mind is that
the neighborhood model has more parameters to be optimized than SVD++. Significant
advantages will not be obtained by the neighborhood component unless the data set is
sufficiently large. For smaller data sets, increasing the number of parameters often leads to
overfitting. In this sense, the proper choice between asymmetric factor models, pure SVD
with biases, SVD++, and neighborhood-integrated factorization, often depends on the size
of the data set at hand. More complex models require larger data sets to avoid overfitting.
For very small data sets, one would do best with asymmetric factor models. For very large
data sets, the neighborhood-integrated factorization model is best. SVD++ generally does
better than pure SVD (with biases) in most settings.

3.7.7 Integrating Latent Factor Models with Arbitrary Models

The integration of latent factor models with neighborhood-based models provides useful
hints about integrating the former with other types of models such as content-based meth-
ods. Such an integration naturally leads to the creation of hybrid recommender systems. In
general, item profiles may be available in the form of descriptions of products. Similarly,
users might have explicitly created profiles describing their interests. Assume that the pro-
file for user i is denoted by the keyword vector C

user

i and the profile for item j is denoted

by the keyword vector C
item

j . Furthermore, assume that the observed ratings of user i are

denoted by R
user

i , and the observed ratings of item j are denoted by R
item

j . Then, one can
write the following general form of the prediction function:

r̂ij = [(U + FY)V T]ij
︸ ︷︷ ︸

Latent Factor Portion

+β F (C
user

i , C
item

j , R
user

i , R
item

j)
︸ ︷︷ ︸
Another Prediction Model

(3.39)

Here, β is a balancing factor that controls the relative importance of the two models. The

second term, which is F (C
user

i , C
item

j , R
user

i , R
item

j), is a parameterized function of the user
profile, item profile, user ratings, and item ratings. One can optimize the parameters of this
function jointly with the latent factors to minimize the error of prediction in Equation 3.39.

The integration of neighborhood and latent factor models can be viewed as a special
case of this method in which the function F () is a linear regression function that uses only

R
item

j and ignores all the other arguments. It is, however, possible to design an almost
infinite number of variants of this broader approach by varying the choice of function F ().
It is also possible to broaden the scope of F () by using other sources of data such as social
data, location, or time. In fact, virtually any collaborative filtering model, which is posed
in the form of a parameterized prediction function, can be integrated with the latent factor
model. Many methods have indeed been proposed in the research literature that integrate
various types of feature-based regression, topic modeling, or other novel data sources with
latent factor models. For example, a social regularization method (cf. section 11.3.8 of
Chapter 11) integrates the latent factor model with social trust information to improve
predictions. There is significant scope in improving the state of the art in recommender
systems by identifying new sources of data, whose predictive power can be integrated with
latent factor models using the aforementioned framework.

134 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

3.8 Summary

This chapter discusses a number of models for collaborative filtering. The collaborative
filtering problem can be viewed as a generalization of the problem of classification. Therefore,
many of the models that apply to classification also apply to collaborative filtering with
some generalization. A notable exception is that of latent factor models, which are highly
tailored to the collaborative filtering problem. Latent factor models use different types of
factorization in order to predict ratings. These different types of factorization differ in the
nature of their objective functions and the constraints on their basis matrices. Furthermore,
they may have different trade-offs in terms of accuracy, overfitting, and interpretability.
Latent factor models are the state-of-the-art in collaborative filtering. A wide variety of
latent factor models have been proposed, based on the choices of the objective function and
optimization constraints. Latent factor models can also be combined with neighborhood
methods to create integrated models, which can benefit from the power of both latent
factor models and neighborhood methods.

3.9 Bibliographic Notes

The problem of collaborative filtering is closely related to that of classification. Numerous
recommender systems have been proposed in the literature; these modify the various classifi-
cation models to perform recommendations. The relationship between collaborative filtering
and classification is discussed in [82]. The earliest association-based methods are described
in [524]. Various enhancements of the method, which use support levels specific to the item
at hand are discussed in [358, 359, 365]. The first two of these methods leverage user associ-
ations rather than item associations [358, 359]. Association rule-based systems have found
significant uses in Web-based personalization and recommender systems [441, 552]. Associa-
tion rule methods can be combined with neighborhood methods in order to extract localized
associations [25] between items or between users. Localized associations generally provide
more refined recommendations than is possible with global rule-based methods. A method
for performing collaborative filtering with the use of the Bayes method is discussed in [437].
The use of probabilistic relational models for collaborative filtering is proposed in [219].
Support vector machines for recommender systems are discussed in [638].

Neural networks have also been used recently for collaborative filtering [519, 679]. The
restricted Boltzmann machine (RBM) is a neural network with one input layer and one
hidden layer. This kind of network has been used for collaborative filtering [519], in which
the visible units correspond to items, and the training is done over all users in each epoch.
The rating of items by users results in the activation of the visible units. Since RBMs can
use nonlinearity within the units, they can sometimes achieve superior performance to latent
factor models. RBMs use factorized representations of the large parameter space to reduce
overfitting, and have been shown to be very accurate in the Netflix Prize contest. The basic
idea of factorized parameter representations has also been used other recent methods such
as factorization machines [493].

A detailed discussion of various dimensionality reduction methods may be found in [22].
The use of dimensionality reduction methods for neighborhood-based filtering was proposed
in [525]. The works in [24, 525], which were proposed independently, also discuss the earliest
uses of latent factor models as stand-alone methods for recommendation and missing data
imputation. The work in [24] combines an EM-algorithm with latent factor models to impute
missing entries. Stand-alone latent factor methods are particularly effective for collaborative

3.9. BIBLIOGRAPHIC NOTES 135

filtering and are the state-of-the-art in the literature. Methods for regularizing latent factor
methods are discussed by Paterek in [473]. The same work also introduces the notion of
user and item biases in latent factor models. An asymmetric factor model is discussed in
this work, in which users are not explicitly represented by latent factors. In this case, a user
factor is represented as a linear combination of the implicit factors of items she has rated.
As a result, the number of parameters to be learned is reduced. In fact, Paterek’s (relatively
under-appreciated) work [473] introduced almost all the basic innovations that were later
combined and refined in various ways [309, 311, 313] to create state-of-the-art methods such
as SVD++.

The early works [133, 252, 300, 500, 569, 666] showed how different forms of matrix
factorization could be used for recommendations. The difference between various forms of
matrix factorization is in the nature of the objective (loss) functions and the constraints on
the factor matrices. The method in [371] proposes the notion of kernel collaborative filtering,
which discovers nonlinear hyper-planes on which the ratings are distributed. This approach
is able to model more complex ratings distributions. These different types of factorization
lead to different trade-offs in quality, overfitting, and interpretability. Incremental methods
for collaborative filtering for matrix factorization are discussed in [96].

Many variations of the basic objective function and constraints are used in different
forms of matrix factorization. The works in [180, 500, 569, 624] explore maximum margin
factorization, which is very closely related to unconstrained matrix factorization. The main
difference is that a maximum margin regularizer is used with hinge loss in the objective
function, rather than using the Frobenius norm of the error matrix to quantify the loss. The
works in [252, 666] are non-negative forms of matrix factorization. A detailed discussion of
non-negative matrix factorization methods for complete data may be found in [22, 537].
The work in [666] explores the conventional non-negative factorization method with the
Frobenius norm, whereas the work in [252, 517] explores probabilistic forms of matrix fac-
torization. Some of the probabilistic versions also minimize the Frobenius norm but also
optimize the regularization simultaneously. Methods for combining Bayesian methods with
matrix factorization methods (in order to judiciously determine regularization parameters)
are discussed in [518]. Gibbs sampling is used to achieve this goal. Initialization techniques
for non-negative matrix factorization methods are discussed in [331]. After the popular-
ization of latent factor models by the Netflix Prize contest [73], other factorization-based
methods were also proposed for collaborative filtering [309, 312, 313]. One of the earliest
latent factor models, which works with implicit feedback data, is presented in [260]. The
SVD++ description in this book is borrowed from [309]. A recent work [184] imposes a
penalty proportional to the Frobenius norm of UV T to force unobserved values to have
lower ratings. The idea is to penalize higher ratings. This approach imposes stronger bi-
ases than [309] because it explicitly assumes that the unobserved ratings have lower values.
Furthermore, the ratings in [184] need to be non-negative quantities, so that the Frobenius
norm penalizes higher ratings to a greater degree. Some of the latent factor methods [309]
show how techniques such as SVD++ can be combined with regression-based neighbor-
hood methods (cf. section 3.7). Therefore, these methods combine linear regression with
factorization models. A matrix factorization method that uses singular value decomposi-
tion is discussed in [127]. The use of inductive matrix completion methods on collaborative
filtering matrices with side information is discussed in [267].

Various regression-based models are discussed in [72, 309, 342, 434, 620, 669]. A gen-
eral examination of linear classifiers, such as least-squares regression and support vector
machines (SVMs), is provided in [669]. This work was one of the earliest evaluations of
linear methods, although it was designed only for implicit feedback data sets, such as Web

136 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

click data or sales data, in which only positive preferences are available. It was observed
that collaborative filtering in such cases is similar in form to text categorization. However,
because of the noise in the data and the imbalanced nature of the class distribution, a
direct use of SVM methods is sometimes not effective. Changes to the loss function are
suggested in [669] in order to provide more accurate results. The approach shows that by
using a quadratic loss function in SVM optimization, one gets a form that is more similar
to the least-squares approach. The modified SVM performs either competitively to, or bet-
ter than the least-squares approach. The methods in [72, 309] are closely associated with
neighborhood-based methods, and they are discussed in section 2.6 of Chapter 2. The work
in [620] uses collections of linear models, which are modeled as ordinary least-squares prob-
lems. The use of regression-based models, such as slope-one predictors, is discussed in [342].
As discussed in section 2.6 of Chapter 2, regression models can be used to show the for-
mal connection between model-based methods and neighborhood-based methods [72, 309].
Other methods for combining regression with latent factor models are discussed in [13]. The
works in [321, 455] develop various types of sparse linear models (SLIM) that combine the
neighborhood approach with regression and matrix factorization. The SLIM approach is
primarily designed for implicit feedback data sets.

A significant amount of work has been devoted to the choice of methodology for deter-
mining the solution to the underlying optimization problems. For example, a discussion of
the trade-offs between gradient-descent and stochastic gradient descent is provided in [351],
and mini-batches are proposed to bridge the gap between the two. Alternating least-squares
methods are discussed in [268, 677]. The original idea of alternating least squares are pro-
posed in the positive matrix factorization of complete matrices [460]. Methods for large-scale
and distributed stochastic gradient descent in latent factor models are proposed in [217].
The main trade-off between stochastic descent and alternating least squares is the trade-off
between stability and efficiency. The former method is more efficient, whereas the latter is
more stable. It has been suggested that coordinate descent methods [650] can be efficient,
while retaining stability. It has also been shown [651] that non-parametric methods have
several advantages for large-scale collaborative filtering with latent factor models. Methods
for addressing cold-start issues in latent factor models are discussed in [676]. The Netflix
Prize competition was particularly notable in the history of latent factor models because
it resulted in several useful lessons [73] about the proper implementation of such models.
Recently, latent factor models have been used to model richer user preferences. For exam-
ple, the work in [322] shows how one might combine global preferences with interest-specific
preferences to make recommendations.

3.10 Exercises

1. Implement a decision tree-based predictor of ratings for an incomplete data sets. Use
the dimensionality reduction approach described in the chapter.

2. How would you use a rule-based collaborative filtering system in the case where ratings
are real-numbers in [−1, 1].

3. Design an algorithm that combines association rule methods with clustering for rec-
ommendations in order to discover localized associations in unary data. What is the
advantage of this approach over a vanilla rule-based method?

4. The naive Bayes model discussed in this chapter predicts the ratings of each item
using the user’s other ratings as a conditional. Design a Bayes model that uses the

3.10. EXERCISES 137

item’s other ratings as a condition. Discuss the advantages and disadvantages of each
model. Identify a case in which each approach would work better. How would you
combine the predictions of the two models?

5. Suppose that a merchant had a unary matrix containing the buying behavior of various
customers. Each entry in the matrix contains information about whether or not a
customer has bought a particular item. Among the users that have not bought an
item yet, the merchant wishes to rank all the users in order of their propensity to buy
it. Show how to use the Bayes model to achieve this goal.

6. Use the Bayes model on Table 3.1 to determine the probability that John might buy
Bread in the future. Treat 0s in the table as values that are actually specified for the
ratings, rather than as missing values (except for John’s ratings for Bread and Beef).
Determine the probability that he might buy Beef in the future. Is John more likely
to buy Bread or Beef in the future?

7. Implement the naive Bayes model for collaborative filtering.

8. Perform a straightforward rank-2 SVD of the matrix in Table 3.2 by treating missing
values as 0. Based on the use of SVD, what are the predicted ratings for the missing
values of user 3? How does this compare with the results shown in the example of
section 3.6.5.4, which uses a different initialization? How do the results compare to
those obtained using the Bayes model described in the chapter?

9. Suppose you are given a matrix R which can be factorized as R = UV T , where the
columns of U are mutually orthogonal and the columns of V are mutually orthogonal.
Show how to factorize R into three matrices in the form QΣPT , where the columns
of P and Q are orthonormal and Σ is a non-negative diagonal matrix.

10. Implement the unconstrained matrix factorization method with stochastic gradient
descent and batch updates.

11. Discuss the changes required to the alternating least-squares method for unconstrained
matrix factorization, when one constrains the last column of the user-factor matrix
to contain only 1s, and the second-last column of the item-factor matrix to contain
only 1s. This method is useful for incorporating user and item biases in unconstrained
matrix factorization.

12. Discuss how you might apply the alternating least-squares method for designing latent
factor models with implicit feedback.

13. Let the m×k matrix F , n×k matrix V , and and n×k matrix Y be defined as discussed
in the asymmetric factor model portion of section 3.6.4.6. Assume a simplified setting
of asymmetric factor models in which we do not need to account for user and item
biases.

(a) Show that the stochastic gradient-descent updates for each observed entry (i, j)
in the ratings matrix R are as follows:

vjq ⇐ vjq + α

(

eij ·
[
∑

h∈Ii

yhq√
|Ii|

]

− λ · vjq

)

∀q ∈ {1 . . . k}

yhq ⇐ yhq + α

(
eij · vjq√

|Ii|
− λ · yhq

)

∀q ∈ {1 . . . k}, ∀h ∈ Ii

138 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

Here, eij = rij − r̂ij is the error of observed entry (i, j) and Ii is the set of items
for which user i has specified ratings.

(b) What changes would need to be made to the definitions of various matrices and
to the updates to account for user and item biases?

Chapter 4

Content-Based Recommender Systems

“Form must have a content, and that content must be linked with
nature.”– Alvar Aalto

4.1 Introduction

The collaborative systems discussed in the previous chapters use the correlations in the
ratings patterns across users to make recommendations. On the other hand, these methods
do not use item attributes for computing predictions. This would seem rather wasteful;
after all, if John likes the futuristic science fiction movie Terminator, then there is a very
good chance that he might like a movie from a similar genre, such as Aliens. In such
cases, the ratings of other users may not be required to make meaningful recommendations.
Content-based systems are designed to exploit scenarios in which items can be described
with descriptive sets of attributes. In such cases, a user’s own ratings and actions on other
movies are sufficient to discover meaningful recommendations. This approach is particularly
useful when the item is new, and there are few ratings available for that item.

Content-based recommender systems try to match users to items that are similar to what
they have liked in the past. This similarity is not necessarily based on rating correlations
across users but on the basis of the attributes of the objects liked by the user. Unlike
collaborative systems, which explicitly leverage the ratings of other users in addition to that
of the target user, content-based systems largely focus on the target user’s own ratings and
the attributes of the items liked by the user. Therefore, the other users have little, if any, role
to play in content-based systems. In other words, the content-based methodology leverages
a different source of data for the recommendation process. As we will see in Chapter 6, many
recommender systems leverage the power of both sources. Such recommender systems are
referred to as hybrid recommender systems.

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 4

139

140 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

At the most basic level, content-based systems are dependent on two sources of data:

1. The first source of data is a description of various items in terms of content-centric
attributes. An example of such a representation could be the text description of an
item by the manufacturer.

2. The second source of data is a user profile, which is generated from user feedback about
various items. The user feedback might be explicit or implicit. Explicit feedback may
correspond to ratings, whereas implicit feedback may correspond to user actions. The
ratings are collected in a way similar to collaborative systems.

The user profile relates the attributes of the various items to user interests (ratings).
A very basic example of a user profile might simply be a set of labeled training
documents of item descriptions, the user ratings as the labels, and a classification
or regression model relating the item attributes to the user ratings. The specific user
profile is heavily dependent on the methodology at hand. For example, explicit ratings
might be used in one setting, and implicit feedback might be used in another. It is also
possible for the user to specify her own profile in terms of keywords of interest, and
this approach shares some characteristics with knowledge-based recommender systems.

It is noteworthy that the ratings of the other users usually play no role in a content-based
recommendation algorithm. This is both an advantage and a disadvantage, depending on the
scenario at hand. On the one hand, in cold-start scenarios, where little information about
the ratings of other users is available, such an approach can still be used as long as sufficient
information about the user’s own interests are available. This, at least, partially alleviates
the cold-start problem when the number of other users in the recommender system is small.
Furthermore, when an item is new, it is not possible to obtain the ratings of other users for
that item. Content-based methods enable recommendations in such settings because they
can extract the attributes from the new item, and use them to make predictions. On the
other hand, the cold-start problem for new users cannot be addressed with content-based
recommender systems. Furthermore, by not using the ratings of other users, one reduces
the diversity and novelty of the recommended items. In many cases, the recommended
items may be obvious items for the user, or they may be other items that the user has
consumed before. This is because the content attributes will always recommend items with
similar attributes to what the user has seen in the past. A recommended item with similar
attributes often presents little surprise to the user. These advantages and disadvantages will
be discussed in a later section of this chapter.

Content-based systems are largely used in scenarios in which a significant amount of
attribute information is available at hand. In many cases, these attributes are keywords,
which are extracted from the product descriptions. In fact, the vast majority of content-
based systems extract text attributes from the underlying objects. Content-based systems
are, therefore, particularly well suited to giving recommendations in text-rich and unstruc-
tured domains. A classical example of the use of such systems is in the recommendation of
Web pages. For example, the previous browsing behavior of a user can be utilized to create a
content-based recommender system. However, the use of such systems is not restricted only
to the Web domain. Keywords from product descriptions are used to create item and user
profiles for the purposes of recommendations in other e-commerce settings. In other set-
tings, relational attributes such as manufacturer, genre, and price, may be used in addition
to keywords. Such attributes can be used to create structured representations, which can
be stored in a relational database. In these cases, it is necessary to combine the structured
and unstructured attributes in a single structured representation. The basic principles of

4.2. BASIC COMPONENTS OF CONTENT-BASED SYSTEMS 141

content-based systems, however, remain invariant to whether a structured or unstructured
representation is used. This is because most learning methods in the structured domain
have direct analogs in the unstructured domain, and vice versa. To preserve uniformity in
exposition, our discussion in this chapter will be focused on unstructured settings. However,
most of these methods can be easily adapted to structured settings.

Content-based systems are closely related to knowledge-based recommender systems. A
summary of the relationship between the various types of systems is provided in Table 1.2
of Chapter 1. Like content-based systems, knowledge-based recommender systems use the
content attributes of the items to make recommendations. The main difference is that
knowledge-based systems support the explicit specification of user requirements in conjunc-
tion with interactive interfaces between the user and the recommender systems. Knowledge
bases are used in conjunction with this interactivity to match user requirements to items.
On the other hand, content-based systems generally use a learning-based approach based on
historical ratings. Therefore, knowledge-based systems provide better control to the user in
the recommendation process, whereas content-based systems leverage past behavior more
effectively. Nevertheless, these differences are not so significant, and some content-based
methods also allow users to explicitly specify their interest profiles. A number of systems
leverage both the learning and interactive aspects within a unified framework. Such systems
are referred to as hybrid recommender systems. Knowledge-based recommender systems are
discussed in Chapter 5, whereas hybrid recommender systems are discussed in Chapter 6.

This chapter is organized as follows. The next section provides an overview of the basic
components of a content-based recommender system. Feature extraction and selection meth-
ods are discussed in section 4.3. The process of learning user profiles and leveraging them
for recommendations is discussed in section 4.4. A comparison of the main properties of col-
laborative and content-based systems is provided in section 4.5. The connections between
collaborative filtering and content-based methods are explored in section 4.6. A summary
is given in section 4.7.

4.2 Basic Components of Content-Based Systems

Content-based systems have certain basic components, which remain invariant across differ-
ent instantiations of such systems. Since content-based systems work with a wide variety of
item descriptions and knowledge about users, one must convert these different types of un-
structured data into standardized descriptions. In most cases, it is preferred to convert the
item descriptions into keywords. Therefore, content-based systems largely, but not exclu-
sively, operate in the text domain. Many natural applications of content-based systems are
also text-centric. For example, news recommender systems are often content-based systems,
and they are also text-centric systems. In general, text classification and regression mod-
eling methods remain the most widely used tools for creating content-based recommender
systems.

The main components of content-based systems include the (offline) preprocessing por-
tion, the (offline) learning portion, and the online prediction portion. The offline portions
are used to create a summarized model, which is often a classification or regression model.
This model is then used for the online generation of recommendations for users. The various
components of content-based systems are as follows:

1. Preprocessing and feature extraction: Content-based systems are used in a wide variety
of domains, such as Web pages, product descriptions, news, music features, and so on.
In most cases, features are extracted from these various sources to convert them into

142 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

a keyword-based vector-space representation. This is the first step of any content-
based recommendation system, and it is highly domain-specific. However, the proper
extraction of the most informative features is essential for the effective functioning of
any content-based recommender system.

2. Content-based learning of user profiles: As discussed earlier, a content-based model
is specific to a given user. Therefore, a user-specific model is constructed to predict
user interests in items, based on their past history of either buying or rating items.
In order to achieve this goal, user feedback is leveraged, which may be manifested in
the form of previously specified ratings (explicit feedback) or user activity (implicit
feedback). Such feedbacks are used in conjunction with the attributes of the items in
order to construct the training data. A learning model is constructed on this training
data. This stage is often not very different from classification or regression modeling,
depending on whether the feedback is categorical (e.g., binary act of selecting an
item), or whether the feedback is numerical (e.g., ratings or buying frequency). The
resulting model is referred to as the user profile because it conceptually relates user
interests (ratings) to item attributes.

3. Filtering and recommendation: In this step, the learned model from the previous step
is used to make recommendations on items for specific users. It is important for this
step to be very efficient because the predictions need to be performed in real time.

In the following sections, we will describe each of these phases in detail. The second phase
of learning often utilizes off-the-shelf classification models. The field of data classification
is a vast area in its own right, and it is not the goal of this book to discuss classification
models in detail. Therefore, throughout this chapter, we will assume a working familiarity
with classification models. The goal will be to show how a specific classification model can
be used as a black-box in the recommender system and the kinds of classification models
that are specially suited to content-based recommender systems. A brief description of two
of the most commonly used models is included, but this is by no means an exhaustive
description. For the reader who is unfamiliar with classification models, pointers to several
useful resources are included in the bibliographic notes.

4.3 Preprocessing and Feature Extraction

The first phase in all content-based models is to extract discriminative features for rep-
resenting the items. Discriminative features are those, which are highly predictive of user
interests. This phase is highly dependent on the specific application at hand. For example,
a Web page recommendation system will be very different from a product recommendation
system.

4.3.1 Feature Extraction

In the feature extraction phase, the descriptions of various items are extracted. Although it
is possible to use any kind of representation, such as a multidimensional data representation,
the most common approach is to extract keywords from the underlying data. This choice is
because unstructured text descriptions are often widely available in a variety of domains,
and they remain the most natural representations for describing items. In many cases,
the items may have multiple fields describing various aspects of the item. For example, a
merchant selling books may have descriptions of the books and keywords describing the

4.3. PREPROCESSING AND FEATURE EXTRACTION 143

content, title, and author. In some cases, these descriptions can be converted into a bag
of keywords. In other cases, one might work directly with a multidimensional (structured)
representation. The latter is necessary when the attributes contain numerical quantities
(e.g., price) or fields that are drawn from a small universe of possibilities (e.g., color).

The various fields need to be weighted appropriately in order to facilitate their use
in the classification process. Feature weighting is closely related to feature selection, in
that the former is a soft version of the latter. In the latter case, attributes are either
included or not included depending on their relevance, whereas in the former case, features
are given differential weight depending on their importance. The issue of feature selection
will be discussed in detail in section 4.3.4. Because the feature extraction phase is highly
application-specific, we provide the reader with a flavor of the types of features that may
need to be extracted in the context of various applications.

4.3.1.1 Example of Product Recommendation

Consider a movie recommendation site1 such as IMDb [699], that provides personalized
recommendations for movies. Each movie is usually associated with a description of the
movie such as its synopsis, the director, actors, genre, and so on. A short description of
Shrek at the IMDb Website is as follows:

“After his swamp is filled with magical creatures, an ogre agrees to rescue a
princess for a villainous lord in order to get his land back.”

Many other attributes, such as user tags, are also available, which can be treated as content-
centric keywords.

In the case of Shrek, one might simply concatenate all the keywords in the various fields
to create a text description. The main problem is that the various keywords may not have
equal importance in the recommendation process. For example, a particular actor might
have greater importance in the recommendation than a word from the synopsis. This can
be achieved in two ways:

1. Domain-specific knowledge can be used to decide the relative importance of keywords.
For example, the title of the movie and the primary actor may be given more weight
than the words in the description. In many cases, this process is done in a heuristic
way with trial and error.

2. In many cases, it may be possible to learn the relative importance of various features
in an automated way. This process is referred to as feature weighting, which is closely
related to feature selection. Both feature weighting and feature selection are described
in a later section.

4.3.1.2 Example of Web Page Recommendation

Web documents require specialized preprocessing techniques because of some common prop-
erties of their structure and the richness of the links inside them. Two major aspects of Web
document preprocessing include the removal of specific parts of the documents (e.g., tags)
that are not useful and the leveraging of the actual structure of the document.

All fields in a Web document are not equally important. HTML documents have nu-
merous fields in them, such as the title, the meta-data, and the body of the document.

1The exact recommendation method used by IMDb is proprietary and not known to the author. The
description here is intended only for illustrative purposes.

144 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

Typically, analytical algorithms treat these fields with different levels of importance, and
therefore weight them differently. For example, the title of a document is considered more
important than the body and is weighted more heavily. Another example of a specially
processed portion of a Web document is anchor text. Anchor text contains a description
of the Web page pointed to by a link. Because of its descriptive nature, it is considered
important, but it is sometimes not relevant to the topic of the page itself. Therefore, it is
often removed from the text of the document. In some cases, where possible, anchor text
could even be added to the text of the document to which it points. This is because anchor
text is often a summary description of the document to which it points. The learning of the
importance of these various features can be done through automated methods, as discussed
in section 4.3.4.

A Web page may often be organized into content blocks that are not related to the
primary subject matter of the page. A typical Web page will have many irrelevant blocks,
such as advertisements, disclaimers, or notices, which are not very helpful for mining. It has
been shown that the quality of mining results improves when only the text in the main block
is used. However, the (automated) determination of main blocks from Web-scale collections
is itself a data mining problem of interest. While it is relatively easy to decompose the
Web page into blocks, it is sometimes difficult to identify the main block. Most automated
methods for determining main blocks rely on the fact that a particular site will typically
utilize a similar layout for all its documents. Therefore, the structure of the layout is learned
from the documents at the site by extracting tag trees from the site. Other main blocks are
then extracted through the use of the tree-matching algorithm [364, 662]. Machine learning
methods can also be used for this task. For example, the problem of labeling the main
block in a page can be treated as a classification problem. The bibliographic notes contain
pointers to methods for extracting the main block from a Web document.

4.3.1.3 Example of Music Recommendation

Pandora Internet radio [693] is a well-known music recommendation engine, which associates
tracks with features extracted from the Music Genome Project [703]. Examples of such
features of tracks could be “feature trance roots,” “synth riffs,” “tonal harmonies,” “straight
drum beats,” and so on. Users can initially specify a single example of a track of their interest
to create a “station.” Starting with this single training example, similar songs are played
for the user. The users can express their likes or dislikes to these songs.

The user feedback is used to build a more refined model for music recommendation. It is
noteworthy, that even though the underlying features are quite different in this case, they
can still be treated as keywords, and the “document” for a given song corresponds to the
bag of keywords associated with it. Alternatively, one can associate specific attributes with
these different keywords, which leads to a structural multidimensional representation.

The initial specification of a track of interest is more similar to a knowledge-based
recommender system than a content-based recommender system. Such types of knowledge-
based recommender systems are referred to as case-based recommender systems. However,
when ratings are leveraged to make recommendations, the approach becomes more similar
to that of a content-based recommender system. In many cases, Pandora also provides an
explanation for the recommendations in terms of the item attributes.

4.3. PREPROCESSING AND FEATURE EXTRACTION 145

4.3.2 Feature Representation and Cleaning

This process is particularly important when the unstructured format is used for representa-
tion. The feature extraction phase is able to determine bags of words from the unstructured
descriptions of products or Web pages. However, these representations need to be cleaned
and represented in a suitable format for processing. There are several steps in the cleaning
process:

1. Stop-word removal: Much of the text that is extracted from free-form descriptions
of items, will contain many words that are not specific to the item but that are a
common part of English vocabulary. Such words are typically high-frequency words.
For example, words such as ‘a,” “an,” and “the” will not be particularly specific to the
item at hand. In the movie recommendation application, it is common to find such
words in the synopsis. In general, articles, prepositions, conjunctions, and pronouns
are treated as stop-words. In most cases, standardized lists of stop-words are available
in various languages.

2. Stemming: In stemming, variations of the same word are consolidated. For example,
singular and plural forms of a word or different tenses of the same word are consoli-
dated. In some cases, common roots are extracted from various words. For example,
words such as “hoping” and “hope” are consolidated into the common root “hop.”
Of course, stemming can sometimes have a detrimental effect, because a word such
as “hop” has a different meaning of its own. Many off-the-shelf tools [710–712] are
available for stemming.

3. Phrase extraction: The idea is to detect words that occur together in documents on
a frequent basis. For example, a phrase such as “hot dog” means something different
from its constituent words. Manually defined dictionaries are available for phrase
extraction, although automated methods can also be used [144, 364, 400].

After executing these steps, the keywords are converted into a vector-space representation.
Each word is also referred to as a term. In the vector-space representation, documents are
represented as bags of words, together with their frequencies. Although it might be tempting
to use the raw frequency of word occurrence, this is often not desirable. This is because
commonly occurring words are often statistically less discriminative. Therefore, such words
are often discounted by down-weighting. This is similar to the principle of stop-words, except
that it is done in a soft way by discounting the word, rather than completely removing it.

How are words discounted? This is achieved by using the notion of inverse document
frequency. The inverse document frequency idi of the ith term is a decreasing function of
the number of documents ni in which it occurs.

idi = log(n/ni) (4.1)

Here, the number of documents in the collection is denoted by n.
Furthermore, care needs to be taken that the excessive occurrence of a single word in

the collection is not given too much importance. For example, when item descriptions are
collected from unreliable sources or open platforms, such as the Web, they are liable to
contain a significant amount of spam. To achieve this goal, a damping function f(·), such as
the square root or the logarithm, is optionally applied to the frequencies before similarity
computation.

f(xi) =
√
xi

f(xi) = log(xi)

146 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

Frequency damping is optional and is often omitted. Omitting the damping process is
equivalent to setting f(xi) to xi. The normalized frequency h(xi) for the ith word is defined
by combining the inverse document frequency with the damping function:

h(xi) = f(xi)idi (4.2)

This model is popularly referred to as the tf-idf model, where tf represents the term fre-
quency and idf represents the inverse document frequency.

4.3.3 Collecting User Likes and Dislikes

Aside from the content about the items, it is also necessary to collect data about the user
likes and dislikes for the recommendation process. The data collection is done during the
offline phase, whereas recommendations are determined during the online phase when a
specific user is interacting with the system. The user for whom the prediction is performed
at any given time is referred to as the active user. During the online phase, the user’s own
preferences are combined with the content to create the predictions. The data about user
likes and dislikes can take on any of the following forms:

1. Ratings: In this case, users specify ratings indicating their preference for the item.
Ratings can be binary, interval-based, or ordinal. In rare cases, ratings can even be
real valued. The nature of the rating has a significant impact on the model used for
learning the user profiles.

2. Implicit feedback: Implicit feedback refers to user actions, such as buying or browsing
an item. In most cases, only the positive preferences of a user are captured with
implicit feedback but not negative preferences.

3. Text opinions: In many cases, users may express their opinions in the form of text
descriptions. In such cases, implicit ratings can be extracted from these opinions.
This form of rating extraction is related to the field of opinion mining and sentiment
analysis. This area is beyond the scope of this book. Interested readers are referred
to [364].

4. Cases: Users might specify examples (or cases) of items that they are interested in.
Such cases can be used as implicit feedback with nearest neighbor or Rocchio clas-
sifiers. However, when the similarity retrieval is used in conjunction with carefully
designed utility functions, these methods are more closely related to case-based recom-
mender systems. Case-based systems are a subclass of knowledge-based recommender
systems in which domain knowledge is used to discover matching items, instead of
learning algorithms (cf. section 5.3.1 of Chapter 5). It is often difficult to delineate
where content-based recommender systems end and knowledge-based recommender
systems begin. For example, Pandora Internet Radio often uses an initial case of
an interesting music album to set up “radio stations” for users with similar music
items. At a later stage, user feedback about likes and dislikes is utilized to refine
the recommendations. Therefore, the first part of the approach can be viewed as a
knowledge-based system, and the second part of the approach can be viewed as a
content-based (or collaborative) system.

In all the aforementioned cases, the likes or dislikes of a user for an item are finally converted
into a unary, binary, interval-based, or real rating. This rating can also be viewed as the
extraction of a class label or dependent variable, which is eventually leveraged for learning
purposes.

4.3. PREPROCESSING AND FEATURE EXTRACTION 147

4.3.4 Supervised Feature Selection and Weighting

The goal of feature selection and weighting is to ensure that only the most informative words
are retained in the vector-space representation. In fact, many well-known recommender
systems [60, 476] explicitly advocate that a size cut-off should be used on the number of
keywords. The experimental results in [476], which were performed in a number of domains,
suggested that the number of extracted words should be somewhere between 50 and 300.
The basic idea is that the noisy words often result in overfitting and should therefore be
removed a priori. This is particularly important, considering the fact that the number of
documents available to learn a particular user profile is often not very large. When the
number of documents available for learning is small, the tendency of the model to overfit
will be greater. Therefore, it is crucial to reduce the size of the feature space.

There are two distinct aspects to incorporating the feature informativeness in the doc-
ument representation. One is feature selection, which corresponds to the removal of words.
The second is feature weighting, which involves giving greater importance to words. Note
that stop-word removal and the use of inverse-document frequency are examples of feature
selection and weighting, respectively. However, these are unsupervised ways of feature se-
lection and weighting, where user feedback is given no importance. In this section, we will
study supervised methods for feature selection, which take the user ratings into account for
evaluating feature informativeness. Most of these methods evaluate the sensitivity of the
dependent variable to a feature in order to evaluate its informativeness.

The measures for computing feature informativeness can be used to either perform a hard
selection of features or to heuristically weight the features with a function of the computed
quantification of informativeness. The measures used for feature informativeness are also
different, depending on whether the user rating is treated as a numeric or categorical value.
For example, in the context of binary ratings (or ratings with a small number of discrete
values), it makes sense to use categorical rather than numeric representations. We will
also describe a few methods that are commonly used for feature weighting. In most of the
following descriptions, we will assume an unstructured (textual) representation, although
the methods can be generalized easily to structured (multidimensional) representations.
This is because the vector-space representation of text can be viewed as a special case
of the multidimensional representation. The bibliographic notes contain pointers to more
details of feature selection methods.

4.3.4.1 Gini Index

The Gini index is one of the most commonly used measures for feature selection. It is
a simple and intuitive measure, which is easy to understand. The Gini index is inherently
suited to binary ratings, ordinal ratings, or ratings which are distributed into a small number
of intervals. The latter case may sometimes be obtained by discretizing the ratings. The
ordering among the ratings is ignored, and each possible value of the rating is treated as
an instance of a categorical attribute value. This might seem like a disadvantage because
it loses information about the relative ordering of the ratings. However, in practice, the
number of possible ratings is usually small and therefore significant accuracy is not lost.

Let t be the total number of possible values of the rating. Among documents containing
a particular word w, let p1(w) . . . pt(w) be the fraction of the items rated at each of these t
possible values. Then, the Gini index of the word w is defined as follows:

Gini(w) = 1−
t∑

i=1

pi(w)
2 (4.3)

148 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

The value of Gini(w) always lies in the range (0, 1−1/t), with smaller values being indicative
of greater discriminative power. For example, when the presence of the wordw always results
in the document being rated at the jth possible rating value (i.e., pj(w) = 1), then such
a word is very discriminative for rating predictions. Correspondingly, the value of the Gini
index in such a case is 1− 12 = 0. When each value of pj(w) takes on the same value of 1/t,

the Gini index takes on its maximum value of 1−
∑t

i=1(1/t
2) = 1− 1/t.

4.3.4.2 Entropy

Entropy is very similar in principle to the Gini index except that information-theoretic
principles are used to design the measure. As in the previous case, let t be the total number of
possible values of the rating and p1(w) . . . pt(w) be the fraction of the documents containing
a particular word w, which are rated at each of these t possible values. Then, the entropy
of the word w is defined as follows:

Entropy(w) = −
t∑

i=1

pi(w)log(pi(w)) (4.4)

The value of Entropy(w) always lies in the range (0, 1), with smaller values being more
indicative of discriminative power. It is easy to see that entropy has similar characteristics
with the Gini index. In fact, these two measures often yield very similar results although they
have different probabilistic interpretations. The Gini index is easier to understand, whereas
entropy measures are more firmly grounded in mathematical principles from information
theory.

4.3.4.3 χ2-Statistic

The χ2-statistic can be computed by treating the co-occurrence between the word and class
as a contingency table. For example, consider a scenario where we are trying to determine
whether a particular word is relevant to a user’s buying interests. Assume that the user has
bought about 10% of the items in the collection, and the word w occurs in about 20% of the
descriptions. Assume that the total number of items (and corresponding documents) in the
collection is 1000. Then, the expected number of occurrences of each possible combination
of word occurrence and class contingency is as follows:

Term occurs in description Term does not occur

User bought item 1000 ∗ 0.1 ∗ 0.2 = 20 1000 ∗ 0.1 ∗ 0.8 = 80
User did not buy item 1000 ∗ 0.9 ∗ 0.2 = 180 1000 ∗ 0.9 ∗ 0.8 = 720

The aforementioned expected values are computed under the assumption that the occur-
rence of the term in the description and the user interest in the corresponding item are
independent of one another. If these two quantities are independent, then clearly the term
will be irrelevant to the learning process. However, in practice, the item may be highly
related to the item at hand. For example, consider a scenario where the contingency table
deviates from expected values and the user is very likely to buy the item containing the
term. In such a case, the contingency table may appear as follows:

4.3. PREPROCESSING AND FEATURE EXTRACTION 149

Term occurs in description Term does not occur

User bought item O1 = 60 O2 = 40
User did not buy item O3 = 140 O4 = 760

The χ2-statistic measures the normalized deviation between observed and expected values
across the various cells of the contingency table. In this case, the contingency table contains
p = 2 × 2 = 4 cells. Let Oi be the observed value of the ith cell and Ei be the expected
value of the ith cell. Then, the χ2-statistic is computed as follows:

χ2 =

p∑

i=1

(Oi − Ei)
2

Ei
(4.5)

Therefore, in the particular example of this table, the χ2-statistic evaluates to the following:

χ2 =
(60− 20)2

20
+

(40− 80)2

80
+

(140− 180)2

180
+

(760− 720)2

720
= 80 + 20 + 8.89 + 2.22

= 111.11

It is also possible to compute the χ2-statistic as a function of the observed values in the
contingency table without explicitly computing expected values. This is possible because
the expected values are functions of the aggregate observed values across rows and columns.
A simple arithmetic formula to compute the χ2-statistic in a 2 × 2 contingency table is as
follows (see Exercise 8):

χ2 =
(O1 +O2 +O3 +O4) · (O1O4 −O2O3)

2

(O1 +O2) · (O3 +O4) · (O1 +O3) · (O2 +O4)
(4.6)

Here, O1 . . . O4 are the observed frequencies according to the table above. It is easy to
verify that this formula yields the same χ2-statistic of 111.11. Note that the χ2-test can
also be interpreted in terms of the probabilistic level of significance with the use of a χ2

distribution. However, for practical purposes, it is sufficient to know that larger values of
the χ2-statistic indicate that a particular term and item are related to a greater degree.
Note that if the observed values are exactly equal to the expected values, then it implies
that the corresponding term is irrelevant to the item at hand. In such a case, the χ2-statistic
will evaluate to its least possible value of 0. Therefore, the top-k features with the largest
χ2-statistic are retained.

4.3.4.4 Normalized Deviation

The problem with most of the aforementioned measures is that they lose information about
the relative ordering of ratings. For cases in which the ratings have high granularity, the
normalized deviation is an appropriate measure.

Let σ2 be the variance of the ratings in all the documents. Furthermore, let μ+(w) be
the average rating of all documents containing the word w, and μ−(w) be the average rating
of all documents that do not contain the word w. Then, the normalized deviation of the
word w is defined as follows:

Dev(w) =
|μ+(w) − μ−(w)|

σ
(4.7)

Larger values of Dev(w) are indicative of more discriminatory words.

150 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

The aforementioned quantification is based on the relative distribution of the ratings
for documents containing a specific word with respect to the ratings distribution of all
documents. Such an approach is particularly suitable when ratings are treated as numerical
quantities. A related measure is the Fisher’s discrimination index, which computes the ratio
of the inter-class separation to the intra-class separation in the feature space (rather than
on the ratings dimension). This measure is described in detail in [22]. Fisher’s discriminant
index is however, better suited to categorical dependent variables rather than numerical
dependent variables, such as ratings.

4.3.4.5 Feature Weighting

Feature Weighting can be viewed as a soft version of feature selection. In the earlier section
on feature representation in this chapter, it was already discussed how measures such as the
inverse document frequency can be used to weight documents. However, the inverse docu-
ment frequency is an unsupervised measure that does not depend on user likes or dislikes.
A supervised measure can also be used to further weight the vector-space representation in
order to yield differential importance to different words. For example, in a movie recommen-
dation application, keywords describing a movie genre or actor name are more important
than words selected from the synopsis of the movie. On the other hand, the words in the
synopsis are also somewhat indicative of tastes. Therefore, they cannot be excluded either.
Feature weighting is a more refined approach for discriminating between various words by
using a weight rather than a hard binary decision. The simplest approach to feature weight-
ing is to take any of the feature selection measures and use them to derive the weights. For
example, the inverse of the Gini index or entropy could be used. In many cases, a heuristic
function can be further applied on the selection measure to control the sensitivity of the
weighting process. For example, consider the following weighting function g(w) for word w,
where a is a parameter greater than 1.

g(w) = a−Gini(w) (4.8)

The resulting weight g(w) will always lie in the range (a − 1, a). By varying the value of
a, the sensitivity of the weighting process can be controlled. Smaller values of a will lead
to greater sensitivity. The weight of each word w in the vector-space representation is then
multiplied by g(w). Similar weighting functions can be defined with respect to the entropy
and the normalized deviation. The process of selecting an appropriate feature weighting is
a highly heuristic process that varies significantly corresponding to the application at hand.
The value of a can be viewed as a parameter of the weighting function. It is also possible
to learn the optimal parameters of such a function using cross-validation techniques. Such
techniques are discussed in Chapter 7.

4.4 Learning User Profiles and Filtering

The learning of user profiles is closely related to the classification and regression modeling
problem. When the ratings are treated as discrete values (e.g., “thumbs up” or “thumbs
down”), the problem is similar to that of text classification. On the other hand, when the
ratings are treated as a set of numerical entities, the problem is similar to that of regression
modeling. Furthermore, the learning problem can be posed in both structured and unstruc-
tured domains. For homogeneity in presentation, we will assume that the descriptions of

4.4. LEARNING USER PROFILES AND FILTERING 151

items are in the form of documents. However, the approach can easily be generalized to any
type of multidimensional data because text is a special type of multidimensional data.

In each case, we assume that we have a set DL of training documents, which are labeled
by a specific user. This user is also referred to as the active user when that user obtains a
recommendation from the system. The training documents correspond to the descriptions of
items, which are extracted in the preprocessing and feature selection phases. Furthermore,
the training data contain the ratings assigned by the active user to these documents. These
documents are used to construct a training model. Note that the labels assigned by other
users (than the active user) are not used in the training process. Therefore, the training
models are specific to particular users, and they cannot be used for arbitrarily chosen
users. This is different from traditional collaborative filtering, in which methods like matrix
factorization build a single model across all users. The training model for a specific user
represents the user profile.

The labels on the documents correspond to the numeric, binary, or unary ratings. Assume
that the ith document in DL has a rating denoted by ci. We also have a set DU of testing
documents, which are unlabeled. Note that both DL and DU are specific to a particular
(active) user. The testing documents might correspond to descriptions of items, which might
be potentially recommended to the user but which have not yet been bought or rated by the
user. In domains such as news recommendation the documents in DU might correspond to
candidate Web documents for recommendation to the active user. The precise definition of
DU depends on the domain at hand, but the individual documents in DU are extracted in
a similar way to those in DL. The training model on DL is used to make recommendations
from DU to the active user. As in the case of collaborative filtering, the model can be used
to provide either a predicted value of the rating or a ranked list of top-k recommendations.

It is immediately evident that this problem is similar to that of classification and re-
gression modeling in the text domain. The reader is referred to a recent survey [21] for a
detailed discussion of many of these techniques. In the following, we will discuss some of
the common learning methods.

4.4.1 Nearest Neighbor Classification

The nearest neighbor classifier is one of the simplest classification techniques, and it can
be implemented in a relatively straightforward way. The first step is to define a similarity
function, which is used in the nearest neighbor classifier. The most commonly used simi-
larity function is the cosine function. Let X = (x1 . . . xd) and Y = (y1 . . . yd) be a pair of
documents, in which the normalized frequencies of the ith word are given by xi and yi,
respectively, in the two documents. Note that these frequencies are normalized or weighted
with the use of unsupervised tf-idf weighting or the supervised methods discussed in the
previous section. Then, the cosine measure is defined using these normalized frequencies as
follows:

Cosine(X,Y) =

∑d
i=1 xiyi

√∑d
i=1 x

2
i

√∑d
i=1 y

2
i

(4.9)

The cosine similarity is frequently used in the text domain because of its ability to adjust to
the varying lengths of the underlying documents. When this approach is used for other types
of structured and multidimensional data, other similarity/distance functions, such as the
Euclidean distance and Manhattan distance, are used. For relational data with categorical
attributes, various match-based similarity measures are available [22].

152 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

This similarity function is useful in making predictions for items (documents) in which
the user preference is unknown. For each document in DU , its k-nearest neighbors in DL

are determined using the cosine similarity function. The average value of the rating for the
k neighbors of each item in DU is determined. This average value is the predicted rating for
the corresponding item in DU . An additional heuristic enhancement is that one can weight
each rating with the similarity value. In cases where ratings are treated as categorical values,
the number of votes for each value of the rating is determined, and the rating value with the
largest frequency is predicted. The documents in DU are then ranked based on the predicted
value of the rating, and the top items are recommended to the user.

The main challenge with the use of this approach is its high computational complexity.
Note that the nearest neighbor of each document in DU needs to be determined, and the
time required for each nearest neighbor determination is linear to the size of DL. Therefore,
the computational complexity is equal to |DL| × |DU |. One way of making the approach
faster is to use clustering to reduce the number of training documents in DL. For each
distinct value of the rating, the corresponding subset of documents in DL are clustered into
p � |DL| groups. Therefore, if there are s distinct values of the ratings, then the total
number of groups is p · s. Typically, a fast centroid-based (i.e., k-means) clustering is used
to create each group of p clusters. Note that the number of groups p · s is significantly
smaller than the number of training documents. In such cases, each group is converted into
a larger document corresponding to the concatenation2 of the documents in that group. The
vector-space representation of this larger document can be extracted by adding up the word
frequencies of its constituents. The corresponding rating label associated with the document
is equal to the rating of the constituent documents. For each target document T , the closest
k < p documents are found from this newly created set of p documents. The average rating
of this set of k documents is returned as the label for the target. As in the previous case,
the rating is predicted for each item in DU , and the top-ranked items are returned to the
active user. This approach speeds up the classification process, because one must compute
the similarity between the target document and a relatively small number of aggregated
documents. Even though this approach incurs an additional preprocessing overhead of clus-
tering, this overhead is generally small compared to the savings at recommendation time
when the sizes of DL and DU are large.

A special case of this clustering-based approach is one in which all documents belonging
to a particular value of the rating are aggregated into a single group. Thus, the value of
p is set to 1. The vector-space representation of the resulting vector of each group is also
referred to as the prototype vector. For a test document, the rating of the closest document
is reported as the relevant one for the target. This approach is closely related to Rocchio
classification, which also allows for the notion of relevance feedback from the active user.
The Rocchio method was originally designed for binary classes, which, in our case, translate
to binary ratings. The bibliographic notes contain pointers to the Rocchio method.

4.4.2 Connections with Case-Based Recommender Systems

Nearest neighbor methods are connected to knowledge-based recommender systems in gen-
eral, and case-based recommender systems in particular. Knowledge-based recommender
systems are discussed in detail in Chapter 5. The main difference is that in case-based
recommender systems, the user interactively specifies a single example of interest, and the
nearest neighbors of this example are retrieved as possible items of interest for the user.

2For structured data, the centroid of the group may be used.

4.4. LEARNING USER PROFILES AND FILTERING 153

Furthermore, a significant amount of domain knowledge is used in the design of the simi-
larity function, because only a single example is available. This single example can be more
appropriately viewed as a user requirement rather than a historical rating, because it is
specified interactively. In knowledge-based systems, there is less emphasis on using histori-
cal data or ratings. Like the Rocchio method, such methods are also interactive, although
the interactivity is far more sophisticated in case-based systems.

4.4.3 Bayes Classifier

The Bayes classifier is discussed in section 3.4 of Chapter 3 in collaborative filtering. How-
ever, the discussion in Chapter 3 is a non-standard use of the Bayes model in which the
missing entries are predicted from the specified ones. In the context of content-based rec-
ommender systems, the problem translates to a more conventional use of the Bayes model
for text classification. Therefore, we will revisit the Bayes model in the context of text
classification.

In this case, we have a setDL containing the training documents, and a setDU containing
the test documents. For ease in discussion, we will assume that the labels are binary in which
users specify either a like or a dislike rating as +1 or −1, respectively for each of the training
documents in DL. It is, however, relatively easy to generalize this classifier to the case where
the ratings take on more than two values.

As before, assume that the rating of the ith document in DL is denoted by ci ∈ {−1, 1}.
Therefore, this labeled set represents the user profile. There are two models that are com-
monly used in text data, which correspond to the Bernoulli and the multinomial models,
respectively. In the following, we will discuss only the Bernoulli model. The multinomial
model is discussed in detail in [22].

In the Bernoulli model, the frequencies of the words are ignored, and only the presence
or absence of the word in the document is considered. Therefore, each document is treated
as a binary vector of d words containing only values of 0 and 1. Consider a target doc-
ument X ∈ DU , which might correspond to the description of an item. Assume that the
d binary features in X are denoted by (x1 . . . xd). Informally, we would like to determine
P (Active user likes X|x1 . . . xd). Here, each xi is a 0-1 value, corresponding to whether or
not the ith word is present in the document X. Then, if the class (binary rating) of X is
denoted by c(X), this is equivalent to determining the value of P (c(X) = 1|x1 . . . xd). By
determining both P (c(X) = 1|x1 . . . xd) and P (c(X) = −1|x1 . . . xd) and selecting the larger
of the two, one can determine whether or not the active user likes X. These expressions can
be evaluated by using the Bayes rule and then applying a naive assumption as follows:

P (c(X) = 1|x1 . . . xd) =
P (c(X) = 1) · P (x1 . . . xd|c(X) = 1)

P (x1 . . . xd)

∝ P (c(X) = 1) · P (x1 . . . xd|c(X) = 1)

= P (c(X) = 1) ·
d∏

i=1

P (xi|c(X) = 1) [Naive Assumption]

The naive assumption states that the occurrences of words in documents are conditionally
independent events (on a specific class), and therefore one can replace P (x1 . . . xd|c(X) = 1)

with
∏d

i=1 P (xi|c(X) = 1). Furthermore, the constant of proportionality is used in the
first relationship because the denominator is independent of the class. Therefore, the de-
nominator does not play any role in deciding between the relative order of the classes.

154 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

The denominator, however, does play a role in terms of ranking the propensity of different
items (documents) to be liked by the user. This is relevant to the problem of ranking items
for a specific user, in order of P (c(X) = 1|x1 . . . xd).

In cases where such a ranking of the items is needed, the constant of proportionality is
no longer irrelevant. This is particularly common in recommendation applications where it
is not sufficient to determine the relative probabilities of items belonging to different rating
values, but to actually rank them with respect to one another. In such cases, the constant of
proportionality needs to be determined. Assume that the constant of proportionality in the
relationship above is denoted by K. The constant of proportionality K can be obtained by
using the fact that the sum of the probabilities of all possible instantiations of c(X) should
always be 1. Therefore, we have:

K ·
[

P (c(X) = 1) ·
d∏

i=1

P (xi|c(X) = 1) + P (c(X) = 1) ·
d∏

i=1

P (xi|c(X) = 1)

]

= 1

Therefore, we can derive the following value for K:

K =
1

P (c(X) = 1) ·
∏d

i=1 P (xi|c(X) = 1) + P (c(X) = −1) ·
∏d

i=1 P (xi|c(X) = −1)

This approach is used to determine the probability of a user liking each possible item in
DU . The items in DU are then ranked according to this probability and presented to the
user. These methods are particularly well suited to binary ratings. There are other ways
of using the probability to estimate the predicted value of the ratings and rank the items
when dealing with ratings that are not necessarily binary. Such methods are discussed in
detail in section 3.4 of Chapter 3.

4.4.3.1 Estimating Intermediate Probabilities

The Bayes method requires the computation of intermediate probabilities such as
P (xi|c(X) = 1). So far, we have not yet discussed how these probabilities can be esti-
mated in a data-driven manner. The main utility of the aforementioned Bayes rule is that it
expresses the prediction probabilities in terms of other probabilities [e.g., P (xi|c(X) = 1)]
that can be estimated more easily in a data-driven way. We reproduce the Bayes condition
above:

P (c(X) = 1|x1 . . . xd) ∝ P (c(X) = 1) ·
d∏

i=1

P (xi|c(X) = 1)

P (c(X) = −1|x1 . . . xd) ∝ P (c(X) = −1) ·
d∏

i=1

P (xi|c(X) = −1)

In order to compute the Bayes probabilities, we need to estimate the probabilities on
the right-hand side of the equations above. These include the prior class probabilities
P (c(X) = 1) and P (c(X) = −1). Furthermore, the feature-wise conditional probabilities,
such as P (xi|c(X) = 1) and P (xi|c(X) = −1), need to be estimated. The probability
P (c(X) = 1) can be estimated as the fraction of positive training examples D+

L in the la-
beled data DL. In order to reduce overfitting, Laplacian smoothing is performed by adding
values proportional to a small parameter α > 0 to the numerator and denominator.

P (c(X) = 1) =
|D+

L |+ α

|DL|+ 2 · α (4.10)

4.4. LEARNING USER PROFILES AND FILTERING 155

Table 4.1: Illustration of the Bayes method for a content-based system

Keyword ⇒ Drums Guitar Beat Classical Symphony Orchestra Like or
Song-Id ⇓ Dislike

1 1 1 1 0 0 0 Dislike
2 1 1 0 0 0 1 Dislike
3 0 1 1 0 0 0 Dislike
4 0 0 0 1 1 1 Like
5 0 1 0 1 0 1 Like
6 0 0 0 1 1 0 Like

Test-1 0 0 0 1 0 0 ?
Test-2 1 0 1 0 0 0 ?

The value of P (c(X) = −1) is estimated in an exactly similar way. Furthermore, the con-
ditional feature probability P (xi|c(X) = 1) is estimated as the fraction of the instances in
the positive class for which the ith feature takes on the value of xi. Let q+(xi) represent
the number of instances in the positive class that take on the value of xi ∈ {0, 1} for the
ith feature. Then, we can use a Laplacian smoothing parameter β > 0 to estimate the
probability as follows:

P (xi|c(X) = 1) =
q+(xi) + β

|D+
L |+ 2 · β

(4.11)

A similar approach can be used to estimate P (xi|c(X) = −1). Note that the Laplacian
smoothing is helpful for cases where little training data are available. In the extreme case,
whereD+

L is empty, the probability P (xi|c(X) = 1) would be (appropriately) estimated to be
0.5 as a kind of prior belief. Without smoothing, such an estimation would be indeterminate,
because both the numerator and denominator of the ratio would be 0. Laplacian smoothing,
like many regularization methods, can be interpreted in terms of the greater importance of
prior beliefs when the amount of training data is limited. Although we have presented the
aforementioned estimation for the case of binary ratings, it is relatively easy to generalize
the estimation when there are k distinct values of the ratings. A similar type of estimation
is discussed in the context of collaborative filtering in section 3.4 of Chapter 3.

4.4.3.2 Example of Bayes Model

We provide an example of the use of the Bayes model for a set of 6 training examples and
two test examples. In Table 4.1, the columns correspond to features representing properties
of various songs. The user like or dislike is illustrated in the final column of the table.
Therefore, the final column can be viewed as the rating. The first 6 rows correspond to the
training examples, which correspond to the user profile. The final pair of rows correspond
to two candidate music tracks that need to be ranked for the specific user at hand. In
machine learning parlance, these rows are also referred to as test instances. Note that the
final (dependent variable) column is specified only for the training rows because the user
like or dislike (ratings) are not known for the test rows. These values need to be predicted.

By examining the features in Table 4.1, it becomes immediately evident that the first
three features (columns) might often occur in many popular music genres such as rock
music, whereas the final three features typically occur in classical music. The user profile,
represented by Table 4.1 clearly seems to suggest a preference for classical music over rock

156 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

music. Similarly, among the test examples, only the first of the two examples seems to match
the user’s interests. Let us examine how the Bayes approach is able to derive this fact in a
data-driven way. For ease in computation, we will assume that Laplacian smoothing is not
used, although it is important to use such smoothing methods in real applications.

By using the Bayes model, we can derive the conditional probabilities for likes and
dislikes based on the observed features of the test examples:

P (Like|Test-1) ∝ 0.5

6∏

i=1

P (Like|xi)

= (0.5) · 3
4
· 2
2
· 3
4
· 3
3
· 1
4
· 1
3

=
3

128

P (Dislike|Test-1) ∝ 0.5
6∏

i=1

P (Dislike|xi)

= (0.5) · 1
4
· 0
2
· 1
4
· 0
3
· 3
4
· 2
3

= 0

By normalizing the two probabilities to sum to 1, we obtain the result that P (Like|Test-1)
is 1 and P (Dislike|Test-1) is 0. In the case of Test-2, exactly the opposite result is obtained
where P (Like|Test-2) is 0. Therefore, Test-1 should be recommended to the active user over
Test-2. This is the same result that we obtained on visual inspection of this example.

When Laplacian smoothing is used, we will not obtain such binary probability values
for the various classes, although one of the classes will obtain a much higher probability
than the other. In such cases, all the test examples can be ranked in order of their predicted
probability of a “Like” and recommended to the user. Laplacian smoothing is advisable
because a single 0-value in the product-wise form of the expression on the right-hand side
of the Bayes rule can result in a conditional probability value of 0.

4.4.4 Rule-based Classifiers

Rule-based classifiers can be designed in a variety of ways, including leave-one-out meth-
ods, as well as associative methods. A detailed description of the various types of rule-based
classifiers is provided in [18, 22]. In the following, we will discuss only associative classifiers
because they are based on the simple principles of association rules. A discussion of rule-
based methods is provided in section 3.3 of Chapter 3. Refer to that section for the basic
definitions of association rules and their measures, such as support and confidence. The sup-
port of a rule defines the fraction of rows satisfying both the antecedent and the consequent
of a rule. The confidence of a rule is the fraction of rows satisfying the consequent, from
the rows already known to satisfy the antecedent. The concept of a row “satisfying” the
antecedent or consequent is described in more detail below.

Rule-based classifiers in content-based systems are similar to rule-based classifiers in
collaborative filtering. In the item-item rules of collaborative filtering, both the antecedents
and consequents of rules correspond to ratings of items. The main difference is that the
antecedents of the rules in collaborative filtering correspond3 to the ratings of various items,

3A different approach in collaborative filtering is to leverage user-user rules. For user-user rules, the
antecedents and consequents may both contain the ratings of specific users. Refer to section 3.3 of Chapter 3.

4.4. LEARNING USER PROFILES AND FILTERING 157

whereas the antecedents of the rules in content-based methods correspond to the presence
of specific keywords in item descriptions. Therefore, the rules are of the following form:

Item contains keyword set A ⇒ Rating= Like

Item contains keyword set B ⇒ Rating=Dislike

Therefore, an antecedent of a rule is said to “satisfy” a particular row (keyword representa-
tion of item), if all keywords in the antecedent are contained in that row. The consequents
correspond to the various ratings, which we have assumed to be binary likes or dislikes for
simplicity. A row is said to satisfy the consequent of that rule if the rating value in the
consequent matches the dependent variable (rating) of that row.

The first step is to leverage the active user profile (i.e., training documents) to mine all
the rules at a desired level of support and confidence. As in all content-based methods, the
rules are specific to the active user at hand. For example, in the case of Table 4.1, the active
user seems to be interested in classical music. In this case, an example of a relevant rule,
which has 33% support and 100% confidence, is as follows:

{Classical, Symphony} ⇒ Like

Therefore, the basic idea is to mine all such rules for a given active user. Then, for target
items where the user’s interests are unknown, it is determined which rules are fired. A rule
is fired by a target item description if the former’s antecedent keywords are included in the
latter. Once all such fired rules have been determined for the active user, the average rating
in the consequents of these rules is reported as the rating of the target item. Many different
heuristics exist for combining the ratings of the consequents. For example, we can choose to
weight the rating with the confidence of the rule while computing the average. In the event
that no rule is fired, default heuristics need to be used. For example, one can determine
the average rating of the active user over all items and also determine the average rating of
the target item by all users. The average of these two quantities is reported. Therefore, the
overall approach for rule-based classification can be described as follows:

1. (Training phase:)Determine all the relevant rules from the user profile at the desired
level of minimum support and confidence from the training data set DL.

2. (Testing phase) For each item description in DU , determine the fired rules and an
average rating. Rank the items in DU on the basis of this average rating.

One advantage of rule-based systems is the high level of interpretability they provide. For
example, for a recommended item, one can use the keywords in the antecedent of the fired
rules to give a recommendation to the target user about why she might like a particular
item.

4.4.4.1 Example of Rule-based Methods

In order to illustrate the use of rule-based methods, we will provide an example of the rules
generated for the active user in Table 4.1. At a support level of 33% and confidence level of

158 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

75%, the following rules are generated along with their support-confidence values:

Rule 1: {Classical} ⇒ Like (50%, 100%)

Rule 2: {Symphony} ⇒ Like (33%, 100%)

Rule 3: {Classical, Symphony} ⇒ Like (33%, 100%)

Rule 4: {Drums, Guitar} ⇒ Dislike (33%, 100%)

Rule 5: {Drums} ⇒ Dislike (33%, 100%)

Rule 6: {Beat} ⇒ Dislike (33%, 100%)

Rule 7: {Guitar} ⇒ Dislike (50%, 75%)

The aforementioned rules are primarily sorted in order of decreasing confidence, with ties
broken in order of decreasing support. It is evident that rule 2 is fired by Test-1, whereas
rules 5 and 6 are fired by Test-2. Therefore, Test-1 should be preferred over Test-2 as a
recommendation to the active user. Note that the rules fired by Test-1 also provide an
understanding of why it should be considered the best recommendation for the active user.
Such explanations are often very useful in recommender systems both from the perspective
of the customer and the perspective of the merchant.

4.4.5 Regression-Based Models

Regression-based models have the merit that they can be used for various types of ratings
such as binary ratings, interval-based ratings, or numerical ratings. Large classes of regres-
sion models such as linear models, logistic regression models, and ordered probit models
can be used to model various types of ratings. Here, we will describe the simplest model,
which is referred to as linear regression. The bibliographic notes contain pointers to more
sophisticated regression methods.

Let DL be an n× d matrix representing the n documents in the labeled training set DL

on a lexicon of size d. Similarly, let y be an n-dimensional column vector containing the
ratings of the active user for the n documents in the training set. The basic idea in linear
regression is to assume that the ratings can be modeled as a linear function of the word
frequencies. Let W be a d-dimensional row vector representing the coefficients of each word
in the linear function relating word frequencies to the rating. Then, the linear regression
model assumes that the word frequencies in the training matrix DL are related to rating
vectors as follows:

y ≈ DLW
T

(4.12)

Therefore, the vector (DLW
T − y) is an n-dimensional vector of prediction errors. In order

to maximize the quality of the prediction, one must minimize the squared norm of this
vector. Furthermore, a regularization term λ||W ||2 may be added to the objective function
in order to reduce overfitting. This form of regularization is also referred to as Tikhonov
regularization. Here, λ > 0 is the regularization parameter. Therefore, the objective function
O can be expressed as follows:

Minimize O = ||DLW
T − y||2 + λ||W ||2 (4.13)

The problem can be solved by setting the gradient of this objective function with respect
to W to 0. This results in the following condition:

DT
L(DLW

T − y) + λW
T
= 0

(DT
LDL + λI)W

T
= DT

Ly

4.4. LEARNING USER PROFILES AND FILTERING 159

Table 4.2: The family of regression models and applicability to various types of ratings

Regression Model Nature of Rating (Target Variable)

Linear Regression Real
Polynomial Regression Real

Kernel Regression Real
Binary Logistic Regression Unary, Binary
Multiway Logistic regression Categorical, Ordinal

Probit Unary, Binary
Multiway Probit Categorical, Ordinal
Ordered Probit Ordinal, Interval-based

The matrix (DT
LDL+λI) can be shown to be positive-definite, and therefore invertible (see

Exercise 7). Therefore, we can directly solve for the weight vector W as follows:

W
T
= (DT

LDL + λI)−1DT
Ly (4.14)

Here, I is a d× d identity matrix. Therefore, a closed-form solution always exists for W
T
.

For any given document vector (item description) X from the unlabeled set DU , its rating
can be predicted as the dot product between W and X. Tikhonov regularization uses the
L2-regularization term λ · ||W ||2. It is also possible to use L1-regularization, in which this
term is replaced with λ · ||W ||. The resulting optimization problem does not have a closed-
form solution, and gradient descent methods must be used. This form of regularization,
also known as Lasso [242], can be used in the dual role of feature selection. This is because
such methods have the tendency to select sparse coefficient vectors for W , in which most
components of W take on the value of 0. Such features can be discarded. Therefore, L1-
regularization methods provide highly interpretable insights about important subsets of
features for the recommendation process. A detailed discussion of these models can be
found in [22].

The linear model is one example of a regression model that is suitable for real-valued
ratings. In practice, ratings might be unary, binary, interval-based, or categorical (small
number of ordinal values). Various linear models have been designed for different types of
target class variables. Some examples include logistic regression, probit regression, ordered
probit regression, and nonlinear regression. Unary ratings are often treated as binary rat-
ings, in which the unlabeled items are treated as negative instances. However, specialized
positive-unlabeled (PU) models exist for such cases [364]. Ordered probit regression is es-
pecially useful for interval-based ratings. Furthermore, nonlinear regression models, such as
polynomial regression and kernel regression, may be used in cases where the dependency
between the features and target variables is nonlinear. When the number of features is large
and the number of training samples is small, linear models usually perform quite well and
may, in fact, outperform nonlinear models. This is because linear models are less prone to
overfitting. Table 4.2 shows the mapping between the various regression models and the
nature of the target variable (rating).

4.4.6 Other Learning Models and Comparative Overview

As the problem of content-based filtering is a direct application of classification and regres-
sion modeling, many other techniques can be used from the literature. A detailed discussion
of various classification models can be found in [18, 86, 242, 436]. The decision-tree model

160 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

discussed in Chapter 3 can also be applied to content-based methods. However, for very
high-dimensional data, such as text, decision trees often do not provide very effective results.
Experimental results [477] have shown the poor performance of decision trees compared to
other classification methods. Even though rule-based classifiers are closely related to de-
cision trees, they can often provide superior results because they do not assume a strict
partitioning of the feature space. Successful results have been obtained with rule-based
classifiers for email classification [164, 165]. Among the various models, the Bayes approach
has the advantage that it can handle all types of feature variables with the use of an ap-
propriate model. Regression-based models are very robust, and they can handle all forms
of target variables. Logistic regression and ordered probit regression are particularly useful
for binary and interval-based ratings.

In the case of binary ratings, support vector machines [114] are a popular choice. Sup-
port vector machines are very similar to logistic regression; the main difference is that the
loss is quantified as a hinge-loss rather than with the use of the logit function. Support
vector machines are highly resistant to overfitting, and numerous off-the-shelf implemen-
tations exist. Both linear and kernel-based support vector machines have been used in the
literature. For the case of high-dimensional data, such as text, it has been observed that
linear support vector machines are sufficient. For such cases, specialized methods with lin-
ear performance [283] have been designed. Although neural networks [87] can be used for
building arbitrarily complex models, they are not advisable when the amount of available
data is small. This is because neural networks are sensitive to the noise in the underlying
data, and they can overfit the training data when its size is small.

4.4.7 Explanations in Content-Based Systems

Since content-based systems extract models based on content features, they often provide
highly interpretable insights for the recommendation process. For example, in a movie rec-
ommendation system, it is often useful to present the user with a reason as to why they
might like a specific movie, such as the presence of a particular genre feature, actor feature,
or an informative set of keywords. As a result, the active user will be able to make a more
informed choice about whether they should watch that movie. Similarly, a descriptive set of
keywords in a music recommendation system can provide a better understanding of why a
user might like a specific track. As a specific example, Pandora Internet radio [693] provides
explanations for recommended tracks, such as the following:

“We are playing this track because it features trance roots, four-on-the-floor
beats, disco influences, a knack for catchy hooks, beats made for dancing,
straight drum beats, clear pronunciation, romantic lyrics, storytelling lyrics,
subtle buildup/breakdown, a rhythmic intro, use of modal harmonies, the use
of chordal patterning, light drum fills, emphasis on instrumental performance,
a synth bass riff, synth riffs, subtle use of arpeggiatted synths, heavily effected
synths, and synth swoops.”

Each of these reported characteristics can be viewed as an important feature, which are
responsible for the classification of the test instance as a “like.” Note that such detailed
explanations are often lacking in collaborative systems, where a recommendation can be
explained only in terms of similar items, rather than in terms of detailed characteristics
of these items. The nature and extent of the insights are, however, highly sensitive to the
specific model used. For example, the Bayes model and rule-based systems are very highly

4.5. CONTENT-BASED VERSUS COLLABORATIVE RECOMMENDATIONS 161

interpretable in terms of the specific causality of the classification. Consider the example of
Table 4.1 in which the following rule is fired for the example Test-1:

{Symphony} ⇒ Like

It is evident that the user has been recommended the item described by Test-1 because it is a
symphony. Similarly, in the Bayes classification model, it is evident that the contribution of
P (Symphony|Like) is largest in the multiplicative formula for classification. Other models,
such as linear and nonlinear regression models, are harder to interpret. Nevertheless, certain
instances of these models, such as Lasso, provide important insights about the most relevant
features for the classification process.

4.5 Content-Based Versus Collaborative

Recommendations

It is instructive to compare content-based methods with the collaborative methods discussed
in Chapters 2 and 3. Content-based methods have several advantages and disadvantages
as compared to collaborative methods. The advantages of content-based methods are as
follows:

1. When a new item is added to a ratings matrix, it has no ratings from the various
users. None of the memory-based and model-based collaborative filtering methods
would recommend such an item, because sufficient ratings are not available for rec-
ommendation purposes. On the other hand, in the case of content-based methods,
the previous items rated by a given user are leveraged to make recommendations.
Therefore, as long as the user is not new, meaningful recommendations can always be
made in a way that treats the new item in a fair way in comparison to other items.
Collaborative systems have cold-start problems both for new users and new items,
whereas content-based systems have cold-start problems only for new users.

2. As discussed in the previous section, content-based methods provide explanations in
terms of the features of items. This is often not possible with collaborative recommen-
dations.

3. Content-based methods can generally be used with off-the-shelf text classifiers. Fur-
thermore, each user-specific classification problem is generally not very large, as in
the case of collaborative systems. Therefore, they are particularly easy to use with
relatively little engineering effort.

On the other hand, content-based methods also have several disadvantages that are not
present in collaborative recommenders.

1. Content-based systems tend to find items that are similar to those the user has seen
so far. This problem is referred to as overspecialization. It is always desirable to have
a certain amount of novelty and serendipity in the recommendations. Novelty refers
to the fact that the item is different from one the user has seen in the past. Similarly,
serendipity implies that the user would like to discover surprisingly relevant items that
they might otherwise not have found. This is a problem for content-based systems in
which attribute-based classification models tend to recommend very similar items.
For example, if a user has never listened to or rated classical music, a content-based

162 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

system will typically not recommend such an item to her because classical music will
be described by very different attribute values than those that the user has rated
so far. On the other hand, a collaborative system might recommend such items by
leveraging the interests of her peer group. For example, a collaborative system might
automatically infer a surprising association between certain pop songs and classical
songs and recommend the corresponding classical songs to a user who is a pop music
lover. Overspecialization and lack of serendipity are the two most significant challenges
of content-based recommender systems.

2. Even though content-based systems help in resolving cold-start problems for new
items, they do not help in resolving these problems for new users. In fact, for new users,
the problem in content-based systems may be more severe because a text classification
model usually requires a sufficient number of training documents to avoid overfitting.
It would seem rather wasteful that the training data for all the other users is discarded
and only the (small) training data set specific to a single user is leveraged.

In spite of these disadvantages, content-based systems often complement collaborative sys-
tems quite well because of their ability to leverage content-based knowledge in the recom-
mendation process. This complementary behavior is often leveraged in hybrid recommender
systems (cf. Chapter 6), in which the goal is to combine the best of both worlds to create an
even more robust recommender system. In general, content-based systems are rarely used
in isolation, and they are generally used in combination with other types of recommender
systems.

4.6 Using Content-Based Models for Collaborative
Filtering

There is an interesting connection between collaborative filtering models and content-based
methods. It turns out that content-based methods can be directly used for collaborative
filtering. Although the content description of an item refers to its descriptive keywords, it
is possible to envision scenarios, where the ratings of users are leveraged to define content-
based descriptions. For each item, one can concatenate the user name (or identifier) of a user
who has rated the item with the value of this rating to create a new “keyword.” Therefore,
each item would be described in terms of as many keywords as the number of ratings of
that item. For example, consider a scenario where the descriptions of various movies are as
follows:

Terminator: John#Like, Alice#Dislike, Tom#Like
Aliens: John#Like, Peter#Dislike, Alice#Dislike, Sayani#Like
Gladiator: Jack#Like, Mary#Like, Alice#Like

The “#” symbol is used to denote the demarcation of the concatenation and ensure a
unique keyword for each user-rating combination. This approach is generally more effective,
when the number of possible ratings is small (e.g., unary or binary ratings). After such
a content-based description has been constructed, it can be used in conjunction with an
off-the-shelf content-based algorithm. There is almost a one-to-one mapping between the
resulting methods and various collaborative filtering models, depending on the base method
used for classification. Although each such technique maps to a collaborative filtering model,

4.7. SUMMARY 163

the converse is not true because many collaborative filtering methods cannot be captured
by this approach. Nevertheless, we provide some examples of the mapping:

1. A nearest neighbor classifier on this representation approximately maps to an item-
based neighborhood model for collaborative filtering (cf. section 2.3.2 of Chapter 2).

2. A regression model on the content approximately maps to a user-wise regression model
for collaborative filtering (cf. section 2.6.1 of Chapter 2).

3. A rule-based classifier on the content approximately maps to an user-wise rule-based
classifier for collaborative filtering (cf. section 3.3.2 of Chapter 3).

4. A Bayes classifier on the content approximately maps to a user-wise Bayes model for
collaborative filtering (cf. Exercise 4 of Chapter 3).

Therefore, many methods for collaborative filtering can be captured by defining an appro-
priate content representation and directly using off-the-shelf content-based methods. These
observations are important because they open up numerous opportunities for hybridization.
For example, one can combine the ratings-based keywords with actual descriptive keywords
to obtain an even more robust model. In fact, this approach is often used in some hybrid
recommendation systems. Such an approach no longer wastes the available ratings data from
other users, and it combines the power of content-based and collaborative models within a
unified framework.

4.6.1 Leveraging User Profiles

Another case in which collaborative filtering-like models can be created with content at-
tributes is when user profiles are available in the form of specified keywords. For example,
users may choose to specify their particular interests in the form of keywords. In such cases,
instead of creating a local classification model for each user, one can create a global clas-
sification model over all users by using the user features. For each user-item combination,
a content-centric representation can be created by using the Kronecker-product of the at-
tribute vectors of the corresponding user and item [50]. A classification or regression model
is constructed on this representation to map user-item combinations to ratings. Such an
approach is described in detail in section 8.5.3 of Chapter 8.

4.7 Summary

This chapter introduces the methodology of content-based recommender systems in which
user-specific training models are created for the recommendation process. The content at-
tributes in item descriptions are combined with user ratings to create user profiles. Clas-
sification models are created on the basis of these models. These models are then used to
classify item descriptions that have as of yet not been rated by the user. Numerous classifi-
cation and regression models are used by such systems, such as nearest-neighbor classifiers,
rule-based methods, the Bayes method, and linear models. The Bayes method has been
used with great success in a variety of scenarios because of its ability to handle various
types of content. Content-based systems have the advantage that they can handle cold-
start problems with respect to new items, although they cannot handle cold-start problems
with respect to new users. The serendipity of content-based systems is relatively low because
content-based recommendations are based on the content of the items previously rated by
the user.

164 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

4.8 Bibliographic Notes

The earliest content-based systems were attributed to the work in [60] and the Syskill &
Webert [82, 476–478] systems. Fab, however, uses a partial hybridization design in which
the peer group is determined using content-based methods, but the ratings of other users
are leveraged in the recommendation process. The works in [5, 376, 477] provide excellent
overview articles on content-based recommender systems. The latter work was designed for
finding interesting Websites, and therefore numerous text classifiers were tested for their
effectiveness. In particular, the work in [82] provides a number of useful pointers about
the relative performance of various content-based systems. Probabilistic methods for user
modeling are discussed in [83]. The work in [163, 164] is notable for its use of rule-based
systems in e-mail classification. Rocchio’s relevance feedback [511] was also used during the
early years, although the work does not have theoretical underpinnings, and it can often
perform poorly in many scenarios. Numerous text classification methods, which can be used
for content-based recommendations, are discussed in [21, 22, 400]. A discussion of the notion
of serendipity in the context of information retrieval is provided in [599]. Some content-
based systems explicitly filter out very similar items in order to improve serendipity [85].
The work in [418] discusses how one can go beyond accuracy metrics to measure the quality
of a recommender system.

Methods for feature extraction, cleaning, and feature selection in text classification are
discussed in [21, 364, 400]. The extraction of the main content block from a Web page
containing multiple blocks is achieved with the help of the tree-matching algorithm can
be found in [364, 662]. The use of visual representations for extracting content structure
from Web pages is described in [126]. A detailed discussion of feature selection measures for
classification may be found in [18]. A recent text classification survey [21] discusses feature
selection algorithms for the specific case of text data.

Numerous real-world systems have been designed with the use of content-based systems.
Some of the earliest are Fab [60] and Syskill & Webert [477]. An early system, referred to
as Personal WebWatcher [438, 439], makes recommendations by learning the interests of
users from the Web pages that they visit. In addition, the Web pages that are linked
to by the visited page are used in the recommendation process. The Letizia system [356]
uses a Web-browser extension to track the user’s browsing behavior, and uses it to make
recommendations. A system known as Dynamic-Profiler uses a pre-defined taxonomy of
categories to make news recommendations to users in real time [636]. In this case, user Web
logs are used to learn the preferences and make personalized recommendations. The IfWeb
system [55] represents the user interests in the form of a semantic network. The WebMate
system [150] learns user profiles in the form of keyword vectors. This system is designed
for keeping track of positive user interests rather than negative ones. The general principles
in Web recommendations are not very different from those of news filtering. Methods for
performing news recommendations are discussed in [41, 84, 85, 392, 543, 561]. Some of these
methods use enhanced representations, such as WordNet, to improve the modeling process.
Web recommender systems are generally more challenging than news recommender systems
because the underlying text is often of lower quality. The Citeseer system [91] is able to
discover interesting publications in a bibliographic database by identifying the common
citations among the papers. Thus, it explicitly uses citations as a content mechanism for
determination of similarity.

Content-based systems have also been used in other domains such as books, music, and
movies. Content-based methods for book recommendations are discussed in [448]. The main
challenge in music recommendations is the semantic gap between easily available features

4.9. EXERCISES 165

and the likelihood of a user appreciating the music. This is a common characteristic be-
tween the music and the image domains. Some progress in bridging the semantic gap has
been made in [138, 139]. Pandora [693] uses the features extracted in the Music Genome
Project to make recommendations. The ITR system discusses how one might use text de-
scriptions [178] of items (e.g., book descriptions or movie plots) to make recommendations.
Further work [179] shows how one might integrate tags in a content-based recommender.
The approach uses linguistic tools such as WordNet to extract knowledge for the recom-
mendation process. A movie recommendation system that uses text categorization is the
INTIMATE system [391]. A method that combines content-based and collaborative recom-
mender systems is discussed in [520]. A broader overview of hybrid recommender systems is
provided in [117]. A potential direction of work, mentioned in [376], is to enhance content-
based recommender systems with encyclopedic knowledge [174, 210, 211], such as that
gained from Wikipedia. A few methods have been designed that use Wikipedia for movie
recommendation [341]. Interestingly, this approach does not improve the accuracy of the
recommender system. The application of advanced semantic knowledge in content-based
recommendations has been mentioned as a direction of future work in [376].

4.9 Exercises

1. Consider a scenario in which a user provides like/dislike ratings of a set of 20 items,
in which she rates 9 items as a “like” and the remaining as a “dislike.” Suppose
that 7 item descriptions contain the word “thriller,” and the user dislikes 5 of these
items. Compute the Gini index with respect to the original data distribution, and with
respect to the subset of items containing the word “thriller.” Should feature selection
algorithms retain this word in the item descriptions?

2. Implement a rule-based classifier with the use of association pattern mining.

3. Consider a movie recommender system in which movies belong to one or more of
the genres illustrated in the table, and a particular user provides the following set of
ratings to each of the movies.

Genre ⇒ Comedy Drama Romance Thriller Action Horror Like or
Movie-Id ⇓ Dislike

1 1 0 1 0 0 0 Dislike
2 1 1 1 0 1 0 Dislike
3 1 1 0 0 0 0 Dislike
4 0 0 0 1 1 0 Like
5 0 1 0 1 1 1 Like
6 0 0 0 0 1 1 Like

Test-1 0 0 0 1 0 1 ?
Test-2 0 1 1 0 0 0 ?

Mine all the rules with at least 33% support and 75% confidence. Based on these rules,
would you recommend the item Test-1 or Test-2 to the user?

4. Implement a Bayes classifier with Laplacian smoothing.

5. Repeat Exercise 3 with the use of a Bayes classifier. Do not use Laplacian smoothing.
Explain why Laplacian smoothing is important in this case.

166 CHAPTER 4. CONTENT-BASED RECOMMENDER SYSTEMS

6. Repeat Exercise 3 with the use of a 1-nearest neighbor classifier.

7. For a training data matrix D, regularized least-squares regression requires the
inversion of the matrix (DTD + λI), where λ > 0. Show that this matrix is always
invertible.

8. The χ2 distribution is defined by the following formula, as discussed in the chapter:

χ2 =

p∑

i=1

(Oi − Ei)
2

Ei

Show that for a 2× 2 contingency table, the aforementioned formula can be rewritten
as follows:

χ2 =
(O1 +O2 +O3 +O4) · (O1O4 −O2O3)

2

(O1 +O2) · (O3 +O4) · (O1 +O3) · (O2 +O4)

Here, O1 . . . O4 are defined in the same way as in the tabular example in the text.

Chapter 5

Knowledge-Based Recommender
Systems

“Knowledge is knowing that a tomato is a fruit. Wisdom is knowing not to put
it in a fruit salad.”–Brian O’Driscoll

5.1 Introduction

Both content-based and collaborative systems require a significant amount of data about
past buying and rating experiences. For example, collaborative systems require a reasonably
well populated ratings matrix to make future recommendations. In cases where the amount
of available data is limited, the recommendations are either poor, or they lack full coverage
over the entire spectrum of user-item combinations. This problem is also referred to as the
cold-start problem. Different systems have varying levels of susceptibility to this problem.
For example, collaborative systems are the most susceptible, and they cannot handle new
items or new users very well. Content-based recommender systems are somewhat better at
handling new items, but they still cannot provide recommendations to new users.

Furthermore, these methods are generally not well suited to domains in which the prod-
uct is highly customized. Examples include items such as real estate, automobiles, tourism
requests, financial services, or expensive luxury goods. Such items are bought rarely, and
sufficient ratings are often not available. In many cases, the item domain may be complex,
and there may be few instances of a specific item with a particular set of properties. For
example, one might want to buy a house with a specific number of bedrooms, lawn, locality,
and so on. Because of the complexity in describing the item, it may be difficult to obtain
a reasonable set of ratings reflecting the past history of a user on a similar item. Similarly,
an old rating on a car with a specific set of options may not even be relevant in the present
context.

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 5

167

168 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

How can one handle such customization and paucity of ratings? Knowledge-based rec-
ommender systems rely on explicitly soliciting user requirements for such items. However,
in such complex domains, it is often difficult for users to fully enunciate or even understand
how their requirements match the product availability. For example, a user may not even
be aware that a car with a certain combination of fuel efficiency and horsepower is avail-
able. Therefore, such systems use interactive feedback, which allows the user to explore the
inherently complex product space and learn about the trade-offs available between various
options. The retrieval and exploration process is facilitated by knowledge bases describ-
ing the utilities and/or trade-offs of various features in the product domain. The use of
knowledge bases is so important to an effective retrieval and exploration process, that such
systems are referred to as knowledge-based recommender systems.

Knowledge-based recommender systems are well suited to the recommendation of items
that are not bought on a regular basis. Furthermore, in such item domains, users are gener-
ally more active in being explicit about their requirements. A user may often be willing to
accept a movie recommendation without much input, but she would be unwilling to accept
recommendations about a house or a car without having detailed information about the
specific features of the item. Therefore, knowledge-based recommender systems are suited
to types of item domains different from those of collaborative and content-based systems. In
general, knowledge-based recommender systems are appropriate in the following situations:

1. Customers want to explicitly specify their requirements. Therefore, interactivity is a
crucial component of such systems. Note that collaborative and content-based systems
do not allow this type of detailed feedback.

2. It is difficult to obtain ratings for a specific type of item because of the greater com-
plexity of the product domain in terms of the types of items and options available.

3. In some domains, such as computers, the ratings may be time-sensitive. The ratings on
an old car or computer are not very useful for recommendations because they evolve
with changing product availability and corresponding user requirements.

A crucial part of knowledge-based systems is the greater control that the user has in guiding
the recommendation process. This greater control is a direct result of the need to be able to
specify detailed requirements in an inherently complex problem domain. At a basic level, the
conceptual differences in the three categories of recommendations are described in Table 5.1.
Note that there are also significant differences in the input data used by various systems.
The recommendations of content-based and collaborative systems are primarily based on
historical data, whereas knowledge-based systems are based on the direct specifications by
users of what they want. An important distinguishing characteristic of knowledge-based sys-
tems is a high level of customization to the specific domain. This customization is achieved
through the use of a knowledge-base that encodes relevant domain knowledge in the form of
either constraints or similarity metrics. Some knowledge-based systems might also use user
attributes (e.g., demographic attributes) in addition to item attributes, which are specified
at query time. In such cases, the domain knowledge might also encode relationships between
user attributes and item attributes. The use of such attributes is, however, not universal to
knowledge-based systems, in which the greater focus is on user requirements.

Knowledge-based recommender systems can be categorized on the basis of user interac-
tive methodology and the corresponding knowledge bases used to facilitate the interaction.
There are two primary types of knowledge-based recommender systems:

1. Constraint-based recommender systems: In constraint-based systems [196, 197], users
typically specify requirements or constraints (e.g., lower or upper limits) on the item

5.1. INTRODUCTION 169

Table 5.1: The conceptual goals of various recommender systems
Approach Conceptual Goal Input

Collaborative Give me recommendations based on a collaborative approach User ratings +
that leverages the ratings and actions of my peers/myself. community ratings

Content- Give me recommendations based on the content (attributes) User ratings +
based I have favored in my past ratings and actions. item attributes

Knowledge- Give me recommendations based on my explicit specification User specification +
based of the kind of content (attributes) I want. item attributes +

domain knowledge

attributes. Furthermore, domain-specific rules are used to match the user requirements
or attributes to item attributes. These rules represent the domain-specific knowledge
used by the system. Such rules could take the form of domain-specific constraints
on the item attributes (e.g., “Cars before year 1970 do not have cruise control.”).
Furthermore, constraint-based systems often create rules relating user attributes to
item attributes (e.g., “Older investors do not invest in ultrahigh-risk products.”). In
such cases, user attributes may also be specified in the search process. Depending
on the number and type of returned results, the user might have an opportunity to
modify their original requirements. For example, a user might relax some constraints
when too few results are returned, or add more constraints when too many results
are returned. This search process is interactively repeated until the user arrives at her
desired results.

2. Case-based recommender systems: In case-based recommender systems [102, 116, 377,
558], specific cases are specified by the user as targets or anchor points. Similarity
metrics are defined on the item attributes to retrieve similar items to these targets.
The similarity metrics are often carefully defined in a domain-specific way. Therefore,
the similarity metrics form the domain knowledge that is used in such systems. The
returned results are often used as new target cases with some interactive modifications
by the user. For example, when a user sees a returned result that is almost similar
to what she wants, she might re-issue a query with that target, but with some of the
attributes changed to her liking. Alternatively, a directional critique may be specified
to prune items with specific attribute values greater (or less) than that of a specific
item of interest. This interactive process is used to guide the user towards the final
recommendation.

Note that in both cases, the system provides an opportunity for the user to change her spec-
ified requirements. However, the way in which this is done is different in the two cases. In
case-based systems, examples (or cases) are used as anchor points to guide the search in con-
junction with similarity metrics, whereas in constraint-based systems, specific criteria/rules
(or constraints) are used to guide the search. In both cases, the presented results are used to
modify the criteria for finding further recommendations. Knowledge-based systems derive
their name from the fact that they encode various types of domain knowledge in the form
of constraints, rules, similarity metrics, and utility functions during the search process. For
example, the design of a similarity metric or a specific constraint requires domain-specific
knowledge, which is crucial to the effective functioning of the recommender system. In gen-
eral, knowledge-based systems draw on highly heterogeneous, domain-specific sources of
knowledge, compared to content-based and collaborative systems, which work with some-
what similar types of input data across various domains. As a result, knowledge-based

170 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

systems are highly customized, and they are not easily generalizable across various do-
mains. However, the broader principles with which this customization is done are invariant
across domains. The goal of this chapter is to discuss these principles.

The interaction between user and recommender may take the form of conversational
systems, search-based systems, or navigational systems. Such different forms of guidance
may be present either in isolation, or in combination, and they are defined as follows:

1. Conversational systems: In this case, the user preferences are determined in the con-
text of a feedback loop. The main reason for this is that the item domain is complex,
and the user preferences can be determined only in the context of an iterative conver-
sational system.

2. Search-based systems: In search-based systems, user preferences are elicited by using
a preset sequence of questions such as the following: “Do you prefer a house in a
suburban area or within the city?”

3. Navigation-based recommendation: In navigation-based recommendation, the user
specifies a number of change requests to the item being currently recommended.
Through an iterative set of change requests, it is possible to arrive at a desirable
item. An example of a change request specified by the user, when a specific house is
being recommended is as follows: “I would like a similar house about 5 miles west of
the currently recommended house.” Such recommender systems are also referred to
as critiquing recommender systems [120, 121, 417].

These different forms of guidance are well suited to different types of recommender systems.
For example, critiquing systems are naturally designed for case-based recommenders, be-
cause one critiques a specific case in order to arrive at the desired outcome. On the other
hand, a search-based system can be used to set up user requirements for constraint-based
recommenders. Some forms of guidance can be used with both constraint-based and case-
based systems. Furthermore, different forms of guidance can also be used in combination in
a knowledge-based system. There are no strict rules as to how one might design the inter-
face for a knowledge-based system. The goal is always to guide the user through a complex
product space.

Typical examples of the interactive process in constraint-based recommenders and case-
based recommenders are illustrated in Figures 5.1(a) and (b), respectively. The overall
interactive approach is quite similar. The main difference in the two cases is in terms of
how the user specifies the queries and interacts with the system for subsequent refinement.
In constraint-based systems, specific requirements (or constraints) are specified by the user,
whereas in case-based systems, specific targets (or cases) are specified. Correspondingly,
different types of interactive processes and domain knowledge are used in the two systems. In
constraint-based systems, the original query is modified by addition, deletion, modification,
or relaxation of the original set of user requirements. In case-based systems, either the target
is modified through user interaction, or the search results are pruned through the use of
directional critiques. In such critiques, the user simply states whether a specific attribute
in the search results needs to be increased, decreased, or changed in a certain way. Such an
approach represents a more conversational style than simply modifying the target. In both
these types of systems, a common motivation is that users are often not in a position to
exactly state their requirements up front in a complex product domain. In constraint-based
systems, this problem is partially addressed through a knowledge-base of rules, which map
user requirements to product attributes. In case-based systems, this problem is addressed

5.1. INTRODUCTION 171

SPECIFY
 USER

REQUIREMENTS
(CONSTRAINTS)

RETURN
RESULTS WITH
OPTIONS FOR

 REQUIREMENT
MODIFICATION

ARE
RESULTS

ACCEPTABLE?
YES

END

MAYBE:
EXPLORE
FURTHER

DOMAIN KNOWLEDGE
 (RULES BETWEEN

USER/ITEM ATTRIBUTES)

ENTRY
POINT

USER
SPECIFIES

MODIFICATION
TO

REQUIREMENTS

QUERY
WITH

MODIFIED
REQUIREMENTS

NO

SPECIFY
TARGET
OBJECT

OR
TARGET

ATTRIBUTES

RETURN
SIMILAR

RESULTS WITH
ATTRIBUTE

MODIFICATION
INTERFACE OR

OPTIONS

ARE
RESULTS

ACCEPTABLE?
YES

END

MAYBE:
EXPLORE
FURTHER DOMAIN

KNOWLEDGE
(SIMILARITY METRICS)

ENTRY
POINT

USER
SPECIFIES

ATTRIBUTE
MODIFICATION

(CRITIQUE)

QUERY
WITH

MODIFIED
TARGET AND

REDUCED
CANDIDATES

NO

(a) Constraint-based interaction

(b) Case-based interaction

Figure 5.1: Overview of interactive process in knowledge-based recommenders

172 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

Table 5.2: Examples of attributes in a recommendation application for buying homes

Item-Id Beds. Baths. Locality Type Floor Area Price

1 3 2 Bronx Townhouse 1600 220,000
2 5 2.5 Chappaqua Split-level 3600 973,000
3 4 2 Yorktown Ranch 2600 630,000
4 2 1.5 Yorktown Condo 1500 220,000
5 4 2 Ossining Colonial 2700 430,000

through a conversational style of critiquing. The interactive aspect is common to both
systems, and it is crucial in helping the users discover how the items in a complex product
domain fit their needs.

It is noteworthy that most forms of knowledge-based recommender systems depend
heavily on the descriptions of the items in the form of relational attributes rather than
treating them as text keywords like1 content-based systems. This is a natural consequence
of the inherent complexity in knowledge-based recommendations in which domain-specific
knowledge can be more easily encoded with relational attributes. For example, the attributes
for a set of houses in a real-estate application is illustrated in Table 5.2. In case-based
recommenders, the similarity metrics are defined in terms of these attributes in order to
provide similar matches to target homes provided by the user. Note that each relational
attribute would have a different significance and weight in the matching process, depending
on domain-specific criteria. In constraint-based systems, the queries are specified in the
form of requirements on these attributes, such as a maximum price on the house, or a
specific locality. Therefore, the problem reduces to an instance of the constraint-satisfaction
problem, where one must identify the relevant set of instances satisfying all the constraints.

This chapter is organized as follows. Constraint-based recommenders are introduced in
section 5.2. Case-based recommenders are discussed in section 5.3. The use of persistent
personalization in knowledge-based systems is discussed in section 5.4. A summary is given
in section 5.5.

5.2 Constraint-Based Recommender Systems

Constraint-based recommender systems allow the users to specify hard requirements or
constraints on the item attributes. Furthermore, a set of rules is used in order to match
the customer requirements with item attributes. However, the customers may not always
specify their queries in terms of the same attributes that describe the items. Therefore, an
additional set of rules is required that relates the customer requirements with the product
attributes. In relation to the previous home-buying example in Table 5.2, some examples of
customer-specified attributes are as follows:

Marital-status (categorical), Family-Size (numerical), suburban-or-city (binary), Min-
Bedrooms (numerical), Max-Bedrooms (numerical), Max-Price (numerical)

These attributes may represent either inherent customer properties (e.g., demographics),
or they may specify customer requirements for the product. Such requirements are usually

1Content-based systems are used both in the information retrieval and the relational settings, whereas
knowledge-based systems are used mostly in the relational setting.

5.2. CONSTRAINT-BASED RECOMMENDER SYSTEMS 173

specified interactively during the dialog between the customer and the recommender sys-
tem. Note that many of the requirement attributes are not included in Table 5.2. While the
mappings of some of the customer requirement attributes, such as Max-Price, to product at-
tributes are obvious, the mappings of others, such as suburban-or-rural, are not quite as obvi-
ous. Similarly, in a financial application, a customer may specify a product requirement such
as “conservative investments,” which needs to be mapped to concrete product attributes
(e.g., Asset-type=Treasuries) directly describing the products. Clearly, one must somehow
be able to map these customer attributes/requirements into the product attributes in order
to filter products for recommendation. This is achieved through the use of knowledge bases.
The knowledge bases contain additional rules that map customer attributes/requirements
to the product attributes:

Suburban-or-rural=Suburban ⇒ Locality= 〈List of relevant localities 〉
Such rules are referred to as filter conditions because they map user requirements to the item
attributes and use this mapping to filter the retrieved results. Note that these types of rules
may be either derived from the product domain, or, more rarely, they may be derived by
historical mining of such data sets. In this particular case, it is evident that this rule can be
derived directly using publicly available geographical information. Another example is the
car domain, where certain optional packages may be valid only with certain other attributes.
For example, a high-torque engine may be available only in a sports model. Such conditions
are also referred to as compatibility conditions, because they can be used to quickly discover
inconsistencies in the user-specified requirements with the product domain. In many cases,
such compatibility constraints can be integrated within the user interface. For example, the
car pricing site Edmunds.com prevents users from entering mutually inconsistent require-
ments within the user interface. In other cases, where inconsistency detection is not possible
within the user interface, such inconsistencies can be detected at query processing time by
returning empty sets of results.

Some of the other compatibility constraints may relate customer attributes to one an-
other. Such constraints are useful when customers specify personal information (e.g., de-
mographic information) about themselves during the interactive session. For example, de-
mographic attributes may be related to customer product requirements based on either
domain-specific constraints, or historical experience. An example of such a constraint is as
follows:

Marital-status=single ⇒ Min-Bedrooms≤5

Presumably, by either domain-specific experience or through data mining of historical data
sets, it has been inferred that single individuals do not prefer to buy very large houses.
Similarly, a small home might not be suitable for a very large family. This constraint is
modeled with the following rule:

Family-Size≥5 ⇒ Min-Bedrooms≥3

Thus, there are three primary types of input to the constraint-based recommender system:

1. The first class of inputs is represented by the attributes describing the inherent prop-
erties of the user (e.g., demographics, risk profiles) and specific requirements in the
product (e.g., Min-Bedrooms). Some of these attributes are easy to relate to product
attributes, whereas others can be related to product attributes only through the use
of knowledge bases. In most cases, the customer properties and requirements are spec-
ified interactively in a session, and they are not persistent across multiple sessions.

174 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

Therefore, if another user specifies the same set of requirements in a session, they will
obtain the same result. This is different from other types of recommender systems,
where the personalization is persistent because it is based on historical data.

2. The second class of inputs is represented by knowledge bases, which map customer
attributes/requirements to various product attributes. The mapping can be achieved
either directly or indirectly as follows:

• Directly: These rules relate customer requirements to hard requirements on
product attributes. An example of such a rule is as follows:

Suburban-or-rural=Suburban ⇒ Locality= 〈List of relevant localities 〉
Min-Bedrooms≥3 ⇒ Price≥100,000

Such rules are also referred to as filter conditions.

• Indirectly: These rules relate customer attributes/requirements to typically ex-
pected product requirements. Therefore, such rules can also be viewed as an
indirect way of relating customer attributes to product attributes. Examples of
such rules are as follows:

Family-Size≥5 ⇒ Min-Bedrooms≥3

Family-Size≥5 ⇒ Min-Bathrooms≥2

Note that the conditions on both sides of the rule represent customer attributes,
although the ones on the right-hand side are generally customer requirements,
which can be mapped to product attributes easily. These constraints represent
compatibility constraints. In the event that the compatibility constraints or filter
conditions are inconsistent with the customer-specified requirements, the recom-
mended list of items will be empty.

The aforementioned knowledge bases are derived from publicly available information,
domain experts, past experience, or data mining of historical data sets. Therefore, a
significant amount of effort is involved in building the knowledge bases.

3. Finally, the product catalog contains a list of all the products together with the cor-
responding item attributes. A snapshot of a product catalog for the home-buying
example is illustrated in Table 5.2.

Therefore, the problem boils down to determining all the instances in the available product
list that satisfy the customer requirements and the rules in the knowledge base.

5.2.1 Returning Relevant Results

The problem of returning relevant results can be shown to be an instance of the constraint
satisfaction problem by viewing each item in the catalog as a constraint on the attributes
and expressing the catalog in disjunctive normal form. This expression is then combined
with the rules in the knowledge base to determine whether a mutually consistent region of
the product space exists.

More simply, the set of rules and requirements can be reduced to a data filtering task on
the catalog. All the customer requirements and the active rules relevant to the customer are
used to construct a database selection query. The steps for creating such a filtering query
are as follows:

5.2. CONSTRAINT-BASED RECOMMENDER SYSTEMS 175

1. For each requirement (or personal attribute) specified by the customer in their user
interface, it is checked whether it matches the antecedent of a rule in the knowledge
base. If such a matching exists, then the consequent of that rule is treated as a valid
selection condition. For example, consider the aforementioned real-estate example. If
the customer has specified Family-Size=6 and ZIP Code=10547 among their personal
attributes and preferences in the user interface, then it is detected that Family-Size=6
triggers the following rules:

Family-Size≥5 ⇒ Min-Bedrooms≥3

Family-Size≥5 ⇒ Min-Bathrooms≥2

Therefore, the consequents of these conditions are added to the user requirements. The
rule base is again checked with these expanded requirements, and it is noticed that
the newly added constraint Min-Bedrooms≥ 3 triggers the following rules:

Min-Bedrooms≥3 ⇒ Price≥100,000

Min-Bedrooms≥3 ⇒ Bedrooms≥3

Min-Bathrooms≥3 ⇒ Bathrooms≥2

Therefore, the conditions Price≥100,000, and the range constraints on the requirement
attributes Min-Bedrooms and Min-Bathrooms are replaced with those on the product
attributes Bedrooms and Bathrooms. In the next iteration, it is found that no further
conditions can be added to the user requirements.

2. These expanded requirements are used to construct a database query in conjunctive
normal form. This represents a traditional database selection query, which computes
the intersection of the following constraints on the product catalog:

(Bedrooms≥3) ∧ (Bathrooms≥ 2) ∧ (Price≥100,000) ∧ (ZIP Code=10547)

Note that the approach essentially maps all customer attribute constraints and
requirement attribute constraints to constraints in the product domain.

3. This selection query is then used to retrieve the instances in the catalog that are
relevant to the user requirements.

It is noteworthy that most constraint-based systems enable specification of all user require-
ments or other attributes (e.g., preferences, demographic information) during the session
itself. In other words, the specified information is typically not persistent; if a different user
specifies the same input, they will get exactly the same result. This characteristic is common
to most knowledge-based systems. Section 5.4 will discuss some recent advancements in the
persistent personalization of knowledge-based systems.

The resulting list of items, which satisfy the constraints, is then presented to the user.
The methodology for ranking the items is discussed later in this section. The user may
then modify her requirements further to obtain more refined recommendations. The overall
process of exploration and refinement often leads the customer to discover recommendations
that she might otherwise not have been able to arrive at on her own.

176 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

5.2.2 Interaction Approach

The interaction between the user and the recommender system generally proceeds in three
phases.

1. An interactive interface is used by the user to specify her initial preferences. A common
approach is to use a Web style form in which the desired values of the attributes may
be entered. An example of a hypothetical interface for home buying, which we will
be using as a running example, is provided in Figure 5.2. Alternatively, the user
could be asked a series of questions to elicit her initial preferences. For example, the
car recommendation site Edmunds.com presents a series of interfaces to the users to
specify their preferences about the specific features they might want. The answers to
the queries in the first interface may affect the questions in the next interface.

2. The user is presented with a ranked list of matching items. An explanation for why the
items are returned is typically provided. In some cases, no items might match the user
requirements. In such cases, possible relaxations of the requirements might be sug-
gested. For example, in Figure 5.3, no results are returned by the query, and possible
relaxations are suggested. In cases, where too many items are returned, suggestions
for possible constraints (user requirements) are included. For example, in Figure 5.4,
too many results are returned. Possible constraints are suggested to be added to the
query.

3. The user then refines her requirements depending on the returned results. This refine-
ment might take the form of the addition of further requirements, or the removal of
some of the requirements. For example, when an empty set is returned, it is evident
that some of the requirements need to be relaxed. Constraint satisfaction methods
are used to identify possible sets of candidate constraints, which might need to be
relaxed. Therefore, the system generally helps the user in making her modifications
in a more intelligent and efficient way.

Thus, the overall approach uses an iterative feedback loop to assist the users in making
meaningful decisions. It is crucial to design a system that can guide the user towards re-
quirements that increase her awareness regarding the available choices.

There are several aspects of this interaction, in which explicit computation is required
in order to help the user. For example, a user will typically not be able specify desired
values for all the product attributes. For instance, in our home-buying example, the user
may specify constraints only on the number of bedrooms and not specify any constraints
on the price. Several solutions are possible under this scenario:

1. The system may leave the other attributes unconstrained and retrieve the results
based on only the specified constraints. For example, all possible ranges of prices may
be considered in order to provide the first set of responses to the user. Although this
may be the most reasonable choice, when the user query has been formulated well, it
may not be an effective solution in cases where the number of responses is large.

2. In some cases, default values may be suggested to the user to provide guidance. The
default values can be used only to guide the user in selecting values, or they can
actually be included in the query if the user does not select any value (including the
default) for that attribute. It can be argued that including a default value within the
query (without explicit specification) can lead to significant bias within the recom-
mender system, especially when the defaults are not very well researched. In general,

5.2. CONSTRAINT-BASED RECOMMENDER SYSTEMS 177

Figure 5.2: A hypothetical example of an initial user interface for a constraint-based rec-
ommender (constraint-example.com)

default values should be used only as a suggestion for the user. This is because the
main goal of defaults should be to guide the user towards natural values, rather than
to substitute for unspecified options.

How are default values determined? In most cases, it is necessary to choose the defaults in
a domain-specific way. Furthermore, some values of the defaults may be affected by others.
For example, the horsepower of a selected car model might often reflect the desired fuel
efficiency. Knowledge bases need to explicitly store the data about such default values. In
some cases, where the historical data from user sessions is available, it is possible to learn
the default values. For the various users, their specified attribute values in the query sessions
may be available, including the missing values. The average values across various sessions
may be used as defaults. Consider a query session initiated by Alice for buying cars. Initially,
her defaults are computed on the basis of the average values in historical sessions. However,
if she specifies the desired horsepower of the car, then the interface automatically adjusts
her default value of the fuel efficiency. This new default value is based on the average of fuel
efficiency of cars, which were specified in historical sessions for cars with similar horsepower.
In some cases, the system might automatically adjust the default values based on feasibility
constraints with respect to the knowledge base. As users specify increasingly more values in
the interface, the average can be computed only over the sessions within the neighborhood
of the current specification.

After the query has been issued, the system provides a ranked list of possible matches
from the catalog. Therefore, it is important to be able to meaningfully rank the matches
and also provide explanations for the recommended results if needed. In cases, where the
returned set of matches is too small or too large, further guidance may be provided to
the user on either relaxing or tightening requirements. It is noteworthy that the provision
of explanations is also an intelligent way of guiding the user towards more meaningful
query refinements. In the following, we will discuss these various aspects of interactive user
guidance.

178 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

Figure 5.3: A hypothetical example of a user interface for handling empty query results in
a constraint-based recommender (constraint-example.com)

5.2.3 Ranking the Matched Items

A number of natural methods exist for ranking the items according to user requirements.
The simplest approach is to allow the user to specify a single numerical attribute on the
basis of which to rank the items. For example, in the home-buying application, the system
might provide the user the option to rank the items on the basis of (any one of) the home
price, number of bedrooms, or distance from a particular ZIP code. This approach is, in
fact, used in many commercial interfaces.

Using a single attribute has the drawback that the importance of other attributes is
discounted. A common approach is to use utility functions in order to rank the matched
items. Let V = (v1 . . . vd) be the vector of values defining the attributes of the matched
products. Therefore, the dimensionality of the content space is d. The utility functions may
be defined as weighted functions of the utilities of individual attributes. Each attribute has a
weight wj assigned to it, and it has a contribution defined by the function fj(vj) depending
on the value vj of the matched attribute. Then, the utility U(V) of the matched item is
given by the following:

U(V) =

d∑

j=1

wj · fj(vj) (5.1)

Clearly, one needs to instantiate the values of wj and fj(·) in order to learn the utility
function. The design of effective utility functions often requires domain-specific knowledge,
or learning data from past user interactions. For example, when vj is numeric, one might
assume that the function fj(vj) is linear in vj , and then learn the coefficients of the linear

5.2. CONSTRAINT-BASED RECOMMENDER SYSTEMS 179

Figure 5.4: A hypothetical example of a user interface for handling too many query results
in a constraint-based recommender (constraint-example.com)

function as well as wj by eliciting feedback from various users. Typically, training data is
elicited from some users who are given the task of ranking some sample items. These ranks
are then used to learn the aforementioned model with the use of regression models. This
approach is related to the methodology of conjoint analysis [155, 531]. Conjoint analysis
defines statistical methods for the formal study of how people value the different attributes
that make up an individual product or service. The bibliographic notes contain pointers to
some methods that are commonly used for the design of utility functions.

5.2.4 Handling Unacceptable Results or Empty Sets

In many cases, a particular query might return an empty set of results. In other cases, the
set of returned results might not be large enough to meet the user requirements. In such
cases, a user has two options. If it is deemed that a straightforward way of repairing the
constraints does not exist, she may choose to start over from the entry point. Alternatively,
she may decide to change or relax the constraints for the next interactive iteration.

How can the user make a meaningful choice on whether to relax the constraints and in
what way? In such cases, it is often helpful to provide the user with some guidance on relax-
ing the current requirements. Such proposals are referred to as repair proposals. The idea
is to be able to determine minimal sets of inconsistent constraints, and present them to the
user. It is easier for the user to assimilate minimal sets of inconsistent constraints, and find
ways of relaxing one or more of the constraints in these sets. Consider the home-buying ex-
ample, in which it may be found that the user has specified many requirements, but the only
mutually inconsistent pair of requirements is Max-Price < 100, 000 and Min-Bedrooms > 5.

180 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

If this pair of constraints is presented to the user, she can understand that she either needs
to increase the maximum price she is willing to pay, or she needs to settle for a smaller
number of bedrooms. A naive way of finding the minimal set of inconsistent constraints is
to perform a bottom-up search of all combinations of user requirements, and determine the
smallest sets that are infeasible. In many interactive interfaces, the user might specify only
a small number of (say, 5 to 10) requirements, and the number of constraints involving these
attributes (in the domain knowledge) might also be small. In such cases, exhaustive explo-
ration of all the possibilities is not an unreasonable approach. By its very nature, interactive
requirement specification often results in the specification of a relatively small number of
constraints. It is unusual for a user to specify 100 different requirements in an interactive
query. In some cases, however, when the number of user-specified requirements is large and
the domain knowledge is significant, such an exhaustive bottom-up exploration might not be
a feasible option. More sophisticated methods, such as QUICKXPLAIN and MINRELAX,
have also been proposed, which can be used for fast discovery of small conflicting sets and
minimal relaxations [198, 273, 274, 289, 419].

Most of these methods use similar principles; small sets of violating constraints are
determined, and the most appropriate relaxations are suggested based on some pre-defined
criteria. In real applications, however, it is sometimes difficult to suggest concrete criteria
for constraint relaxation. Therefore, a simple alternative is to present the user with small
sets of inconsistent constraints, which can often provide sufficient intuition to the user in
formulating modified constraints.

5.2.5 Adding Constraints

In some cases, the number of returned results may be very large, and the user may need to
suggest possible constraints to be added to the query. In such cases, a variety of methods can
be used to suggest constraints to the user along with possible default values. The attributes
for such constraints are often chosen by mining historical session logs. The historical session
logs can either be defined over all users, or over the particular user at hand. The latter
provides more personalized results, but may often be unavailable for infrequently bought
items (e.g., cars or houses). It is noteworthy that knowledge-based systems are generally
designed to not use such persistent and historical information precisely because they are
designed to work in cold-start settings; nevertheless, such information can often be very
useful in improving the user experience when it is available.

How can historical session data be used? The idea is to select constraints that are
popular. For example, if a user has specified the constraints on a set of item attributes,
then other sessions containing one or more of these attributes are identified. For example, if
a user has specified constraints on the number of bedrooms and the price, previous sessions
containing constraints on the bedroom and price are identified. In particular, the top-k
nearest neighbor sessions in terms of the number of common attributes are identified. If it
is determined that the most popular constraint among these top-k sessions is on the number
of bathrooms, then this attribute is suggested by the interface as a candidate for adding
additional constraints.

In many cases, the temporal ordering in which users have specified constraints in the
past is available. In such cases, it is also possible to use the order in which the customer
specified the constraints by treating the constraints as an ordered set, rather than as an
unordered set [389]. A simple way of achieving this goal is to determine the most frequent
attribute that follows the current specified set of constrained attributes in previous sessions.
Sequential pattern mining can be used to determine such frequent attributes. The works

5.3. CASE-BASED RECOMMENDERS 181

in [389, 390] model the sequential learning problem as a Markov Decision Process (MDP),
and use reinforcement learning techniques to measure the impact of various choices. The
constraints can be suggested based on their selectivity in the database or based on the
average specification of the user in past sessions.

5.3 Case-Based Recommenders

In case-based recommenders, similarity metrics are used to retrieve examples that are similar
to the specified targets (or cases). For instance, in the real-estate example of Table-5.2, the
user might specify a locality, the number of bedrooms, and a desired price to specify a target
set of attributes. Unlike constraint-based systems, no hard constraints (e.g., minimum or
maximum values) are enforced on these attributes. It is also possible to design an initial
query interface in which examples of relevant items are used as targets. However, it is more
natural to specify desired properties in the initial query interface. A similarity function is
used to retrieve the examples that are most similar to the user-specified target. For example,
if no homes are found specifying the user requirements exactly, then the similarity function
is used to retrieve and rank items that are as similar as possible to the user query. Therefore,
unlike constraint-based recommenders, the problem of retrieving empty sets is not an issue
in case-based recommenders.

There are also substantial differences between a constraint-based recommender and a
case-based recommender in terms of how the results are refined. Constraint-based systems
use requirement relaxation, modification, and tightening to refine the results. The earliest
case-based systems advocated the repeated modification of user query requirements until
a suitable solution could be found. Subsequently, the method of critiquing was developed.
The general idea of critiquing is that users can select one or more of the retrieved results
and specify further queries of the following form:

“Give me more items like X, but they are different in attribute(s) Y according to guid-
ance Z.”

A significant variation exists in terms of whether one or more than one attributes is se-
lected for modification and how the guidance for modifying the attributes is specified. The
main goal of critiquing is to support interactive browsing of the item space, where the
user gradually becomes aware of further options available to them through the retrieved
examples. Interactive browsing of the item space has the advantage that it is a learning
process for the user during the process of iterative query formulation. It is often possible
that through repeated and interactive exploration, the user might be able to arrive at items
that could not otherwise have been reached at the very beginning.

For example, consider the home-buying example of Table 5.2. The user might have ini-
tially specified a desired price, the number of bedrooms, and a desired locality. Alternatively,
the user might specify a target address to provide an example of a possible house she might
be interested in. An example of an initial interface in which the user can specify the target
in two different ways, is illustrated in Figure 5.5. The top portion of the interface illustrates
the specification of target features, whereas the bottom portion of the interface illustrates
the specification of a target address. The latter approach is helpful in domains where the
users have greater difficulty in specifying technically cryptic features. An example might be
the case of digital cameras, where it is harder to specify all the technical features exactly
for a non-specialist in photography. Therefore, a user might specify her friend’s camera as

182 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

Figure 5.5: A hypothetical example of an initial user interface in a case-based recommender
(critique-example.com)

the target case, rather than specifying all the technical features. Note that this interface
is hypothetically designed for illustrative purposes only, and it is not based on an actual
recommender system.

The system uses the target query in conjunction with similarity or utility functions in
order to retrieve matching results. Eventually, upon retrieving the results, the user might
decide to like a particular house, except that its specifications contain features (e.g., a
colonial) that she does not particularly like. At this point, the user might leverage this
example as an anchor and specify the particular attributes in it that she wants to be
different. Note that the reason that the user is able to make this second set of critiqued
query specifications is that she now has a concrete example to work with that she was
not aware of earlier. The interfaces for critiquing can be defined in a number of different
ways, and they are discussed in detail in section 5.3.2. The system then issues a new query
with the modified target, and with a reduced set of candidates, which were the results from
the previous query. In many cases, the effect is to simply prune the search results of cases
that are not considered relevant, rather than provide a re-ranking of the returned results.
Therefore, unlike constraint-based systems, the number of returned responses in case-based
iterations generally reduces from one cycle to the next. However, it is also possible to design
case-based systems in which the candidates are not always reduced from one iteration to the
next by expanding the scope of each query to the entire database, rather than the currently
retrieved set of candidate results. This type of design choice has its own trade-offs. For
example, by expanding the scope of each query, the user will be able to navigate to a final
result that is more distant from the current query. On the other hand, it is also possible
that the results might become increasingly irrelevant in later iterations. For the purpose of
this chapter, we assume that the returned candidates always reduce from one iteration to
the next.

5.3. CASE-BASED RECOMMENDERS 183

Through repeated critiquing, the user may sometimes arrive at a final result that is
quite different from the initial query specification. After all, it is often difficult for a user
to articulate all their desired features at the very beginning. For example, the user might
not be aware of an acceptable price point for the desired home features at the beginning of
the querying process. This interactive approach bridges the gap between her initial under-
standing and item availability. It is this power of assisted browsing that makes case-based
methods so powerful in increasing user awareness. It is sometimes also possible for the user
to arrive at an empty set of candidates through repeated reduction of the candidate set.
Such a session may be viewed as a fruitless session, and in this case, the user has to restart
from scratch at the entry point. Note that this is different from constraint-based systems,
where a user also has the option of relaxing their current set of requirements to enlarge
the result set. The reason for this difference is that case-based systems generally reduce the
number of candidates from one cycle to the next, whereas constraint-based systems do not.

In order for a case-based recommender system to work effectively, there are two crucial
aspects of the system that must be designed effectively:

1. Similarity metrics: The effective design of similarity metrics is very important in case-
based systems in order to retrieve relevant results. The importance of various attributes
must be properly incorporated within the similarity function for the system to work
effectively.

2. Critiquing methods: The interactive exploration of the item space is supported with
the use of critiquing methods. A variety of different critiquing methods are available to
support different exploration goals.

In this section, we will discuss both these important aspects of case-based recommender
system design.

5.3.1 Similarity Metrics

The proper design of similarity metrics is essential in retrieving meaningful items in response
to a particular query. The earliest FindMe systems [121] ordered the attributes in decreasing
level of importance and first sorted on the most important criterion, then the next most
important, and so on. For example, in the Entree restaurant recommender system, the
first sort might be based on the cuisine type, the second on the price, and so on. While
this approach is efficient, its usage may not be effective for every domain. In general, it is
desirable to develop a closed-form similarity function whose parameters can either be set
by domain experts, or can be tweaked by a learning process.

Consider an application in which the product is described by d attributes. We would like
to determine the similarity values between two partial attribute vectors defined on a subset
S of the universe of d attributes (i.e., |S| = s ≤ d). Let X = (x1 . . . xd) and T = (t1 . . . td)
represent two d-dimensional vectors, which might be partially specified. Here, T represents
the target. It is assumed that at least the attribute subset S ⊆ {1 . . . d} is specified in
both vectors. Note that we are using partial attribute vectors because such queries are
often defined only on a small subset of attributes specified by the user. For example, in
the aforementioned real estate example, the user might specify only a small set of query
features, such as the number of bedrooms or bathrooms. Then, the similarity function
f(T ,X) between the two sets of vectors is defined as follows:

184 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

f(T ,X) =

∑
i∈S wi · Sim(ti, xi)

∑
i∈S wi

(5.2)

Here, Sim(ti, xi) represents the similarity between the values xi and yi. The weight wi

represents the weight of the ith attribute, and it regulates the relative importance of that
attribute. How can the similarity functions Sim(ti, xi) and the attribute importance wi be
learned?

Fist, we will discuss the determination of the similarity function Sim(ti, xi). Note that
these attributes might be either quantitative or categorical, which further adds to the het-
erogeneity and complexity of such a system. Furthermore, attributes might be symmetric
or asymmetric in terms of higher or lower values [558]. For example, consider the price
attribute in the home-buying example of Table 5.2. If a returned product has a lower price
than the target value, then it is more easily acceptable than a case in which the returned
product has a larger price than the target value. The precise level of asymmetry may be
different for different attributes. For example, for an attribute, such as the camera resolu-
tion, the user might find larger resolutions more desirable, but the preference might not be
quite as strong as in the case of the price. Other attributes might be completely symmetric,
in which case the user would want the attribute value exactly at the target value ti. An
example of a symmetric metric is as follows:

Sim(ti, xi) = 1− |ti − xi|
maxi −mini

(5.3)

Here, maxi and mini represent the maximum or minimum possible values of the attribute
i. Alternatively, one might use the standard deviation σi (on historical data) to set the
similarity function:

Sim(ti, xi) = max

{

0, 1− |ti − xi|
3 · σi

}

(5.4)

Note that in the case of the symmetric metric, the similarity is entirely defined by the
difference between the two attributes. In the case of an asymmetric attribute, one can add
an additional asymmetric reward, which kicks in depending on whether the target attribute
value is smaller or larger. For the case of attributes in which larger values are better, an
example of a possible similarity function is as follows:

Sim(ti, xi) = 1− |ti − xi|
maxi −mini

+ αi · I(xi > ti) ·
|ti − xi|

maxi −mini︸ ︷︷ ︸
Asymmetric reward

(5.5)

Here, αi ≥ 0 is a user-defined parameter, and I(xi > ti) is an indicator function that takes
on the value of 1 if xi > ti, and 0 otherwise. Note that the reward kicks in only when the
attribute value xi (e.g., camera resolution) is greater than the target value ti. For cases
in which smaller values are better (e.g., price), the reward function is similar, except that
smaller values are rewarded by the indicator function:

Sim(ti, xi) = 1− |ti − xi|
maxi −mini

+ αi · I(xi < ti) ·
|ti − xi|

maxi −mini︸ ︷︷ ︸
Asymmetric reward

(5.6)

The values of αi are chosen in a highly domain-specific way. For values of αi > 1, the
“similarity” actually increases with greater distance to the target. In such cases, it is helpful

5.3. CASE-BASED RECOMMENDERS 185

to think of Sim(ti, xi) as a utility function rather than as a similarity function. For example,
in the case of price, one would always prefer a lower price to a higher price, although the
target price might define an inflection point in the strength with which one prefers a lower
price to a higher price. When the value of αi is exactly 1.0, it implies that one does not care
about further change from the target value in one of the directions. An example might be
the case of camera resolution, where one might not care about resolutions beyond a certain
point. When αi ∈ (0, 1), it implies that the user prefers a value at the target over all other
values but she may have asymmetric preferences on either side of the target. For example,
a user’s preference for horsepower might strongly increase up to the target, and she might
also have a mild aversion to a horsepower greater than the target because of greater fuel
consumption. These examples suggest that there are no simple ways of pre-defining such
similarity metrics; a lot of work needs to be done by the domain expert.

Examples of symmetric and asymmetric similarity functions are illustrated in Figure 5.6.
The domain range is [0, 10], and a target value of 6 is used. A symmetric similarity function
is shown in Figure 5.6(a), where the similarity is linearly dependent on the distance from
the target. However, in the horsepower example discussed above, the asymmetric similarity
function of Figure 5.6(b) might be more appropriate, where αi = 0.5. For an attribute such
as camera resolution, one might decide to allocate no utility beyond the user’s target, as
a result of which the similarity function might be flat beyond that point. Such a case is
illustrated in Figure 5.6(c), where αi is set to 1. Finally, in the case of price, smaller values
are rewarded, although the user’s target price might define an inflection point in the utility
function. This case is illustrated in Figure 5.6(d), where the value of αi is set to 1.3, with
rewards being awarded for undershooting the target. This particular case is noteworthy,
because the “similarity” is actually increasing with greater distance from the target as long
as the value is as small as possible. In such cases, the utility interpretation of such functions
makes a lot more sense than the similarity interpretation. In this interpretation, the target
attribute values represent only key inflection points of the utility function.

For the case of categorical data, the determination of similarity values is often more chal-
lenging. Typically, domain hierarchies are constructed in order to determine the similarity
values. Two objects that are closer to one another within the context of a domain hierarchy
may be considered more similar. This domain hierarchy is sometimes directly available from
sources such as the North American Industry Classification System (NAICS), and in other
cases it needs to be directly constructed by hand. For example, an attribute such as the
movie genre can be classified hierarchically, as shown in Figure 5.7. Note that related genres
tend to be closer to one another in the hierarchy. For example, movies for children are con-
sidered to be so different from those for general audiences that they bifurcate at the root of
the taxonomy. This hierarchy may be used by the domain expert to hand-code similarities.
In some cases, learning methods can also be used to facilitate the similarity computation.
For example, feedback could be elicited from users about pairs of genres, and learning meth-
ods could be used to learn the similarity between pairs of items [18]. The broader learning
approach can also be used to determine other parameters of the similarity function, such
as the value of αi in Equations 5.5 and 5.6. It is noteworthy that the specific form of the
similarity function may be different from that in Equations 5.5 and 5.6, depending on the
data domain. It is here that the domain expert has to invest a significant amount of time
in deciding how to model the specific problem setting. This investment is an inherent part
of the domain-specific effort that knowledge-based recommender systems demand, and also
derive their name from.

186 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OBJECT ATTRIBUTE VALUE

S
IM

IL
A

R
IT

Y
 V

A
LU

E

TARGET
ATTRIBUTE
VALUE

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OBJECT ATTRIBUTE VALUE

S
IM

IL
A

R
IT

Y
 V

A
LU

E

TARGET
ATTRIBUTE
VALUE

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OBJECT ATTRIBUTE VALUE

S
IM

IL
A

R
IT

Y
 V

A
LU

E

TARGET
ATTRIBUTE
VALUE

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

OBJECT ATTRIBUTE VALUE

S
IM

IL
A

R
IT

Y
 V

A
LU

E

TARGET
ATTRIBUTE
VALUE

(a) Symmetric (αi = 0) (b) Asymmetric (αi = 0.5)
(penalty by absolute distance) (milder penalty for overshooting)

(a) Asymmetric (αi = 1.0) (b) Asymmetric (αi = 1.3)
(no penalty for overshooting) (less is always better)

Figure 5.6: Examples of different types of symmetric and asymmetric similarity

ALL MOVIES

CHILDREN ONLY GENERAL

NON-ANIMATION ANIMATION EDUCATIONAL COMMERCIAL

DOCUMENTARY COMEDYROMANCE

Figure 5.7: An example of hierarchical classification of movie genres

5.3. CASE-BASED RECOMMENDERS 187

A second issue in the design of similarity functions is the determination of the relative
importance of various attributes. The relative importance of the ith attributes is regulated
by the parameter wi in Equation 5.2. One possibility is for a domain expert to hand-code
the values of wi through trial and experience. The other possibility is to learn the values
of wi with user feedback. Pairs of target objects could be presented to users, and users
might be asked to rate how similar these target objects are. This feedback can be used in
conjunction with a linear regression model to determine the value of wi. Linear regression
models are discussed in detail in section 4.4.5 of Chapter 4, and their usage for similarity
function learning is discussed in [18]. A number of other results [97, 163, 563, 627] discuss
learning methods with user feedback in the specific context of recommender systems. Many
of these methods, such as those in [627], show how feature weighting can be achieved with
user feedback. The work in [563] elicits feedback from the user in terms of the relative
ordering of the returned cases, and uses it to learn the relative feature weights. It is often
easier for the user to specify relative orderings rather than to specify explicit similarity
values for pairs of objects.

5.3.1.1 Incorporating Diversity in Similarity Computation

As case-based systems use item attributes to retrieve similar products, they face many of
the same challenges as content-based systems in returning diverse results. In many cases,
the results returned by case-based systems are all very similar. The problem with the lack of
diversity is that if a user does not like the top-ranked result, she will often not like the other
results, which are all very similar. For example, in the home buying application, it is possible
for the recommendation system to return condominium units from the same complex under
the same management. Clearly, this scenario reduces the true choice available to the user
among the top ranked results.

Consider a scenario where it is desired to retrieve the top-k results matching a particular
case. One possibility is to retrieve the top b · k results (for b > 1) and then randomly select
k items from this list. This strategy is also referred to as the bounded random selection
strategy. However, such a strategy does not seem to work very well in practice.

A more effective approach is the bounded greedy selection strategy [560]. In this strategy,
we start with the top b · k cases similar to the target, and incrementally build a diverse
set of k instances from these b · k cases. Therefore, we start with the empty set R and
incrementally build it by adding instances from the base set of b · k cases. The first step
is to create a quality metric that combines similarity and diversity. Assume without loss of
generality that the similarity function f(X,Y) always maps to a value in (0, 1). Then, the
diversity D(X,Y) can be viewed as the distance between X and Y :

D(X,Y) = 1− f(X,Y) (5.7)

Then, the average diversity between the candidate X , and a set R of currently selected
cases is defined as the average diversity between X and cases in R:

Davg(X,R) =

∑
Y ∈R D(X,Y)

|R| (5.8)

Then, for target T , the overall quality Q(T ,X,R) is computed as follows:

Q(T,X,R) = f(T ,X) ·Davg(X,R) (5.9)

188 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

The caseX with the greatest quality is incrementally added to the set R until the cardinality
of the set R is k. This set is presented to the user. Refer to the bibliographic notes for other
diversity enhancing techniques used in the literature.

5.3.2 Critiquing Methods

Critiques are motivated by the fact that users are often not in a position to state their
requirements exactly in the initial query. In some complex domains, they might even find
it difficult to translate their needs in a semantically meaningful way to the attribute values
in the product domain. It is only after viewing the results of a query that a user might
realize that she should have couched her query somewhat differently. Critiques are designed
to provide the users this ability after the fact.

After the results have been presented to the users, feedback is typically enabled through
the use of critiques. In many cases, the interfaces are designed to critique the most similar
matching item, although it is technically possible for the user to critique any of the items
on the retrieved list of k items. In critiques, the users specify change requests on one or
more attributes of an item that they may like. For example, in the home-buying application
of Figure 5.2, the user might like a particular house, but she may want the house in a
different locality or with one more bedroom. Therefore, the user may specify the changes
in the features of one of the items she likes. The user may specify a directional critique
(e.g., “cheaper”) or a replacement critique (e.g., “different color”). In such cases, examples
that do not satisfy the user-specified critiques are eliminated, and examples similar to the
user-preferred item (but satisfying the current sequence of critiques) are retrieved. When
multiple critiques are specified in sequential recommendation cycles, preference is given to
more recent critiques.

At a given moment in time, the user may specify either a single feature or a combination
of features for modification. In this context, the critiques are of three different types, cor-
responding to simple critiques, compound critiques, and dynamic critiques. We will discuss
each of these types of critiques in the following sections.

5.3.2.1 Simple Critiques

In a simple critique, the user specifies a single change to one of the features of a recommended
item. In Figure 5.8, we have used our earlier case-based scenario (critique-example.com)
to show an example of a simple critiquing interface. Note that the user can specify a change
to only one of the features of the recommended house in this interface. Often, in many
systems, such as FindMe systems, a more conversational interface is used, where users
specify whether to increase or decrease a specific attribute value rather than explicitly
modify one of the target attribute values. This is referred to as a directional critique. In such
cases, the candidate list is simply pruned of those objects for which the critiqued attribute
is on the wrong side of the user’s stated preference. The advantage of such an approach
is that the user is able to state her preference and navigate through the product space
without having to specify or change attribute values in a precise way. Such an approach
is particularly important in domains where the users might not know the exact value of
the attribute to use (e.g., the horsepower of an engine). Another advantage of a directional
critique is that it has a simple conversational style, which might be more intuitive and
appealing to the user. In cases where the user does not find the current set of retrieved
results to be useful at all, she also has the option of going back to the entry point. This
represents a fruitless cycle through the critiquing process.

5.3. CASE-BASED RECOMMENDERS 189

Figure 5.8: Hypothetical examples of user interfaces for simple critiquing in a case-based
recommender (critique-example.com)

190 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

The main problem with the simple critiquing approach is its laborious navigation. If
the recommended product contains many features that are required to be changed, then it
will lead to a longer chain of subsequent critiques. Furthermore, when one of the features
is changed, the recommender system may automatically need to change at least some of
the other feature values depending on item availability. In most cases, it is impossible to
hold the other feature values at exactly constant values in a given cycle. As a result, when
the user has changed a few features to their desired values, they may realize that the other
feature values are no longer acceptable. The larger the number of recommendation cycles,
the less the control that the user will have on changes in the other feature values that
were acceptable in earlier iterations. This problem often results from the user’s lack of
understanding about the natural trade-offs in the problem domain. For example, a user
might not understand the trade-off between horsepower and fuel efficiency and attempt
to navigate to a car with high horsepower and also a high fuel efficiency of 50 miles to
the gallon [121]. This problem of fruitlessness in long recommendation cycles is discussed
in detail in [423]. The main problem in many critiquing interfaces is that the next set of
recommended items are based on the most recent items being critiqued, and there is no
way of navigating back to earlier items. As a result, a long cycle of simple critiques may
sometimes drift to a fruitless conclusion.

5.3.2.2 Compound Critiques

Compound critiques were developed to reduce the length of recommendation cycles [414].
In this case, the user is able to specify multiple feature modifications in a single cycle. For
example, the Car Navigator system [120] allows the user to specify multiple modifications,
which are hidden behind informal descriptions that the user can understand (e.g., classier,
roomier, cheaper, sportier). For example, the domain expert might encode the fact that
“classier” suggests a certain subset of models with increased price and sophisticated interior
structure. Of course, it is also possible for the user to modify the required product features
directly, but it increases the burden on her. The point in conversational critiquing is that
when a user might wish to have a “classier” car, but they might not be easily able to
concretely express it in terms of the product features such as the interior structure of the
car. On the other hand, a qualification such as “classier” is more intuitive, and it can be
encoded in terms of the product features by a domain expert. This interactive process is
designed to help them learn the complex product space in an intuitive way.

In the home-buying example of Table 5.2, the user might specify a different locality
and change in the price in a single cycle. An example of a compound critiquing example
for the home-buying example is illustrated in Figure 5.9(a). To make the approach more
conversational, an interface like the one in Figure 5.9(b), will automatically encode multiple
changes within a single selection. For example, if the user selects “roomier,” it implies that
both the number of bedrooms and the number of bathrooms might need to be increased. For
the second type of interface, the domain expert has to expend significant effort in designing
the relevant interface and the interpretation of user choices in terms of changes made to
multiple product features. This encoding is static, and it is done up front.

The main advantage of compound critiquing is that the user can change multiple features
in the target recommendation in order to issue a new query or prune the search results from
the previous query. As a result, this approach allows large jumps through the product feature
space, and the user often has better control over the critiquing process. This is useful for
reducing the number of recommendation cycles and making the exploration process more
efficient. It is, however, not clear whether compound critiques always help a user learn the

5.3. CASE-BASED RECOMMENDERS 191

Figure 5.9: Hypothetical examples of user interfaces for compound critiquing in a case-based
recommender (critique-example.com)

192 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

Figure 5.10: A hypothetical example of a user interface for dynamic critiquing in a case-
based recommender (critique-example.com)

product space better than simple critiques; short critiquing cycles also reduce the likelihood
of the user learning different trade-offs and correlations between features in the product
space. On the other hand, a user may sometimes learn a lot about the product space by
going through the slow and laborious process of simple critiquing.

5.3.2.3 Dynamic Critiques

Although compound critiques allow larger jumps through the navigation space, they do
have the drawback that the critiquing options presented to the user are static in the sense
that they do not depend on the retrieved results. For example, if the user is browsing cars,
and she is already browsing the most expensive car with the largest horsepower possible,
the option to increase the horsepower and the price will still be shown in the critiquing
interface. Clearly, specifying these options will lead to a fruitless search. This is because
users are often not fully aware of the inherent trade-offs in the complex product space.

In dynamic critiquing, the goal is to use data mining on the retrieved results to deter-
mine the most fruitful avenues of exploration and present them to the user. Thus, dynamic
critiques are, by definition, compound critiques because they almost always represent com-
binations of changes presented to the user. The main difference is that only the subset of the
most relevant possibilities are presented, based on the currently retrieved results. Therefore,
dynamic critiques are designed to provide better guidance to the user during the search
process.

An important aspect of dynamic critiquing is the ability to discover frequent combina-
tions of product feature changes. The notion of support is adapted from frequent pattern

5.3. CASE-BASED RECOMMENDERS 193

mining [23] in order to determine patterns of frequently co-occurring product features in the
retrieved results. The support of a pattern is defined as the fraction of the retrieved results
that satisfy that pattern. Refer to Definition 3.3.1 in Chapter 3 for a formal definition of
support. Therefore, this approach determines all the patterns of change that specify a pre-
defined minimum support value. For example, in the home-buying example of Table 5.2,
the system might determine the following dynamic critiques in order of support:

More Bedrooms, Greater Price: Support= 25%
More Bedrooms, More Bathrooms, Greater Price: Support= 20%
Fewer Bedrooms, Smaller Price: Support= 20%
More Bedrooms, Locality=Yonkers: Support= 15%

Note that conflicting options such as “More Bedrooms, Smaller Price” have a smaller
chance of being included because they might be eliminated based on the minimum sup-
port criterion. However, low support patterns are not necessarily uninteresting. In fact,
once all the patterns satisfying the minimum support threshold have been determined,
many recommender systems order the critiques to the user in ascending order of support.
The logic for this approach is that low support critiques are often less obvious patterns
that can be used to eliminate a larger number of items from the candidate list. A hypothet-
ical example of a dynamic critiquing interface, based on our earlier home-buying system
(critique-example.com), is illustrated in Figure 5.10. Note that a numerical quantity is
associated with each of the presented options in the interface. This number corresponds to
the raw support of the presented options.

A real-world example of a dynamic critiquing approach that uses frequent pattern and
association rule mining is the Qwikshop system discussed in [491]. An important observation
about dynamic critiquing systems is that they increase the cognitive load on the user, when
viewed on a per-cycle basis, but they reduce the cognitive load over the course of the entire
session because of their ability to arrive at acceptable recommendations more quickly [416].
This is one of the reasons that the effective design of explanatory processes into the critiquing
cycle is more important in dynamic critiquing systems.

5.3.3 Explanation in Critiques

It is always advisable to build explanatory power into the critiquing process, because it helps
the user understand the information space better. There are several forms of explanation
that are used to improve the quality of critiques. Some examples of such explanations are
as follows:

1. In simple critiquing, it is common for a user to navigate in a fruitless way because of
a lack of awareness of the inherent trade-offs in the product space. For example, a user
might successively increase the horsepower, increase the mileage per gallon, and then
try to reduce the desired price. In such cases, the system might not be able to show an
acceptable result to the user, and the user will have to start the navigation process afresh.
At the end of such a session, it is desirable for the system to automatically determine the
nature of the trade-off that resulted in a fruitless session. It is often possible to determine
such trade-offs with the use of correlation and co-occurrence statistics. The user can then
be provided insights about the conflicts in the critiques entered by them in the previous
session. Such an approach is used in some of the FindMe systems [121].

194 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

2. It has been shown in [492] how explanations can be used in conjunction with dynamic
compound critiques during a session. For example, the Qwikshop system provides in-
formation about the fraction of the instances satisfying each compound critique. This
provides the user with a clear idea of the size of the space they are about to explore
before making a critiquing choice. Providing the user with better explanations during
the session increases the likelihood that the session will be fruitful.

The main danger in critiquing-based systems is the likelihood of users meandering through
the knowledge space in an aimless way without successfully finding what they are looking
for. Adding explanations to the interface greatly reduces this likelihood.

5.4 Persistent Personalization in Knowledge-Based
Systems

Although knowledge-based systems, such as constraint-based systems, allow the specifica-
tion of user preferences, characteristics, and/or demographic attributes, the entered informa-
tion is typically session-specific, and it is not persistent across sessions. The only persistent
data in most such systems is the domain knowledge in the form of various system-specific
databases, such as constraints or similarity metrics. This lack of persistent data is a nat-
ural consequence of how knowledge-based systems tend to use historical data only in a
limited way compared to content-based and collaborative systems. This is also an advan-
tage of knowledge-based systems, because they tend to suffer less from cold-start issues
compared to other systems that are dependent on historical data. In fact, knowledge-based
recommender systems are often designed for more expensive and occasionally bought items,
which are highly customized. In such cases, historical data should be used with some cau-
tion, even when they are available. Nevertheless, a few knowledge-based systems have also
been designed to use persistent forms of personalization.

The user’s actions over various sessions can be used to build a persistent profile about
the user regarding what they have liked or disliked. For example, CASPER is an online
recruitment system [95] in which the user’s actions on retrieved job postings, such as saving
the advertisement, e-mailing it to themselves, or applying to the posting, are saved for future
reference. Furthermore, users are allowed to negatively rate advertisements when they are
irrelevant. Note that this process results in the building of an implicit feedback profile. The
recommendation process is a two-step approach. In the first step, the results are retrieved
based on the user requirements, as in the case of any knowledge-based recommender. Sub-
sequently, the results are ranked based on similarity to previous profiles that the user has
liked. It is also possible to include collaborative information by identifying other users with
similar profiles, and using their session information in the learning process.

Many steps in knowledge-based systems can be personalized when user interaction data
is available. These steps are as follows:

1. The learning of utility/similarity functions over various attributes can be personalized for
both constraint-based recommenders (ranking phase) and in case-based recommenders
(retrieval phase). When past feedback from a particular user is available, it is possible to
learn the relative importance of various attributes for that user in the utility function.

2. The process of constraint suggestion (cf. section 5.2.5) for a user can be personalized if
a significant number of sessions of that user are available.

5.6 BIBLIOGRAPHIC NOTES 195

3. Dynamic critiques for a user can be personalized if sufficient data are available from that
user to determine relevant patterns. The only difference from the most common form
of dynamic critiquing is that user-specific data are leveraged rather than all the data
for determining the frequent patterns. It is also possible to include the sessions of users
with similar sessions in the mining process to increase the collaborative power of the
recommender.

Although there are many avenues through which personalization can be incorporated within
the framework of knowledge-based recommendation, the biggest challenge is usually the
unavailability of sufficient session data for a particular user. Knowledge-based systems are
inherently designed for highly customized items in a complex domain space. This is the
reason that the level of personalization is generally limited in knowledge-based domains.

5.5 Summary

Knowledge-based recommender systems are generally designed for domains in which the
items are highly customized, and it is difficult for rating information to directly reflect
greater preferences. In such cases, it is desirable to give the user greater control in the rec-
ommendation process through requirement specification and interactivity. Knowledge-based
recommender systems can be either constraint-based systems, or they can be case-based
systems. In constraint-based systems, users specify their requirements, which are combined
with domain-specific rules to provide recommendations. Users can add constraints or relax
constraints depending on the size of the results. In case-based systems, the users work with
targets and candidate lists that are iteratively modified through the process of critiquing.
For retrieval, domain-dependent similarity functions are used, which can also be learned.
The modifications to the queries are achieved through the use of critiquing. Critiques can
be simple, compound, or dynamic. Knowledge-based systems are largely based on user re-
quirements, and they incorporate only a limited amount of historical data. Therefore, they
are usually effective at handling cold-start issues. The drawback of this approach is that
historical information is not used for “filling in the gaps.” In recent years, methods have
also been designed for incorporating a greater amount of personalization with the use of
historical information from user sessions.

5.6 Bibliographic Notes

Surveys on various knowledge-based recommender systems and preference elicitation
methods may be found in [197, 417]. Case-based recommender systems are reviewed
in [102, 116, 377, 558]. Surveys of preference elicitation methods and critiquing may be found
in [148, 149]. Constraint-based recommender systems are discussed in [196, 197]. Histori-
cally, constraint-based recommendation systems were proposed much later than case-based
recommenders. In fact, the original paper by Burke [116] on knowledge-based recommender
systems mostly describes case-based recommenders. However, some aspects of constraint-
based recommenders are also described in this work. Methods for learning utility functions
in the context of constraint-based recommender systems are discussed in [155, 531]. Meth-
ods for handing empty results in constraint-based systems, such as fast discovery of small
conflicting sets, and minimal relaxations are discussed in [198, 199, 273, 274, 289, 419, 574].
These works also discuss how these conflicting sets may be used to provide explanations and
repair diagnoses of the user queries. Popularity-based methods for selecting the next con-
straint attribute are discussed in [196, 389]. The selection of default values for the attribute

196 CHAPTER 5. KNOWLEDGE-BASED RECOMMENDER SYSTEMS

constraints is discussed in [483]. A well-known constraint-based recommender system is the
VITA recommender [201], which was built on the basis of the CWAdvisor system [200].

The problem of similarity function learning for case-based recommenders is discussed
in [18, 97, 163, 563, 627]. The work in [563] is notable in that learns weights of various
features for similarity computation. Reinforcement learning methods for learning similarity
functions for case-based systems are discussed in [288, 506]. The bounded random selection
and bounded greedy selection strategies for increasing the diversity of case-based recom-
mender systems are discussed in [560]. The work in [550] also combines similarity with
diversity like the bounded greedy approach, but it applies only diversity on the retrieved
set of b·k cases, rather than creating a quality metric combining similarity and diversity. The
notions of similarity layers and similarity intervals for diversity enhancement are discussed
in [420]. A compromise-driven approach for diversity enhancement is discussed in [421].
The power of order-based retrieval for similarity diversification is discussed in [101]. Exper-
imental results [94, 560] show the advantages of incorporating diversity into recommender
systems. The issue of critiquing in case-based recommender systems is discussed in detail
in [417, 422, 423]. Compound critiques were first discussed in [120], although the term was
first coined in [414]. A comparative study of various compound critiquing techniques may
be found in [664]. The use of explanations in compound critiques is discussed in [492].

The earliest case-based recommenders were proposed in [120, 121] in the context of the
Entree restaurant recommender. The earliest forms of these systems were also referred to as
FindMe systems [121], which were shown to be applicable to a wide variety of domains. The
Wasabi personal shopper is a case-based recommender system and is discussed in [125].
Case-based systems have been used for travel advisory services [507], online recruitment
systems [95], car sales (Car Navigator) [120], video sales (Video Navigator) [121], movies
(Pick A Flick) [121], digital camera recommendations (e.g., Qwikshop) [279, 491], and rental
property accommodation [263].

Most knowledge-based systems leverage user requirements and preferences, as specified
in a single session. Therefore, if a different user enters the same input, they will obtain
exactly the same result. Although such an approach provides better control to the user, and
also does not suffer from cold-start issues, it tends to ignore historical data when they are
available. Recent years have also witnessed an increase in long-term and persistent informa-
tion about the user in knowledge-based recommender systems [95, 454, 558]. An example of
such a system is the CASPER online recruitment system [95], which builds persistent user
profiles for future recommendation. A personalized travel recommendation system with the
use of user profiles is discussed in [170]. The sessions of similar users are leveraged for per-
sonalized travel recommendations in [507]. Such an approach not only leverages the target
user’s behavior but also the collaborative information available in a community of users.
The work in [641] uses the critiquing information over multiple sessions in a collaborative
way to build user profiles. Another relevant work is the MAUT approach [665], which is
based on multi-attribute utility theory. This approach learns a utility preference function for
each user based on their critiques in the previous sessions. Another example of persistent
data that can be effectively used in such systems is demographic information. Although
demographic recommender systems vary widely in their usage [117, 320], some of the demo-
graphic systems can also be considered knowledge-based systems, when profile association
rules are used to interactively suggest preferences to users in an online fashion [31, 32]. Such
systems allow progressive refinement of the queries in order to derive the most appropriate
set of rules for a particular demographic group. Similarly, various types of utility-based
recommendation and ranking techniques are used within the context of knowledge-based
systems [74].

5.7. EXERCISES 197

5.7 Exercises

1. Implement an algorithm to determine whether a set of customer-specified require-
ments and a set of rules in a knowledge base will retrieve an empty set from a product
catalog. Assume that the antecedent and the consequent of each rule both contain a
single constraint on the product features. Constraints on numerical attributes are in
the form of inequalities (e.g., Price ≤ 30), whereas constraints on categorical attributes
are in the form of unit instantiations (e.g., Color=Blue). Furthermore, customer re-
quirements are also expressed as similar constraints in the feature space.

2. Suppose you had data containing information about the utility values of a particular
customer for a large set of items in a particular domain (e.g., cars). Assume that the
utility value of the jth product is uj (j ∈ {1 . . . n}). The items are described by a set
of d numerical features. Discuss how you will use these data to rank other items in
the same product domain for this customer.

Chapter 6

Ensemble-Based and Hybrid
Recommender Systems

“What’s better, a poetic intuition or an intellectual work? I think they comple-
ment each other.”– Manuel Puig

6.1 Introduction

In the previous chapters, we discussed three different classes of recommendation methods.
Collaborative methods use the ratings of a community of users in order to make recommen-
dations, whereas content-based methods use the ratings of a single user in conjunction with
attribute-centric item descriptions to make recommendations. Knowledge-based methods
require the explicit specification of user requirements to make recommendations, and they
do not require any historical ratings at all. Therefore, these methods use different sources
of data, and they have different strengths and weaknesses. For example, knowledge-based
systems can address cold-start issues much better than either content-based or collabora-
tive systems because they do not require ratings. On the other hand, they are weaker than
content-based and collaborative systems in terms of using persistent personalization from
historical data. If a different user enters the same requirements and data in a knowledge-
based interactive interface, she might obtain exactly the same result.

All these models seem rather restrictive in isolation, especially when multiple sources of
data are available. In general, one would like to make use of all the knowledge available in
different data sources and also use the algorithmic power of various recommender systems to
make robust inferences. Hybrid recommender systems have been designed to explore these
possibilities. There are three primary ways of creating hybrid recommender systems:

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 6

199

200 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

1. Ensemble design: In this design, results from off-the-shelf algorithms are combined
into a single and more robust output. For example, one might combine the rating
outputs from a content-based and a collaborative recommender into a single output.
A significant variation exists in terms of the specific methodologies used for the com-
bination process. The basic principle at work is not very different from the design of
ensemble methods in many data mining applications such as clustering, classification,
and outlier analysis.

Ensemble design can be formalized as follows. Let R̂k be anm×nmatrix containing the
predictions of the m users for the n items by the kth algorithm, where k ∈ {1 . . . q}.
Therefore, a total of q different algorithms are used to arrive at these predictions.
The (u, j)th entry of R̂k contains the predicted rating of user u for item j by the
kth algorithm. Note that the observed entries of the original ratings matrix R are
replicated in each R̂k, and only the unobserved entries of R vary in different R̂k

because of the different predictions of different algorithms. The final result of the
algorithm is obtained by combining the predictions R̂1 . . . R̂q into a single output.
This combination can be performed in various ways, such as the computation of the
weighted average of the various predictions. Furthermore, in some sequential ensemble
algorithms, the prediction R̂k may depend on the results of the previous component
ˆRk−1. In yet other cases, the outputs may not be directly combined. Rather, the output

of one system is used as an input to the next as a set of content features. The common
characteristics of all these systems are that (a) they use existing recommenders in
off-the-shelf fashion, and (b) they produce a unified score or ranking.

2. Monolithic design: In this case, an integrated recommendation algorithm is created
by using various data types. A clear distinction may sometimes not exist between
the various parts (e.g., content and collaborative) of the algorithm. In other cases,
existing collaborative or content-based recommendation algorithms may need to be
modified to be used within the overall approach, even when there are clear distinctions
between the content-based and collaborative stages. Therefore, this approach tends to
integrate the various data sources more tightly, and one cannot easily view individual
components as off-the-shelf black-boxes.

3. Mixed systems: Like ensembles, these systems use multiple recommendation algo-
rithms as black-boxes, but the items recommended by the various systems are pre-
sented together side by side. For example, the television program for a whole day is a
composite entity containing multiple items. It is meaningless to view the recommen-
dation of a single item in isolation; rather, it is the combination of the items that
creates the recommendation.

Therefore, the term“hybrid system” is used in a broader context than the term “ensemble
system.” All ensemble systems are, by definition, hybrid systems, but the converse is not
necessarily true.

Although hybrid recommender systems usually combine the power of different types of
recommenders (e.g., content- and knowledge-based), there is no reason why such systems
cannot combine models of the same type. Since content-based models are essentially text
classifiers, it is well known that a wide variety of ensemble models exist to improve the
accuracy of classification. Therefore, any classification-based ensemble system can be used
to improve the effectiveness of content-based models. This argument also extends to collab-
orative recommender models. For example, one can easily combine the predicted results of

6.1. INTRODUCTION 201

HYBRID SYSTEMS

MONOLITHIC
ENSEMBLES

MIXED

FEATURE
COMBINATION PARALLELSEQUENTIAL

FEATURE
AUGMENTATION

WEIGHTED SWITCHINGCASCADE

META LEVEL

Figure 6.1: The taxonomy of hybrid systems

a latent factor model with those of a neighborhood model to obtain more accurate recom-
mendations [266]. In fact, both1 the winning entries in the Netflix Prize contest, referred to
as “Bellkor’s Pragmatic Chaos” [311] and “The Ensemble” [704], were ensemble systems.

At a broader level, hybrid recommender systems are closely related to the field of en-
semble analysis in classification. For example, collaborative models are generalizations of
classification models, as discussed in the introduction to Chapter 3. As we will discuss in
section 6.2 of this chapter, the theoretical underpinnings of ensemble analysis in classifica-
tion are similar to those in collaborative filtering. Therefore, this chapter will also focus on
how the recommendation approach can be used to improve the effectiveness of collaborative
recommender systems in much the same way as one might use ensembles in the field of data
classification.

According to Burke [117], hybrid recommender systems can be classified into the follow-
ing categories:

1. Weighted: In this case, the scores of several recommender systems are combined into
a single unified score by computing the weighted aggregates of the scores from indi-
vidual ensemble components. The methodology for weighting the components may be
heuristic, or it might use formal statistical models.

2. Switching: The algorithm switches between various recommender systems depending
on current needs. For example, in earlier phases, one might use a knowledge-based
recommender system to avoid cold-start issues. In later phases, when more ratings are
available, one might use a content-based or collaborative recommender. Alternatively,
the system might adaptively select the specific recommender that provides the most
accurate recommendation at a given point in time.

3. Cascade: In this case, one recommender system refines the recommendations given
by another. In generalized forms of cascades, such as boosting, the training process of
one recommender system is biased by the output of the previous one, and the overall
results are combined into a single output.

1Both entries were tied on the error rate. The award was given to the former because it was submitted
20 minutes earlier.

202 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

4. Feature augmentation: The output of one recommender system is used to create input
features for the next. While the cascade hybrid successively refines the recommen-
dations of the previous system, the feature augmentation approach treats then as
features as input for the next system. This approach shares a number of intuitive
similarities with the notion of stacking, which is commonly used in classification. In
stacking, the outputs of one classifier are used as features for the next. Because the
different recommenders are (generally) used as off-the-shelf black-boxes, the approach
is still an ensemble method (in most cases) rather than a monolithic method.

5. Feature combination: In this case, the features from different data sources are combined
and used in the context of a single recommender system. This approach can be viewed
as a monolithic system, and therefore it is not an ensemble method.

6. Meta-level: The model used by one recommender system is used as input to another
system. The typical combination used is that of a content-based and collaborative
system. The collaborative system is modified to use the content features to determine
peer groups. Then, the ratings matrix is used in conjunction with this peer group to
make predictions. Note that this approach needs to modify the collaborative system
to use a content matrix for finding peer groups, although the final predictions are still
performed with the ratings matrix. Therefore, the collaborative system needs to be
modified, and one cannot use it in an off-the-shelf fashion. This makes the meta-level
approach a monolithic system rather than an ensemble system. Some of these methods
are also referred to as “collaboration via content” because of the way in which they
combine collaborative and content information.

7. Mixed: Recommendations from several engines are presented to the user at the same
time. Strictly speaking, this approach is not an ensemble system, because it does not
explicitly combine the scores (of a particular item) from the various components. Fur-
thermore, this approach is often used when the recommendation is a composite entity
in which multiple items can be recommended as a related set. For example, a compos-
ite television program can be constructed from the various recommended items [559].
Therefore, this approach is quite different from all the aforementioned methods. On
the one hand, it does use other recommenders as black-boxes (like ensembles), but it
does not combine the predicted ratings of the same item from different recommenders.
Therefore, mixed recommenders cannot be viewed either as monolithic or ensemble-
based methods and are classified into a distinct category of their own. The approach
is most relevant in complex item domains, and it is often used in conjunction with
knowledge-based recommender systems.

The first four of the aforementioned categories are ensemble systems, the next two are
monolithic systems, and the last one is a mixed system. The last category of mixed sys-
tems cannot be neatly categorized either as a monolithic or an ensemble system, because
it presents multiple recommendations as a composite entity. A hierarchical categorization
of these various types of systems is shown in Figure 6.1. Although we have used the higher
level categorization of parallel and sequential2 systems, as introduced by [275], we empha-
size that our categorization of Burke’s original set of six categories is slightly different from
that of [275]. Unlike the taxonomy in [275], which classifies meta-level systems as sequential
methods, we view meta-level systems as monolithic because one cannot use off-the-shelf
recommendation algorithms, as in the case of a true ensemble. Similarly, the work in [275]

2This is also referred to as a pipelined system [275].

6.1. INTRODUCTION 203

P1
RECOMMENDER 1

…

P2

P

RECOMMENDER 2 COMBINE OUTPUTINPUT

Pq

RECOMMENDER q

…
Pq

RECOMMENDER ENIBMOC1 OUTPUTINPUT RECOMMENDER 2 RECOMMENDER q

P2

PP1

(a) Parallel design

(b) Sequential design

Figure 6.2: Parallel and sequential ensembles

views feature augmentation hybrids as monolithic systems. Although the individual recom-
menders are combined together in a more complex way in feature augmentation hybrids, the
individual recommenders are still used as off-the-shelf black-boxes for the large part. This is
the primary distinguishing characteristic of an ensemble system from a monolithic system,
and the approach is highly reminiscent of stacking methods in classification. Therefore, we
view feature augmentation hybrids as ensemble systems rather than monolithic systems.
However, in some cases of feature augmentation hybrids, minor changes are required to the
off-the-shelf recommender. In such cases, these systems may be technically considered to
have a monolithic design. We have shown this possibility with a dotted line in Figure 6.1.

Aside from the monolithic and mixed methods, which are not truly ensembles, one
can view all ensemble methods as having either sequential or parallel designs [275]. In
parallel designs, the various recommenders function independently of one another, and the
predictions of the individual recommenders are combined at the very end. The weighted
and switching methods can be viewed as parallel designs. In sequential designs, the output
of one recommender is used as an input to the other. The cascade and meta-level systems
can be viewed as examples of sequential methods. A pictorial illustration of the combination
process in sequential and parallel systems is shown in Figure 6.2. In this chapter, we will
provide a detailed discussion of several recommender systems in each of these categories,
although we will use Burke’s lower-level taxonomy [117] to organize the discussion.

This chapter is organized as follows. In section 6.2, we discuss the classification per-
spective of ensemble-based recommender systems. We also explore the level to which the
existing theories and methodologies for ensemble methods in the field of classification also

204 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

TRAINING
ROWS

TEST
ROWS

INDEPENDENT
VARIABLES

DEPENDENT
VARIABLE

NO
DEMARCATION

BETWEEN
TRAINING AND
TEST ROWS

NO DEMARCATION BETWEEN DEPENDENT
AND INDEPENDENT VARIABLES

Collaborative filtering(b)Classification(a)

Figure 6.3: Revisiting Figure 1.4 of Chapter 1. Comparing the traditional classification
problem with collaborative filtering. Shaded entries are missing and need to be predicted.

apply to recommender systems. In section 6.3, a number of different examples of weighted
hybrids are discussed. In section 6.4, a number of switching hybrids are discussed. Cascade
hybrids are discussed in section 6.5, whereas feature augmentation hybrids are discussed in
section 6.6. Meta-level hybrids are discussed in section 6.7. Feature combination methods
are introduced in section 6.8. Mixed systems are discussed in section 6.9. A summary is
given in section 6.10.

6.2 Ensemble Methods from the Classification
Perspective

Ensemble methods are commonly used in the field of data classification to improve the
robustness of learning algorithms. As we will discuss below, much of this theory also applies
to various forms of recommender systems. For example, content-based recommender systems
are often straightforward applications of text classification algorithms. Therefore, a direct
application of existing ensemble methods in classification is usually sufficient to obtain
high-quality results.

As discussed in Chapter 1, collaborative filtering is a generalization of the problem of
data classification. We have replicated Figure 1.4 of Chapter 1 in Figure 6.3 to illustrate
the relationship between the two problems. It is evident from Figure 6.3(a) that the feature
variables and class variable are clearly demarcated in classification. The main distinguishing
features of collaborative filtering from classification are that the feature variables and the
class variable are not clearly demarcated in the former and that the missing entries may
occur in any column or row. The fact that missing entries may occur in any row implies that
training and test instances are not clearly demarcated, either. A salient question arises as to

6.2. ENSEMBLE METHODS FROM THE CLASSIFICATION PERSPECTIVE 205

whether the bias-variance theory developed in the field of classification [242] also applies to
recommender systems. Repeated experiments [266, 311] have shown that combining multiple
collaborative recommender systems often leads to more accurate results. This is because the
bias-variance theory, which is designed for classification, also applies to the collaborative
filtering scenario. This means that many traditional ensemble techniques from classification
can also be generalized to collaborative filtering. Nevertheless, because of the fact that the
missing entries might occur in any row or column of the data, it is sometimes algorithmically
challenging to generalize the ensemble algorithms for classification to collaborative filtering.

We first introduce the bias-variance trade-off as it applies to the field of data classifica-
tion. Consider a simplified classification or regression model, in which a specific field needs
to be predicted, as shown in Figure 6.3(a). It can be shown that the error of a classifier in
predicting the dependent variable can be decomposed into three components:

1. Bias: Every classifier makes its own modeling assumptions about the nature of the
decision boundary between classes. For example, a linear SVM classifier assumes that
the two classes may be separated by a linear decision boundary. This is, of course,
not true in practice. In other words, any given linear support vector machine will
have an inherent bias. When a classifier has high bias, it will make consistently incor-
rect predictions over particular choices of test instances near the incorrectly modeled
decision-boundary, even when different samples of the training data are used for the
learning process.

2. Variance: Random variations in the choices of the training data will lead to different
models. As a result, the dependent variable for a test instance might be inconsistently
predicted by different choices of training data sets. Model variance is closely related
to overfitting. When a classifier has an overfitting tendency, it will make inconsistent
predictions for the same test instance over different training data sets.

3. Noise: The noise refers to the intrinsic errors in the target class labeling. Because
this is an intrinsic aspect of data quality, there is little that one can do to correct it.
Therefore, the focus of ensemble analysis is generally on reducing bias and variance.

The expected mean-squared error of a classifier over a set of test instances can be shown to
be sum of the bias, variance, and noise. This relationship can be stated as follows:

Error = Bias2 +Variance + Noise (6.1)

It is noteworthy that by reducing either the bias or variance components, one can reduce the
overall error of a classifier. For example, classification ensemble methods such as bagging [99]
reduce the variance, whereas methods such as boosting [206] can reduce the bias. It is
noteworthy that the only difference between classification and collaborative filtering is that
missing entries can occur in any column rather than only in the class variable. Nevertheless,
the bias-variance result still holds when applied to the problem of predicting a specific
column, whether the other columns are incompletely specified or not. This means that the
basic principles of ensemble analysis in classification are also valid for collaborative filtering.
Indeed, as we will see later in this chapter, many classical ensemble methods in classification,
such as bagging and boosting, have also been adapted to collaborative filtering.

206 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

6.3 Weighted Hybrids

Let R = [ruj] be an m × n ratings matrix. In weighted hybrids, the outputs of various

recommender systems are combined using a set of weights. Let R̂1 . . . R̂q be the m × n
completely specified ratings matrices, in which the unobserved entries of R are predicted by
q different algorithms. Note that the entries ruj that are already observed in the original
m×n ratings matrix R are already fixed to their observed values in each prediction matrix
R̂k. Then, for a set of weights α1 . . . αq, the weighted hybrid creates a combined prediction

matrix R̂ = [r̂uj] as follows:

R̂ =

q∑

i=1

αiR̂i (6.2)

In the simplest case, it is possible to choose α1 = α2 = . . . = αq = 1/q. However, it is ideally
desired to weight the various systems in a differential way, so as to give greater importance
to the more accurate systems. A number of methods exist for such differential weighting.
One can also write the aforementioned equation in terms of individual entries of the matrix:

r̂uj =

q∑

i=1

αir̂
i
uj (6.3)

Here r̂iuj denotes the prediction of the ith ensemble component for user u and item j and
r̂uj denotes the final prediction.

In order to determine the optimal weights, it is necessary to be able to evaluate the
effectiveness of a particular combination of weights α1 . . . αq. While this topic will discussed
in more detail in Chapter 7, we will provide a simple evaluation approach here for the
purpose of discussion. A simple approach is to hold out a small fraction (e.g., 25%) of the
known entries in the m × n ratings matrix R = [ruj] and create the prediction matrices

R̂1 . . . R̂q by applying the q different base algorithms on the remaining 75% of the entries

in R. The resulting predictions R̂1 . . . R̂q are then combined to create the ensemble-based

prediction R̂ according to Equation 6.2. Let the user-item indices (u, j) of these held-out
entries be denoted byH . Then, for a given vector α = (α1 . . . αq) of weights, the effectiveness
of a particular scheme can be evaluated using either the mean-squared error (MSE) or the
mean absolute error (MAE) of the predicted matrix R̂ = [r̂uj]m×n over the held-out ratings
in H :

MSE(α) =

∑
(u,j)∈H(r̂uj − ruj)

2

|H |

MAE(α) =

∑
(u,j)∈H |(r̂uj − ruj)|

|H |

These metrics provide an evaluation of a particular combination of coefficients α1 . . . αq.
How can we determine the optimal values of α1 . . . αq to minimize these metrics? A simple
approach, which works well for the case of MSE, is to use linear regression. It is assumed
that the ratings in the held-out set H provide the ground truth values of the dependent
variable, and the parameters α1 . . . αq are the independent variables. The idea is to se-
lect the independent variables so that the mean-squared error of the linear combination is
minimized with respect to the known ratings in the held-out set. The basics of the linear
regression model are discussed in section 4.4.5 of Chapter 4, albeit in a different context.
The main difference here is in terms of how the dependent and independent variables are

6.3. WEIGHTED HYBRIDS 207

defined and in terms of how the linear regression problem is formulated. In this case, the
independent variables correspond to the rating predictions of various models for the entry
(u, j), and the dependent variable corresponds to the value of each predicted rating r̂uj of
the ensemble combination in the held-out set H . Therefore, each observed rating in the
held-out set provides a training example for the linear regression model. The regression
coefficients correspond to the weights of various component models, and they need to be
learned from the (held-out) training examples. After the weights have been learned using
linear regression, the individual component models are retrained on the entire training set
without any held-out entries. The weights, which were learned using the held-out entries,
are used in conjunction with these q models. It is important not to forget this final step in
order to ensure that the maximum learning is obtained from all the information available
in the ratings. The linear regression approach to model combination is discussed in [266].
A related approach, which can make good use of all the knowledge in the training data, is
that of cross-validation. Cross-validation methods are discussed in Chapter 7.

Although many systems simply average the results of multiple models, the use of re-
gression is important to ensure that the various models are weighted appropriately. Such
regression-based algorithms were included among many of the highly performing entries in
the Netflix Prize contest [311, 554], and they are closely related to the concept of stacking
in data classification.

The linear regression approach is, however, sensitive to presence of noise and outliers.
This is because the squared error function is overly influenced by the largest errors in the
data. A variety of robust regression methods are available, which are more resistant to the
presence of noise and outliers. One such method uses the mean absolute error (MAE) as
the objective function as opposed to the mean-squared error. The MAE is well known to be
more robust to noise and outliers because it does not overemphasize large errors. A common
approach is to use gradient descent method to determine the optimal value of the parameter
vector (α1 . . . αq) of Equation 6.3. The algorithm starts by setting α1 = α2 = . . . = αq =
1/q. Subsequently, the gradient is computed over the held-out entries in H as follows:

∂MAE(α)

∂αi
=

∑
(u,j)∈H

∂|(r̂uj−ruj)|
∂αi

|H | (6.4)

The value of r̂uj can be expanded using Equation 6.3, and the partial derivative may be
simplified in terms of the ratings of individual ensemble components as follows:

∂MAE(α)

∂αi
=

∑
(u,j)∈H sign(r̂uj − ruj)r̂

i
uj

|H | (6.5)

The gradient can be written in terms of the individual partial derivatives:

∇MAE =

(
∂MAE(α)

∂α1
. . .

∂MAE(α)

∂αq

)

This gradient is then used to descend through the parameter space α with an iterative
gradient descent approach as follows:

1. Initialize α(0) = (1/q . . . 1/q) and t = 0.

2. Iterative Step 1: Update α(t+1) ⇐ α(t) − γ · ∇MAE. The value of γ > 0 can be
determined using a line search so that the maximum improvement in MAE is achieved.

208 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

3. Iterative Step 2: Update the iteration index as t ⇐ t+ 1.

4. Iterative Step 3 (convergence check): If MAE has improved by at least a mini-
mum amount since the last iteration, then go to iterative step 1.

5. Report α(t).

Regularization can be added to prevent overfitting. It is also possible to add other con-
straints on the various values of αi such as non-negativity or ensuring that they sum to 1.
Such natural constraints improve generalizability to unseen entries. The gradient descent
equations can be modified relatively easily to respect these constraints. After the optimal
weights have been determined, all ensemble models are retrained on the entire ratings ma-
trix without any held-out entries. The predictions of these models are combined with the
use of the weight vector discovered by the iterative approach.

There are other ways of performing parameter searches. A simpler approach is to try
several judiciously chosen combinations of parameters on a held-out set of ratings. For
example, one might tune the various values of αi in succession by trying different values
and holding the others constant. Such an approach is generally applied to various types of
parameter tuning [311], and it can often provide reasonably accurate results. Examples of
various search techniques are provided in [162, 659].

These methods can be enhanced further with different types of meta-level content fea-
tures [65, 66, 554]. These methods are discussed in section 6.8.2. Many of the existing
ensemble methods do not use these sophisticated combination schemes. Often, these tech-
niques use a simple average of the predictions of different components. It is particularly
important to weight the different components when the predicted utility values are on dif-
ferent scales, or when some of the ensemble components are much more accurate than
others. In the following, we will provide specific examples of how different types of models
are often combined.

6.3.1 Various Types of Model Combinations

In weighted model combinations, a variety of recommendation engines can be combined.
There are typically two forms of model combinations:

1. Homogeneous data type and model classes: In this case, different models are applied
on the same data. For example, one might apply various collaborative filtering engines
such as neighborhood-based methods, SVD, and Bayes techniques on a ratings matrix.
The results are then aggregated into a single predicted value. Such an approach is
robust because it avoids the specific bias of particular algorithms on a given data set
even though all the constituent models belong to the same class (e.g., collaborative
methods). An example of such a blend is provided in [266]. It was shown in [637],
how the combination of an ensemble of three different matrix factorization methods
can provide high-quality results. In particular, regularized matrix factorization, non-
negative matrix factorization, and maximum margin factorization were used as the
ensemble components, and the corresponding results were averaged. An interesting
fusion ensemble, discussed in [67], uses the same recommendation algorithm for various
ensemble components, but with different choices of parameters or algorithmic design
choices. For example, different numbers of latent factors may be used in an SVD
algorithm, different numbers of nearest neighbors may be used in a neighborhood-
based algorithm, or the choice of the similarity metric may be varied. A simple average

6.3. WEIGHTED HYBRIDS 209

of the predictions of various systems is used. As shown in [67], this simple approach
almost always improved the performance of the base model. An earlier variation of
this approach [180] uses ensembles of maximum margin matrix factorization methods
but with different parameter settings. The work in [338] combines a user-based and
item-based neighborhood algorithm.

2. Heterogeneous data type and model classes: In this cases, different classes ofmodels are
applied to different data sources. For example, one component of the model might be a
collaborative recommender that uses a ratings matrix, whereas another component of
the model might be a content-based recommender. This approach essentially fuses the
power of multiple data sources into the combination process. The idea is to leverage
the complementary knowledge in the various data sources in order to provide the most
accurate recommendations. For example, the work in [659] combines a collaborative
and knowledge-based recommender, whereas the work in [162] combines a content-
based and collaborative recommender. When working with different data types, it
becomes particularly important to carefully weight the predictions of various ensemble
components.

These different forms of models provide excellent flexibility in exploring several types of
model combinations.

6.3.2 Adapting Bagging from Classification

As discussed earlier in this chapter, the theoretical results on the bias-variance trade-off also
hold for the collaborative filtering problem, because the latter problem is a direct general-
ization of classification. One of the common weighted combination techniques used in the
classification problem is that of bagging. Therefore, this method can be used in collaborative
filtering as well. However, the bagging approach needs to be slightly modified in order to ad-
just for the fact that the collaborative filtering problem is formulated somewhat differently
from that of classification. First, we discuss bagging in the context of classification.

The basic idea in bagging is to reduce the variance component of the error in classi-
fication. In bagging, q training data sets are created with bootstrapped sampling. In boot-
strapped sampling, rows of the data matrix are sampled with replacement in order to create
a new training data set of the same size as the original training data set. This new train-
ing data set typically contains many duplicates. Furthermore, it can be shown that the
expected fraction of rows from the original data matrix that is not represented in a given
bootstrapped sample is given by 1/e, where e is the base of the natural logarithm. A total
of q training models are created with each of the sampled training data sets. For a given
test instance, the average prediction from these q models is reported. Bagging generally
improves the classification accuracy because it reduces the variance component of the error.
A particular variant of bagging, known as subagging [111, 112], subsamples the rows, rather
than sampling with replacement. For example, one can simply use all the distinct rows in a
bootstrapped sample for training the models. The bagging and subagging methods can be
generalized to collaborative filtering as follows:

1. Row-wise bootstrapping: In this case, the rows of the ratings matrix R are sampled
with replacement to create a new ratings matrix of the same dimensions. A total of
q such ratings matrices R1 . . . Rq are thus created. Note that rows may be duplicated
in the process of sampling, although they are treated as separate rows. An existing
collaborative filtering algorithm (e.g., latent factor model) is then applied to each of

210 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

the q training data sets. For each training data set, an item rating can be predicted
for a user only if that user is represented at least once in the matrix. In such a case,
the predicted rating from that ensemble component is the average rating3 of that item
over the duplicate occurrences of that user. The predicted rating is then averaged over
all the ensemble components in which that user is present. Note that for reasonably
large values of q, each user will typically be present in at least one ensemble component
with a high probability value of 1 − (1/e)q. Therefore, all users will be represented
with high probability.

2. Row-wise subsampling: This approach is similar to row-wise bootstrapping, except
that the rows are sampled without replacement. The fraction f of rows sampled is
chosen randomly from (0.1, 0.5). The number of ensemble components q should be
significantly greater than 10 to ensure that all rows are represented. The main problem
with this approach is that it is difficult to predict all the entries in this setting, and
therefore one has to average over a smaller number of components. Therefore, the
benefits of variance reduction are not fully achieved.

3. Entry-wise bagging: In this case, the entries of the original ratings matrix are sampled
with replacement to create the q different ratings matrices R1 . . . Rq. Because many
entries may be sampled repeatedly, the entries are now associated with weights. There-
fore, a base collaborative filtering algorithm is required that can handle entries with
weights. Such algorithms are discussed in section 6.5.2.1. As in the case of row-wise
bagging, the predicted ratings are averaged over the various ensemble components.

4. Entry-wise subsampling: In entry-wise subsampling, a fraction of the entries are re-
tained at random from the ratings matrix R to create a sampled training data set.
Typically, a value of f is sampled from (0.1, 0.5), and then a fraction f of the entries
in the original ratings matrix are randomly chosen and retained. This approach is
repeated to create q training data sets R1 . . . Rq. Thus, each user and each item is
represented in each subsampled matrix, but the number of specified entries in the
subsampled matrix is smaller than that in the original training data. A collaborative
filtering algorithm (e.g., latent factor model) is applied to each ratings matrix to cre-
ate a predicted matrix. The final prediction is the simple average of these q different
predictions.

In the aforementioned methods, the final step of the ensemble uses a simple average of
the predictions rather than a weighted average. The reason for using a simple average is
that all model components are created with an identical probabilistic approach and should
therefore be weighted equally. In many of these cases, it is important to choose unstable
base methods to achieve good performance gains.

Although the aforementioned discussion provides an overview of the various possibilities
for variance reduction, only a small subset of these possibilities have actually been explored
and evaluated in the research literature. For example, we are not aware of any experimental
results on the effectiveness of subsampling methods. Although subsampling methods often
provide superior results to bagging in the classification domain [658], their effect on collabo-
rative filtering is difficult to predict in sparse matrices. In sparse matrices, dropping entries
could lead to the inability to predict some users or items at all, which can sometimes worsen
the overall performance. A discussion of bagging algorithms in the context of collaborative

3It is possible for the unspecified values in duplicate rows to predicted differently, even though this is
relatively unusual for most collaborative filtering algorithms.

6.4. SWITCHING HYBRIDS 211

filtering can be found in [67]. In this work, a row-wise bootstrapping approach is used, and
duplicate rows are treated as weighted rows. Therefore, the approach assumes that the base
predictor can handle weighted rows. As discussed in [67], significant improvements in the
error were achieved with bagging, although the approach seemed to be somewhat sensitive
to the choice of base predictor. In particular, according to the results in [67], the bagging
approach improved the accuracy over most of the base predictors, with the exception of
the factorized neighborhood model [72]. This might possibly be a result of a high level
of correlation between the predictions of the various bagged models, when the factorized
neighborhood method is used. In general, it is desirable to use uncorrelated base models
with low bias and high variance in order to extract the maximum benefit from bagging. In
cases where bagging does not work because of high correlations across base predictors, it
may be helpful to explicitly use randomness injection.

6.3.3 Randomness Injection

Randomness injection is an approach that shares many principles of random forests in clas-
sification [22]. The basic idea is to take a base classifier and explicitly inject randomness into
the classifier. Various methods can be used for injecting the randomness. Some examples [67]
are as follows:

1. Injecting randomness into a neighborhood model: Instead of using the top-k nearest
neighbors (users or items) in a user-based or item-based neighborhood model, the
top-α · k neighbors are selected for α � 1. Then, k elements are randomly selected
from these α · k neighbors. This approach can, however, be shown to be an indirect
variant of row-wise subsampling at factor 1/α. The average prediction from the various
components is returned by the approach.

2. Injecting randomness into a matrix factorization model: Matrix factorization methods
are inherently randomized methods because they perform gradient descent over the
solution space after randomly initializing the factor matrices. Therefore, by choosing
different initializations, different solutions are often obtained. The combinations of
these different solutions often provide more accurate results.

A simple average of the predictions of the different components is returned by the random-
ized ensemble. Like random forests, this approach can reduce the variance of the ensemble
without affecting the bias significantly. In many cases, this approach works quite well where
bagging does not work because of a high level of correlation between various predictors.
As shown in [67], the randomness injection approach works quite well when the factorized
neighborhood model is used as the base predictor [72]. It is noteworthy that the bagging
approach does not work very well in the case of the factorized neighborhood model.

6.4 Switching Hybrids

Switching hybrids are used most commonly in recommender systems in the context of the
problem of model selection, but they are often not formally recognized as hybrid systems.
The original motivation for switching systems [117] was to handle the cold-start problem,
where a particular model works better in earlier stages when there is a paucity of available
data. However, in later stages, a different model is more effective, and therefore one switches
to the more effective model.

212 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

It is also possible to view switching models in the more general sense of model selection.
For example, even the parameter selection step of most recommender models requires the
running of the model over multiple parameter values and then selecting the optimal one.
This particular form of model selection is adapted from the classification literature, and it
is also referred to as the bucket-of-models. In the following, we discuss both these types of
hybrids.

6.4.1 Switching Mechanisms for Cold-Start Issues

Switching mechanisms are often used to handle the cold-start problem, in which one rec-
ommender performs better with less data, whereas the other recommender performs better
with more data. One might use a knowledge-based recommender, when few ratings are avail-
able because knowledge-based recommender systems can function without any ratings, and
they are dependent on user specifications of their needs. However, as more ratings become
available, one might switch to a collaborative recommender. One can also combine content-
based and collaborative recommenders in this way, because content-based recommenders
can work well for new items, whereas collaborative recommenders cannot effectively give
recommendations for new items.

The work in [85] proposes the Daily Learner system in which various recommenders
are used in an ordered strategy. If sufficient recommendations are not found by earlier
recommenders, then later recommenders are used. In particular, the work in [85] uses two
content-based recommenders and a single collaborative recommender. First, a nearest neigh-
bor content classifier is used, followed by a collaborative system, and finally a naive Bayes
content classifier is used to match with the long-term profile. This approach does not fully
address the cold-start problem because all the underlying learners need some amount of
data. Another work [659] combines hybrid versions of collaborative and knowledge-based
systems. The knowledge-based system provides more accurate results during the cold-start
phase, whereas the collaborative system provides more accurate results in later stages.
Incorporating knowledge-based systems is generally more desirable for handling the cold-
start problem.

6.4.2 Bucket-of-Models

In this approach, a fraction (e.g., 25% to 33%) of the specified entries in the ratings matrix
are held out, and various models are applied to the resulting matrix. The held-out entries
are then used to evaluate the effectiveness of the model in terms of a standard measure,
such as the MSE or the MAE. The model that yields the lowest MSE or MAE is used as the
relevant one. This approach is also commonly used for parameter tuning. For example, each
model may correspond to a different value of the parameter of the algorithm, and the value
providing the best result is selected as the relevant one. Once the relevant model has been
selected, it is retrained on the entire ratings matrix, and the results are reported. Instead of
using a hold-out approach, a different technique known as cross-validation is also used. You
will learn more about hold-out and cross-validation techniques in Chapter 7. The bucket-
of-models is the single most useful ensemble approach in recommender systems, although
it is rarely recognized as an ensemble system unless the different models are derived from
heterogeneous data types. When the bucket-of-models is used in the context of a dynamically
changing ratings matrix, it is possible for the system to switch from one component to the
other. However, when it is used for static data, the system can also be viewed as a special
case of weighted recommenders in which the weight of one component is set to 1, and the
weights of the remaining components are set to 0.

6.5. CASCADE HYBRIDS 213

6.5 Cascade Hybrids

In Burke’s original work [117], cascade hybrids were defined in a somewhat narrow way,
in which each recommender actively refines the recommendations made by the previous
recommender. Here, we take a broader view of cascade hybrids in which a recommender
is allowed to use recommendations of the previous recommender in any way (beyond just
direct refinement), and then combine the results to make the final recommendation. This
broader definition encompasses larger classes of important hybrids, such as boosting, which
would not otherwise be included in any of the categories of hybrids. Correspondingly, we
define two different categories of cascade recommenders.

6.5.1 Successive Refinement of Recommendations

In this approach, a recommender system successively refines the output of recommendations
from the previous iteration. For example, the first recommender can provide a rough rank-
ing and also eliminate many of the potential items. The second level of recommendation
then uses this rough ranking to further refine it and break ties. The resulting ranking is
presented to the user. An example of such a recommender system is EntreeC [117], which
uses knowledge of the user’s stated interests to provide a rough ranking. The resulting
recommendations are then partitioned into buckets of roughly equal preference. The rec-
ommendations within a bucket are therefore considered ties at the end of the first stage.
A collaborative technique is used to break the ties and rank the recommendations within
each bucket. The first knowledge-based recommender is clearly of higher priority because
the second-level recommender cannot change the recommendations made at the first level.
The other observation is that the second level recommender is much more efficient because
it needs to focus only on the ties within each bucket. Therefore, the item-space of each
application of the second recommender is much smaller.

6.5.2 Boosting

Boosting has been used popularly in the context of classification [206] and regression [207].
One of the earliest methods for boosting was the AdaBoost algorithm [206]. The regression
variant of this algorithm is referred to as AdaBoost.RT [207]. The regression variant is more
relevant to collaborative filtering because it easier to treat ratings as numeric attributes. In
traditional boosting, a sequence of training rounds is used with weighted training examples.
The weights in each round are modified depending on the performance of the classifier in the
previous round. Specifically, the weights on the training examples with error are increased,
whereas the weights on the correctly modeled examples are reduced. As a result, the classifier
is biased towards correctly classifying the examples that it was unable to properly classify
in the previous round. By using several such rounds, one obtains a sequence of classification
models. For a given test instance, all models are applied to it, and the weighted prediction
is reported as the relevant one.

Boosting needs to be modified to work for collaborative filtering, in which there is no
clear demarcation between the training and test rows, and there is also no clear distinction
between the dependent and independent columns. A method for modifying boosting for
collaborative filtering is proposed in [67]. Unlike classification and regression modeling,
in which weights are associated with rows, the training example weights in collaborative
filtering are associated with individual ratings. Therefore, if the set S represents the set of
observed ratings in the training data, then a total of |S| weights are maintained. Note that

214 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

S is a set of positions (u, j) in the m× n ratings matrix R, such that ruj is observed. It is
also assumed that the base collaborative filtering algorithm has the capacity to work with
weighted ratings (cf. section 6.3). In each iteration, the weights of each of these ratings are
modified depending on how well the collaborative filtering algorithm is able to predict that
particular entry.

The overall algorithm is applied for a total of T iterations. In the tth iteration, the
weight associated with the (u, j)th entry of the ratings matrix is denoted by Wt(u, j). The
algorithm starts by equally weighting each entry and predicts all ratings using a baseline
model. The prediction of an entry (u, j) ∈ S is said to be “incorrect,” if the predicted rating
r̂uj varies from the actual rating ruj by at least a predefined amount δ. The error rate
εt in the tth iteration is computed as the fraction of specified ratings in S for which the
predicted value is incorrect, according to this definition. The weights of correctly predicted
examples are reduced by multiplying them with εt, whereas the weights of the incorrectly
predicted examples stay unchanged. In each iteration, the weights are always normalized
to sum to 1. Therefore, the relative weights of incorrectly classified entries always increase
across various iterations. The baseline model is applied again to the re-weighted data.
This approach is repeated for T iterations, in order to create T different predictions for the
unspecified entries. The weighted average of these T different predictions is used as the final

prediction of an entry, where the weight of the tth prediction is log
(

1
εt

)
. It is noteworthy

that the weight update and model combination rules in [67] are slightly different from those
used in classification and regression modeling. However, there are very few studies in this
area, beyond the work in [67], on using boosting methods for collaborative filtering. It is
conceivable that the simple strategies proposed in [67] can be further improved on with
experimentation.

6.5.2.1 Weighted Base Models

The boosting and bagging methods require the use of weighted base models, in which entries
are associated with weights. In this section, we show how existing collaborative filtering
models can be modified so that they can work with weights.

Let us assume that the weight wuk be associated with a particular entry in the ratings
matrix for user u and item k. It is relatively straightforward to modify existing models to
work with weights on the entries:

1. Neighborhood-based algorithms: The average rating of a user is computed in a weighted
way for mean-centering the ratings. Both the Pearson and the cosine measures can be
modified to take weights into account. Therefore, Equation 2.2 of Chapter 2 can be
modified as follows to compute the Pearson coefficient between users u and v:

Pearson(u, v) =

∑
k∈Iu∩Iv

max{wuk, wvk} · (ruk − μu) · (rvk − μv)
√∑

k∈Iu∩Iv
wuk(ruk − μu)2 ·

√∑
k∈Iu∩Iv

wvk(rvk − μv)2
(6.6)

The reader should refer to section 2.3 of Chapter 2 for the details of the notations.
A different way4 of modifying the measure is as follows:

Pearson(u, v) =

∑
k∈Iu∩Iv

wuk · wvk · (ruk − μu) · (rvk − μv)
√∑

k∈Iu∩Iv
w2

uk(ruk − μu)2 ·
√∑

k∈Iu∩Iv
w2

vk(rvk − μv)2
(6.7)

4The work in [67] proposes only the first technique for computing the similarity.

6.6. FEATURE AUGMENTATION HYBRIDS 215

For item-item similarity measures, the adjusted cosine measure can be modified in
a similar way. These weighted similarity measures are used both for computing the
nearest neighbors and for (weighted) averaging of the ratings in the peer group.

2. Latent factor models: Latent factor models are defined as optimization problems in
which the sum of the squares of the errors of the specified entries are minimized.
In this case, the weighted sum of the squares of the optimization problem must be
minimized. Therefore, the objective function in section 3.6.4.2 of Chapter 3 can be
modified as follows:

Minimize J =
1

2

∑

(i,j)∈S

wije
2
ij +

λ

2

m∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js (6.8)

Here, U = [uij] and V = [vij] are the m × k and n × k user-factor and item-factor
matrices, respectively. Note the weights associated with the errors on the entries.
The corresponding change in the gradient descent method is to weight the relevant
updates:

uiq ⇐ uiq + α(wij · eij · vjq − λ · uiq)

vjq ⇐ vjq + α(wij · eij · uiq − λ · vjq)

Many other base collaborative filtering algorithms can be modified to work with weighted
entries. These types of weighted base algorithms are useful for many collaborative filtering
ensembles, such as boosting and bagging.

6.6 Feature Augmentation Hybrids

The feature augmentation hybrid shares a number of intuitive similarities with the stacking
ensemble in classification. In stacking [634], the first level classifier is used to create or aug-
ment a set of features for the second level classifier. In many cases, off-the-shelf systems are
used like an ensemble. However, in some cases, changes may be required to the component
recommender system to work with the modified data, and therefore the hybrid system is
not a true ensemble of off-the-shelf systems.

The Libra system [448] combines Amazon.com’s recommender system with its own Bayes
classifier. The approach uses the “related authors” and “related titles” that Amazon gener-
ates as features describing the items. Note that Amazon generates these recommendations
with the use of a collaborative recommender system. These data are then used in conjunction
with a content-based recommender to make the final predictions. Note that any off-the-shelf
content-based system can be used in principle, and therefore the approach can be viewed
as an ensemble system. The approach in [448] opts for a naive Bayes text classifier. It was
found through experiments that the features generated by Amazon’s collaborative system
were of high quality, and they contributed significantly to better quality recommendations.

Instead of using a collaborative system first, it is also possible to use the content-based
system first. The basic idea is to use the content-based system to fill in the missing entries
of the ratings matrix so that it is no longer sparse. Thus, the missing entries are estimated
by the content-based system to create a denser ratings matrix. These newly added ratings
are referred to as pseudo-ratings. Then, a collaborative recommender is used on the dense
ratings matrix to make rating predictions. Finally, the collaborative prediction is combined

216 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

with the original content-based prediction in a weighted way to yield the overall prediction of
the missing entries in the matrix [431]. The incorporation of missing ratings in the first phase
allows for a more robust application of the second phase in terms of similarity computation.
However, the similarity computation does need to be modified to give less weight to pseudo-
ratings compared to true ratings. This is because pseudo-ratings were inferred, and they
might be error-prone.

How can such weights be determined? The weight of a pseudo-rating intuitively repre-
sents the algorithm’s certainty in the prediction of the first phase, and it is an increasing
function of the number of ratings |Ii| of that user. A number of heuristic functions are used
to weight various ratings, and the reader is referred to [431] for details. Note that this ap-
proach requires modifications to the second phase of collaborative filtering, and off-the-shelf
algorithms cannot be used. Such methods can be viewed as monolithic systems.

Feature augmentation has a long history in recommender systems. One of the earli-
est example of feature augmentation was implemented in the context of the GroupLens
system [526], in which a knowledge-based system was used to create a database of artifi-
cial ratings. The agents, known as filterbots, used specific criteria such as the number of
spelling errors or the message size to assign ratings to items, while acting as artificial users.
Subsequently, these ratings were used in the context of a collaborative system to make
recommendations.

6.7 Meta-Level Hybrids

In a meta-level hybrid, the model learned by one recommender is used as input to the
next level. An important example of collaboration via content was the early work by Paz-
zani [475]. A content-based model [363] is constructed that describes the discriminative
features predicting restaurants. The discriminative features may be determined using any
of the feature selection methods discussed in section 4.3 of Chapter 4. Each user is defined
by a vector representation of discriminative words. An example of the possible user-word
matrix for a restaurant recommender systems is shown below:

Word ⇒ beef roasted lamb fried eggs
User ⇓
Sayani 0 3 0 2.5 1.7
John 2.3 1.3 0.2 1.4 2.1
Mary 0 2.8 0.9 1.1 2.6
Peter 2.4 1.7 0 3.5 1.9
Jack 1.6 2.2 3.1 1.0 0

The weights in the aforementioned table may be obtained using the descriptions of the
items that the user has accessed. Note that the irrelevant words have already been removed
because the content-based feature selection in the first phase creates a discriminative vector-
space representation for each user. Furthermore, the representation is significantly denser
than a typical ratings matrix. Therefore, one can robustly compute the similarities between
users with this new representation. The main idea here is that the content-based peer group
is used to determine the most similar users of the target user. Once the peer group has been
determined, then the weighted average of the ratings of the peer group are used to determine
the predicted ratings. Note that this approach does require a certain amount of change to

6.8. FEATURE COMBINATION HYBRIDS 217

the original collaborative recommender, at least in terms of how the similarity is computed.
The peer group formation must use the user-word matrix (which was the model created in
the first phase), whereas the final recommendation uses the ratings matrix. This is different
from a collaborative system in which both stages use the same matrix. Furthermore, the
first phase of the approach cannot use off-the-shelf content-based models in their entirety
because it is mostly a feature selection (preprocessing) phase. Therefore, in many cases, these
systems cannot be considered true ensembles, because they do not use existing methods as
off-the-shelf recommenders.

Another example of a meta-level system was LaboUr [534] in which an instance-based
model is to used to learn the content-based user’s profile. The profiles are then compared
using a collaborative approach. These models are compared across users to make predictions.
Many of these methods fall within the category of “collaboration via content,” though that
is not the only way in which such hybrids can be constructed.

6.8 Feature Combination Hybrids

In feature combination hybrids, the idea is to combine the input data from various sources
(e.g., content and collaborative) into a unified representation before applying a predictive
algorithm. In most cases, this predictive algorithm is a content-based algorithm that uses
collaborative information as additional features. An example of such an approach was pre-
sented in [69], where the RIPPER classifier was applied to the augmented data set. It was
shown in [69] that the methodology achieved significant improvements over a purely collab-
orative approach. However, the content features need to be hand picked in order to achieve
this result. Therefore, the approach can be sensitive to the choice of data set and feature
representation. The approach reduces the sensitivity of the system to the number of users
that have rated an item. This is, of course, the property of any content-based system, which
is robust to the cold-start problem from the perspective of new items.

Note that it is possible for the combination to be performed in a variety of different ways
with different types of background knowledge. For example, consider the case where each
item is associated with a higher-level taxonomy representing the genres of the items. The
representation profile of the user and items can be augmented in terms of the relevant genres
in the hierarchy. The ratings matrix can then be constructed in terms of genres rather than
items. In sparse matrices, such an approach can provide more effective results because it
reduces the number of columns, and because most entries are likely to be populated in the
compressed matrix.

Another approach is to augment a ratings matrix and add columns for keywords in
addition to items. Therefore, the ratings matrix becomes an m× (n+ d) matrix, where n is
the number of items and d is the number of keywords. The weights of “keyword items” are
based on the weighted aggregation of the descriptions of the items accessed, bought, or rated
by the user. A traditional neighborhood or matrix factorization approach can be used with
this augmented matrix. The relative weights of the two types of columns can be learned
through cross-validation (see Chapter 7). This type of combination of two optimization
models is common in hybrid settings, where the objective function is set up as follows in
terms of a parameter vector θ:

J = CollaborativeObjective(θ) + β ContentObjective(θ) + Regularization (6.9)

The objective function is then optimized over the parameter vector θ. A specific example,
which is discussed below, is the generalization of sparse linear models (cf. section 2.6.5 of
Chapter 2) with side information.

218 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

6.8.1 Regression and Matrix Factorization

Let R be an m × n implicit feedback ratings matrix, and C be a d × n content matrix,
in which each item is described by non-negative frequencies of d words. Examples include
descriptions of items or short reviews of items. Since R is an implicit feedback matrix,
missing entries are assumed to be 0s. As in section 2.6.5, let W be an n × n item-item
coefficient matrix in which the ratings are predicted as R̂ = RW . However, in this case
we can also predict the ratings as R̂ = CW . Therefore, instead of optimizing only ||R −
RW ||2, we add an additional content-based term ||R − CW ||2. Together with elastic-net
regularization, and non-negativity/diagonal constraints, the enhanced optimization model
is stated as follows [456]:

Minimize J = ||R−RW |||2 + β · ||R− CW ||2 + λ||W ||2 + λ1 · ||W ||1
subject to:

W ≥ 0

Diagonal(W) = 0

The weight parameter β can be determined in a tuning phase. Although the ratings can be
predicted either as R̂ = RW or as R̂ = CW , only the former prediction function is used.
Therefore, the term ||R−CW ||2 is used only to refine the objective function as an additional
regularizer. In other words, the goal of the additional term is to improve the generalization
power of the model for predicting future (and as yet unknown) actions of the user. Some
variations of this basic objective function are discussed in [456].

This type of approach can be used for combining any other type of collaborative filter-
ing (optimization) model with content-based methods. For example, in the case of matrix
factorization, one can use an m×k user factor matrix U , an n×k shared item factor matrix
V , and a d× k content factor matrix Z to set up the optimization model as follows [557]:

Minimize J = ||R − UV T |||2 + β · ||C − ZV T ||2 + λ(||U ||2 + ||V ||2 + ||Z||2)
Note that the item factor matrix V is shared between the factorizations of the ratings matrix
and content matrix. Such shared matrix factorization models are also used for incorporating
other types of side information such as social trust data (cf. section 11.3.8 of Chapter 11).
An overview of combining matrix factorization methods with arbitrary models is provided
in section 3.7.7 of Chapter 3.

6.8.2 Meta-level Features

It is not necessary to use feature combination in the context of multiple types of recom-
menders (e.g., content and collaborative). New meta-features can be extracted from features
of a particular type of recommender and then combined within the ensemble model. For
example, one can extract meta-level features from a ratings matrix corresponding to the
number of ratings given by various users and items. When a user rates many movies, or
when a movie is rated by many users, it affects the recommendation accuracy of the various
algorithms in different ways. Different recommender systems will be more or less sensitive
to these characteristics, and will therefore do better or worse for various users and items.
The basic idea of meta-level features is to account for these entry-specific differences in the
model combination process with the use of meta-features. The resulting meta-features can
be paired with other ensemble algorithms to create an ensemble design, which incorporates
characteristics from various types of hybrids, but it does not neatly fall into any of Burke’s
seven original categories [117]. However, it is most closely related to feature combination
hybrids in the sense that it combines meta-features with ratings.

6.8. FEATURE COMBINATION HYBRIDS 219

Id. Description

1 Constant value of 1 (using only this feature amounts to
using the global linear regression model of section 6.3)

2 A binary variable indicating whether the user rated more than 3 movies on
this particular date

3 The log of the number of times a movie has been rated
4 The log of the number of distinct dates on which a user has rated movies
5 A Bayesian estimate of the mean rating of the movie after

having subtracted out the user’s Bayesian estimated mean
6 The log of the number of user ratings
16 The standard deviation of the user ratings
17 The standard deviation of the movie ratings
18 The log of (Rating Date − First User Rating Date +1)
19 The log of the number of user ratings on the date +1

Table 6.1: A subset of the meta-features used in [554] for ensemble combination on the
Netflix Prize data set

The meta-feature approach has proven to be a potentially powerful method for robust
ensemble design. In fact, both winning entries in the Netflix Prize content, corresponding
to Bellkor’s Pragmatic Chaos [311] and The Ensemble [704], used such an approach. We
will describe the use of such meta-level features in collaborative filtering algorithms. In
particular, we will discuss the methodology of feature weighted linear stacking [554], which
combines such meta-level features with the stacking methods discussed earlier in section 6.3.
This approach is based on the blending technique used in The Ensemble [704]. A subset
of the meta-features used in [554] for the stacking process on the Netflix Prize data set is
provided in Table 6.1 for illustrative purposes. The identifier in the left column corresponds
to the identifier used in the original paper [554]. These features are particularly instructive
because one can usually extract analogous features for other ratings data sets. Note that
each feature in Table 6.1 is specific to an entry in the ratings matrix.

Let us assume that a total of l (numeric) meta-features have been extracted, and their
values are zut1 . . . zutl for user-item pair (u, t). Therefore, the meta-features are specific to
each entry (u, t) in the ratings matrix, although some features may take on the same values
for varying values of u or varying values of t. For example, feature 3 in Table 6.1 will not
vary with the user u, but it will vary with the item t.

Let us assume that there are a total of q base recommendation methods, and the weights
associated with the q recommendation methods are denoted by w1 . . . wq . Then, for a given
entry (u, t) in the ratings matrix, if the predictions of the q components are r̂1ut . . . r̂

q
ut, then

the prediction r̂ut of the overall ensemble is given by the following:

r̂ut =

q∑

i=1

wir̂
i
ut (6.10)

We would like the estimated prediction r̂ut of the ensemble to match the observed ratings rut
as closely as possible. Note that the approach in section 6.3 uses a linear regression model
to learn the weights w1 . . . wq by holding out a pre-defined fraction of the entries during the
process of training the q models, and then using the held-out entries as the observed values
in the linear regression model. Such an approach is pure stacking, and it can be considered

220 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

a weighted hybrid. However, it can be enhanced further using meta-features. The main idea
is that the linear regression weights w1 . . . wq are specific to each entry in the ratings matrix
and they are themselves linear functions of the meta-features. In other words, the weights
now need to be super-scripted with (u, t) to account for the fact that they are specific to
each entry (u, t) in the ratings matrix:

r̂ut =

q∑

i=1

wut
i r̂iut (6.11)

This is a more refined model because the nature of the combination is local to each entry
in the ratings matrix, and it is not blindly global to the entire matrix. The problem is
that the number, m × n × q, of different parameters wut

i becomes too large to be learned
in a robust way. In fact, the number of parameters (weights) is larger than the number
of observed ratings, as a result of which overfitting will occur. Therefore, the weights are
assumed to be linear combinations of the meta-features under the assumption that these
meta-features regulate the relative importance of the various models for the individual user-
item combinations. Therefore, we introduce the parameters vij that regulate the importance
of the jth meta-feature to the ith model. The weights for entry (u, t) can now be expressed
as linear combination of the meta-feature values of entry (u, t) as follows:

wut
i =

l∑

j=1

vijz
ut
j (6.12)

We can now express the regression modeling problem in terms of a fewer number, q × l,
of parameters vij , where vij regulates the impact of the jth meta-feature on the relative
importance of the ith ensemble model. Substituting the value of wut

i from Equation 6.12 in
Equation 6.11, we obtain the relationship between the ensemble rating and the component
ratings as follows:

r̂ut =

q∑

i=1

l∑

j=1

vijz
ut
j r̂iut (6.13)

Note that this is still a linear regression problem in q × l coefficients corresponding to the
variables vij . A standard least-squares regression model can be used to learn the values of
vij on the held-out5 ratings. The independent variables of this regression are given by the
quantities zutj r̂iut. Regularization can be used to reduce overfitting. After the weights have
been learned using linear regression, the individual component models are retrained on the
entire training set without any held-out entries. The weights, which were learned using the
held-out entries, are used in conjunction with these q models.

6.9 Mixed Hybrids

The main characteristic of mixed recommender systems is that they combine the scores
from different components in terms of presentation, rather than in terms of combining
the predicted scores. In many cases, the recommended items are presented next to one
another [121, 623]. Therefore, the main distinguishing characteristic of such systems is the
combination of presentation rather than the combination of predicted scores.

5In the context of the Netflix Prize contest, this was achieved on a special part of the data set, referred
to as the probe set. The probe set was not used for building the component ensemble models.

6.10. SUMMARY 221

Most of the other hybrid systems focus on creating a unified rating, which is extracted
from the various systems. A classical example is illustrated in [559], in which a personalized
television listing is created using a mixed system. Typically, a composite program is pre-
sented to the user. This composite program is created by combining items recommended by
different systems. Such composite programs are typical in the use of mixed systems, although
the applicability of mixed systems goes beyond such scenarios. In many of these cases, the
basic idea is that the recommendation is designed for a relatively complex item contain-
ing many components, and it is not meaningful to recommend the individual items. The
new item startup problem is often alleviated with a mixed recommender system. Because a
television program has many slots, either the content-based or collaborative recommender
might be successful in filling the different slots. In some cases, a sufficient number of rec-
ommendations for the slots may be achieved only with multiple recommenders of different
types, especially at the very beginning when there is a paucity in the available data. How-
ever, conflict resolution may be required in some cases where more choices are available
than the available slots.

Another example of a mixed hybrid has been proposed in the tourism domain [660, 661].
In this case, bundles of recommendations are created, where each bundle contains multiple
categories of items. For example, in a tourism recommender system, the different categories
may correspond to accommodations, leisure activities, air-tickets, and so on. Tourists will
typically buy bundles of these items from various categories in order to create their trips.
For each category, a different recommender system is employed. The basic idea here is that
the recommender system that is most appropriate for obtaining the best accommodations,
may not be the one that is most appropriate for recommending tourism activities. There-
fore, each of these different aspects is treated as a different category for which a different
recommender system is employed. Furthermore, it is important to recommend bundles in
which the items from multiple categories are not mutually inconsistent. For example, if a
tourist is recommended a leisure activity that is very far away from her place of accommo-
dation, then the overall recommendation bundle will not be very convenient for the tourist.
Therefore, a knowledge base containing a set of domain constraints is incorporated for the
bundling process. The constraints are deigned to resolve inconsistencies in the product do-
main. A constraint satisfaction problem is employed to determine a mutually consistent
bundle. More details of the approach are discussed in [660, 661].

It is noteworthy that many of the mixed hybrids are often used in conjunction with
knowledge-based recommender systems as one of the components [121, 660]. This is not
a coincidence. Mixed hybrids are generally designed for complex product domains with
multiple components like knowledge-based recommender systems.

6.10 Summary

Hybrid recommender systems are used either to leverage the power of multiple data sources
or to improve the performance of existing recommender systems within a particular data
modality. An important motivation for the construction of hybrid recommender systems
is that different types of recommender systems, such as collaborative, content-based, and
knowledge-based methods, have different strengths and weaknesses. Some recommender sys-
tems work more effectively at cold start, whereas other work more effectively when sufficient
data are available. Hybrid recommender systems attempt to leverage the complementary
strengths of these systems to create a system with greater overall robustness.

222 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

Ensemble methods are also used to improve the accuracy of collaborative filtering meth-
ods in which the different components use the same ratings matrix. In these cases, the
individual models use the same base data rather than different sources of data. Such meth-
ods are much closer to the existing ideas on ensemble analysis in the classification domain.
The basic idea is to use the various models to incorporate diversity and reduce model bias.
Many of the existing theoretical results on the bias-variance trade-off in classification are
also applicable to collaborative filtering applications. Therefore, many techniques, such as
bagging and boosting, can be adapted with relatively minor modifications.

Hybrid systems are designed as monolithic systems, ensemble systems, or mixed systems.
Ensemble systems are typically designed by using either sequential or parallel arrangement of
recommenders. In monolithic design, either existing recommenders are modified, or entirely
new recommenders are created by combining the features from multiple data modalities.
In mixed systems, recommendations from multiple engines are presented simultaneously. In
many cases, meta-features can also be extracted from a particular data modality in order
to combine the predictions of various recommenders in an entry-specific way. The great
strength of hybrid and ensemble systems arises from their ability to leverage complementary
strengths in various systems. The top entries in the Netflix Prize contest were all ensemble
systems.

6.11 Bibliographic Notes

Although hybrid systems have a long and rich history in the development of recommender
systems, a formal categorization of these methods was not performed until the survey by
Burke [117]. A discussion of hybrid recommender systems in the specific context of the Web
is provided in [118]. Burke originally categorized recommender systems into seven different
categories. Subsequently, Jannach et al. [275] created a higher-level categorization of these
lower-level categories into pipelined and parallel systems. The hierarchical taxonomy in
this book roughly follows the work of [275] and [117], although it makes a number of
modifications to include several important methods, such as boosting, into one of these
categories. It is important to note that this taxonomy is not exhaustive because many
ensemble systems, such as those winning the Netflix Prize, use ideas from many types of
hybrids. Nevertheless, Burke’s original categorization is very instructive, because it covers
most of the important building blocks. Recently, ensemble methods have received a lot of
attention, especially after the winning entries in the Netflix Prize contest were both ensemble
systems [311, 704].

Ensemble methods have been used extensively in the classification literature. A detailed
discussion of the bias-variance trade-off in the context of the classification problem is pro-
vided in [22]. Bagging and subsampling methods for classification are discussed in [111–113].
A recent work [67] shows how one might leverage ensemble methods from the classification
literature to recommender systems by adapting methods such as bagging and AdaBoost.RT.
While some ensemble systems are developed with this motivation, other systems combine
the power of different data types. Weighted models are among the most popular classes
of models. Some of the models combine models built on homogeneous data types. Meth-
ods for constructing homogeneous weighted ensembles are discussed in [67, 266]. The win-
ners [311, 704] of the Netflix Prize contest also used a weighted ensemble system, although
the combination uses additional meta-features, which imbues it with some of the properties
of a feature combination approach. The work in [180] uses ensembles of maximum margin
matrix factorization methods with different parameter settings. User-based and item-based

6.11. BIBLIOGRAPHIC NOTES 223

neighborhood algorithms are combined in [338]. Other recent work on weighted models
shows how to combine systems built on top of different data types. The work in [659]
combines a collaborative and knowledge-based recommender, whereas the work in [162]
combines a content-based and collaborative recommender.

A performance-based switching hybrid is discussed in [601]. An interesting machine-
learning approach to switching mechanisms is discussed in [610]. Other switching mech-
anisms for handling cold-start issues are discussed in [85]. Another combination of a
knowledge-based and collaborative system to create a switching hybrid is discussed in [659].

Cascade systems use sequential processing of the ratings to make recommendations.
Such systems can either use refinements or they can use boosting methods. The EntreeC
recommender [117] is the most well-known example of a cascade system that uses refine-
ments. A cascade system that uses boosting is discussed in [67]. The latter methods uses a
weighted version of the AdaBoost.RT algorithm in order to create the hybrid recommender.

Feature augmentation hybrids use the recommenders of one type to augment the features
of another. The Libra system [448] combines Amazon.com’s recommender system with its
own Bayes classifier. The output of the Amazon system is used to create a content-based
recommender. The method in [431] uses a content-based system to estimate the missing
entries of the ratings matrix and uses the estimated values in the context of a collaborative
system. In the GroupLens system [526], a knowledge-based system was used to create a
database of artificial ratings. These ratings were used in the context of a collaborative system
to make recommendations. The work in [600] shows how to use a feature augmentation
hybrid to recommend research papers.

Many techniques have been used recently to create fused feature spaces or unified repre-
sentations from ratings matrices and content matrices. This unified representation or feature
space forms the basis on which machine learning tools can be applied. One of the earliest
works along this line constructs joint feature maps [68] from rating and content information
and then uses machine learning models in order to perform the prediction. A tensor-based
approach is used to achieve this goal. An analogous approach is also used in [557], which
jointly factorizes the user-item purchase profile matrix and the item-feature content matrix
into a common latent space. This latent representation is then used for learning. The work
in [411] uses a latent factor model in which the review text is combined with ratings. A
regression-based latent factor model is proposed in [14] for rating prediction, which uses con-
tent features for factor estimation. The user and item latent factors are estimated through
independent regression on user and item features. Then, a multiplicative function is used
on the user and item factors for prediction. Sparse regression models have also been used
for fused prediction in [456]. Finally, graph-based models have been used to create unified
representations. The work in [238] leans the interaction weights between user actions and
various features such as user-item profile information and side information. Unified Boltz-
mann machines are used to perform the prediction. A unified graph-based representation
has been proposed in [129]. A Bayesian network is created containing item nodes, user nodes,
and item feature nodes. This Bayesian network is used to perform combined content-based
and collaborative recommendations.

In a meta-level hybrid, themodel learned by one recommender is used as input to the next
level. In the early work by Pazzani [475], a content-based model [363] is constructed that
describes the discriminative features predicting restaurants. Each user is defined by a vector
representation of discriminative words. The content-based model is used to determine the
peer group, which is then used for the purpose of recommendation. Meta-level combinations
of content-based and collaborative systems are discussed in [475, 534]. A two-stage Bayesian
meta-level hybrid is discussed in [166]. A different type of hierarchical Bayes model that

224 CHAPTER 6. ENSEMBLE-BASED AND HYBRID RECOMMENDER SYSTEMS

combines collaborative and content-based systems is presented in [652]. Methods for stacking
recommender systems with meta-features are discussed in [65, 66, 311, 554]. The STREAM
system [65, 66] was one of the earliest systems to leverage meta-level features.

A number of mixed recommender systems have been proposed in [121, 559, 623, 660, 661].
A mixed recommender system for creating television programs is discussed in [559], whereas
a system for providing tourism bundles is discussed in [660]. It is noteworthy that many
mixed recommender systems are used in complex product domains like knowledge-based
recommender systems [121, 660].

6.12 Exercises

1. How does the rank of the latent factor model affect the bias-variance trade-off in a
recommender system? If you had to use a latent factor model as the base model for a
bagging ensemble, would you choose a model with high rank or low rank?

2. Does your answer to Exercise 1 change if you had to use boosting in conjunction with
a latent factor model?

3. Implement an entry-wise bagging model by using a weighted latent factor model as
the base model.

4. Suppose that you created a collaborative system in which the user-item matrix con-
tained word frequencies as additional rows of the matrix. Each additional row is a
word, and the value of the word-item combination is a frequency. An item-based
neighborhood model is used with this augmented representation. What kind of hybrid
would this be considered? Discuss the possible impact of using such a model on the
accuracy and diversity of the recommender system.

5. Discuss how you would control the relative strength of collaborative and content-based
portions in Exercise 4 with a single weight parameter. How would you determine the
optimal value of the weight parameter in a data-driven way?

Chapter 7

Evaluating Recommender Systems

“True genius resides in the capacity for evaluation of uncertain, hazardous, and
conflicting information.”– Winston Churchill

7.1 Introduction

The evaluation of collaborative filtering shares a number of similarities with that of clas-
sification. This similarity is due to the fact that collaborative filtering can be viewed as
a generalization of the classification and regression modeling problem (cf. section 1.3.1.3
of Chapter 1). Nevertheless, there are many aspects to the evaluation process that are
unique to collaborative filtering applications. The evaluation of content-based methods is
even more similar to that of classification and regression modeling, because content-based
methods often use text classification methods under the covers. This chapter will introduce
various mechanisms for evaluating various recommendation algorithms and also relate these
techniques to the analogous methods used in classification and regression modeling.

A proper design of the evaluation system is crucial in order to obtain an understanding
of the effectiveness of various recommendation algorithms. As we will see later in this
chapter, the evaluation of recommender systems is often multifaceted, and a single criterion
cannot capture many of the goals of the designer. An incorrect design of the experimental
evaluation can lead to either gross underestimation or overestimation of the true accuracy
of a particular algorithm or model.

Recommender systems can be evaluated using either online methods or offline meth-
ods. In an online system, the user reactions are measured with respect to the presented
recommendations. Therefore, user participation is essential in online systems. For example,
in an online evaluation of a news recommender system, one might measure the conver-
sion rate of users clicking on articles that were recommended. Such testing methods are
referred to as A/B testing, and they measure the direct impact of the recommender system

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 7

225

226 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

on the end user. At the end of the day, increasing the conversion rate on profitable items
is the most important goal of a recommender system, and it can provide a true measure of
the effectiveness of the system. However, since online evaluations require active user par-
ticipation, it is often not feasible to use them in benchmarking and research. There are
usually significant challenges in gaining access to user conversion data from systems with
large-scale user participation. Even if such access is gained, it is usually specific to a single
large-scale system. On the other hand, one often desires to use data sets of different types,
and from multiple domains. Testing over multiple data sets is particularly important for
assuring greater generalization power of the recommender system so that one can be assured
that the algorithm works under a variety of settings. In such cases, offline evaluations with
historical data sets are used. Offline methods are, by far, the most common methods for
evaluating recommender systems from a research and practice perspective. Therefore, most
of this chapter will focus on offline methods, although some discussion of online methods is
also included for completeness.

When working with offline methods, accuracy measures can often provide an incomplete
picture of the true conversion rate of a recommender system. Several other secondary mea-
sures also play a role. Therefore, it is important to design the evaluation system carefully
so that the measured metrics truly reflect the effectiveness of the system from the user per-
spective. In particular, the following issues are important from the perspective of designing
evaluation methods for recommender systems:

1. Evaluation goals: While it is tempting to use accuracy metrics for evaluating recom-
mender systems, such an approach can often provide an incomplete picture of the user
experience. Although accuracy metrics are arguably the most important components of
the evaluation, many secondary goals such as novelty, trust, coverage, and serendipity
are important to the user experience. This is because these metrics have important short-
and long-term impacts on the conversion rates. Nevertheless, the actual quantification
of some of these factors is often quite subjective, and there are often no hard measures
to provide a numerical metric.

2. Experimental design issues: Even when accuracy is used as the metric, it is crucial to
design the experiments so that the accuracy is not overestimated or underestimated. For
example, if the same set of specified ratings is used both for model construction and for
accuracy evaluation, then the accuracy will be grossly overestimated. In this context,
careful experimental design is important.

3. Accuracy metrics: In spite of the importance of other secondary measures, accuracy met-
rics continue to be the single most important component in the evaluation. Recommender
systems can be evaluated either in terms of the prediction accuracy of a rating or the
accuracy of ranking the items. Therefore, a number of common metrics such as the mean
absolute error and mean squared error are used frequently. The evaluation of rankings
can be performed with the use of various methods, such as utility-based computations,
rank-correlation coefficients, and the receiver operating characteristic curve.

In this chapter, we will first begin by discussing the general goals of evaluating recommender
systems beyond the most basic criterion of accuracy. Examples of such goals include diversity
and novelty. The main challenge with quantifying such goals is that they are often subjective
goals based on user experience. From a quantification perspective, accuracy is a concrete goal
that is relatively easy to measure and is therefore used more frequently for bench-marking
and testing. A few quantification methods do exist for evaluating the secondary goals such as

7.2. EVALUATION PARADIGMS 227

diversity and novelty. Although the majority of this chapter will focus on accuracy metrics,
various quantification measures for the secondary goals will also be discussed.

This chapter is organized as follows. An overview of the different types of evaluation
systems is provided in section 7.2. Section 7.3 studies the general goals of evaluating rec-
ommender systems. The appropriate design of accuracy testing methods is discussed in
section 7.4. Accuracy metrics for recommender systems are discussed in section 7.5. The
limitations of evaluation measures are discussed in 7.6. A summary is given in section 7.7.

7.2 Evaluation Paradigms

There are three primary types of evaluation of recommender systems, corresponding to user
studies, online evaluations, and offline evaluations with historical data sets. The first two
types involve users, although they are conducted in slightly different ways. The main dif-
ferences between the first two settings lie in how the users are recruited for the studies.
Although online evaluations provide useful insights about the true effects of a recommen-
dation algorithm, there are often significant practical impediments in their deployment. In
the following, an overview of these different types of evaluation is provided.

7.2.1 User Studies

In user studies, test subjects are actively recruited, and they are asked to interact with
the recommender system to perform specific tasks. Feedback can be collected from the
user before and after the interaction, and the system also collects information about their
interaction with the recommender system. These data are then used to make inferences
about the likes or dislikes of the user. For example, users could be asked to interact with
the recommendations at a product site and give their feedback about the quality of the
recommendations. Such an approach could then be used to judge the effectiveness of the
underlying algorithms. Alternatively, users could be asked to listen to several songs, and
then provide their feedback on these songs in the form of ratings.

An important advantage of user studies is that they allow for the collection of information
about the user interaction with the system. Various scenarios can be tested about the effect
of changing the recommender system on the user interaction, such as the effect of changing
a particular algorithm or user-interface. On the other hand, the active awareness of the
user about the testing of the recommender system can often bias her choices and actions.
It is also difficult and expensive to recruit large cohorts of users for evaluation purposes.
In many cases, the recruited users are not representative of the general population because
the recruitment process is itself a bias-centric filter, which cannot be fully controlled. Not
all users would be willing to participate in such a study, and those who do agree might
have unrepresentative interests with respect to the remaining population. For example,
in the case of the example of rating songs, the (voluntary) participants are likely to be
music enthusiasts. Furthermore, the fact that users are actively aware of their recruitment
for a particular study is likely to affect their responses. Therefore, the results from user
evaluations cannot be fully trusted.

7.2.2 Online Evaluation

Online evaluations also leverage user studies except that the users are often real users
in a fully deployed or commercial system. This approach is sometimes less susceptible to
bias from the recruitment process, because the users are often directly using the system in
the natural course of affairs. Such systems can often be used to evaluate the comparative

228 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

performance of various algorithms [305]. Typically, users can be sampled randomly, and the
various algorithms can be tested with each sample of users. A typical example of a metric,
which is used to measure the effectiveness of the recommender system on the users, is the
conversion rate. The conversion rate measures the frequency with which a user selects a
recommended item. For example, in a news recommender system, one might compute the
fraction of times that a user selects a recommended article. If desired, expected costs or
profits can be added to the items to make the measurement sensitive to the importance of
the item. These methods are also referred to as A/B testing, and they measure the direct
impact of the recommender system on the end user. The basic idea in these methods is to
compare two algorithms as follows:

1. Segment the users into two groups A and B.

2. Use one algorithm for group A and another algorithm for group B for a period of time,
while keeping all other conditions (e.g., selection process of users) across the two groups
as similar as possible.

3. At the end of the process, compare the conversion rate (or other payoff metric) of the
two groups.

This approach is very similar to what is used for clinical trials in medicine. Such an approach
is the most accurate one for testing the long-term performance of the system directly in
terms of goals such as profit. These methods can also be leveraged for the user studies
discussed in the previous section.

One observation is that it is not necessary to strictly segment the users into groups in
cases where the payoff of each interaction between the user and the recommender can be
measured separately. In such cases, the same user can be shown one of the algorithms at
random, and the payoff from that specific interaction can be measured. Such methods of
evaluating recommender systems have also been generalized to the development of more
effective recommendation algorithms. The resulting algorithms are referred to as multi-arm
bandit algorithms. The basic idea is similar to that of a gambler (recommender system)
who is faced with a choice of selecting one of a set of slot machines (recommendation
algorithms) at the casino. The gambler suspects that one of these machines has a better
payoff (conversion rate) than others. Therefore, the gambler tries a slot machine at random
10% of the time in order to explore the relative payoffs of the machines. The gambler greedily
selects the best paying slot machine the remaining 90% of the time in order to exploit the
knowledge learned in the exploratory trials. The process of exploration and exploitation is
fully interleaved in a random way. Furthermore, the gambler may choose to give greater
weight to recent results as compared to older results for evaluation. This general approach
is related to the notion of reinforcement learning, which can often be paired with online
systems. Although reinforcement learning has been studied extensively in the classification
and regression modeling literature [579], the corresponding work in the recommendation
domain is rather limited [389, 390, 585]. A significant research opportunity exists for the
further development of such algorithms.

The main disadvantage is that such systems cannot be realistically deployed unless a
large number of users are already enrolled. Therefore, it is hard to use this method during
the start up phase. Furthermore, such systems are usually not openly accessible, and they
are only accessible to the owner of the specific commercial system at hand. Therefore,
such tests can be performed only by the commercial entity, and for the limited number of
scenarios handled by their system. This means that the tests are often not generalizable

7.3. GENERAL GOALS OF EVALUATION DESIGN 229

to system-independent benchmarking by scientists and practitioners. In many cases, it is
desirable to test the robustness of a recommendation algorithm by stress-testing it under
a variety of settings and data domains. By using multiple settings, one can obtain an idea
of the generalizability of the system. Unfortunately, online methods are not designed for
addressing such needs. A part of the problem is that one cannot fully control the actions of
the test users in the evaluation process.

7.2.3 Offline Evaluation with Historical Data Sets

In offline testing, historical data, such as ratings, are used. In some cases, temporal in-
formation may also be associated with the ratings, such as the time-stamp at which each
user has rated the item. A well known example of a historical data set is the Netflix Prize
data set [311]. This data set was originally released in the context of an online contest, and
has since been used as a standardized benchmark for testing many algorithms. The main
advantage of the use of historical data sets is that they do not require access to a large
user base. Once a data set has been collected, it can be used as a standardized benchmark
to compare various algorithms across a variety of settings. Furthermore, multiple data sets
from various domains (e.g., music, movies, news) can be used to test the generalizability of
the recommender system.

Offline methods are among the most popular techniques for testing recommendation
algorithms, because standardized frameworks and evaluation measures have been devel-
oped for such cases. Therefore, much of this chapter will be devoted to the study of offline
evaluation. The main disadvantage of offline evaluations is that they do not measure the
actual propensity of the user to react to the recommender system in the future. For ex-
ample, the data might evolve over time, and the current predictions may not reflect the
most appropriate predictions for the future. Furthermore, measures such as accuracy do
not capture important characteristics of recommendations, such as serendipity and novelty.
Such recommendations have important long-term effects on the conversion rate of the rec-
ommendations. Nevertheless, in spite of these disadvantages, offline methods continue to be
the most widely accepted techniques for recommender system evaluation. This is because
of the statistically robust and easily understandable quantifications available through such
testing methods.

7.3 General Goals of Evaluation Design

In this section, we will study some of the general goals in evaluating recommender systems.
Aside from the well known goal of accuracy, other general goals include factors such as
diversity, serendipity, novelty, robustness, and scalability. Some of these goals can be con-
cretely quantified, whereas others are subjective goals based on user experience. In such
cases, the only way of measuring such goals is through user surveys. In this section, we will
study these different goals.

7.3.1 Accuracy

Accuracy is one of the most fundamental measures through which recommender systems
are evaluated. In this section, we provide a brief introduction to this measure. A detailed
discussion is provided in section 7.5 of this chapter. In the most general case, ratings are
numeric quantities that need to be estimated. Therefore, the accuracy metrics are often

230 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

similar to those used in regression modeling. Let R be the ratings matrix in which ruj is
the known rating of user u for item j. Consider the case where a recommendation algorithm
estimates this rating as r̂uj . Then, the entry-specific error of the estimation is given by
the quantity euj = r̂uj − ruj . The overall error is computed by averaging the entry-specific
errors either in terms of absolute values or in terms of squared values. Furthermore, many
systems do not predict ratings; rather they only output rankings of top-k recommended
items. This is particularly common in implicit feedback data sets. Different methods are
used to evaluate the accuracy of ratings predictions and the accuracy of rankings.

As the various methods for computing accuracy are discussed in detail in section 7.5,
they are not discussed in detail here. The goal of this short section is to briefly introduce a
few measures to ensure continuity in further discussion. The main components of accuracy
evaluation are as follows:

1. Designing the accuracy evaluation: All the observed entries of a ratings matrix cannot
be used both for training the model and for accuracy evaluation. Doing so would
grossly overestimate the accuracy because of overfitting. It is important to use only a
different set of entries for evaluation than was used for training. If S is the observed
entries in the ratings matrix, then a small subset E ⊂ S is used for evaluation, and
the set S − E is used for training. This issue is identical to that encountered in
the evaluation of classification algorithms. After all, as discussed in earlier chapters,
collaborative filtering is a direct generalization of the classification and regression
modeling problem. Therefore, the standard methods that are used in classification
and regression modeling, such as hold-out and cross-validation, are also used in the
evaluation of recommendation algorithms. These issues will be discussed in greater
detail in section 7.4.

2. Accuracy metrics: Accuracy metrics are used to evaluate either the prediction accuracy
of estimating the ratings of specific user-item combinations or the accuracy of the top-
k ranking predicted by a recommender system. Typically, the ratings of a set E of
entries in the ratings matrix are hidden, and the accuracy is evaluated over these
hidden entries. Different classes of methods are used for the two cases:

• Accuracy of estimating ratings: As discussed above, the entry-specific error is
given by euj = r̂uj − ruj for user u and item j. This error can be leveraged in
various ways to compute the overall error over the set E of entries in the ratings
matrix on which the evaluation is performed. An example is the mean squared
error, which is denoted by MSE:

MSE =

∑
(u,j)∈E e2uj

|E| (7.1)

The square-root of the aforementioned quantity is referred to as the root mean
squared error, or RMSE.

RMSE =

√∑
(u,j)∈E e2uj

|E| (7.2)

Most of these measures are borrowed from the literature on regression modeling.
Other important ways of measuring the error, such as the mean absolute error,
are discussed in section 7.5.

7.3. GENERAL GOALS OF EVALUATION DESIGN 231

• Accuracy of estimating rankings: Many recommender systems do not directly es-
timate ratings; instead, they provide estimates of the underlying ranks. Depend-
ing on the nature of the ground-truth, one can use rank-correlation measures,
utility-based measures, or the receiver operating characteristic. The latter two
methods are designed for unary (implicit feedback) data sets. These methods are
discussed in detail in section 7.5.

Some measures of accuracy are also designed to maximize the profit for the merchant because
all items are not equally important from the perspective of the recommendation process.
These metrics incorporate item-specific costs into the computation. The main problem with
accuracy metrics is that they often do not measure the true effectiveness of a recommender
system in real settings. For example, an obvious recommendation might be accurate, but
a user might have eventually bought that item anyway. Therefore, such a recommendation
might have little usefulness in terms of improving the conversion rate of the system. A
discussion of the challenges associated with the use of accuracy metrics may be found
in [418].

7.3.2 Coverage

Even when a recommender system is highly accurate, it may often not be able to ever
recommend a certain proportion of the items, or it may not be able to ever recommend to
a certain proportion of the users. This measure is referred to as coverage. This limitation
of recommender systems is an artifact of the fact that ratings matrices are sparse. For
example, in a rating matrix contains a single entry for each row and each column, then no
meaningful recommendations can be made by almost any algorithm. Nevertheless, different
recommender systems have different levels of propensity in providing coverage. In practical
settings, the systems often have 100% coverage because of the use of defaults for ratings
that are not possible to predict. An example of such a default would be to report the average
of all the ratings of a user for an item when the rating for a specific user-item combination
cannot be predicted. Therefore, the trade-off between accuracy and coverage always needs
to be incorporated into the evaluation process. There are two types of coverage, which are
referred to as user-space coverage and item-space coverage, respectively.

User-space coverage measures the fraction of users for which at least k ratings may be
predicted. The value of k should be set to the expected size of the recommendation list.
When fewer than k ratings can be predicted for a user, it is no longer possible to present
a meaningful recommendation list of size k to the user. Such a situation could occur when
a user has specified very few ratings in common with other users. Consider a user-based
neighborhood algorithm. It is difficult to robustly compute the peers of that user, because
of very few mutually specified ratings with other users. Therefore, it is often difficult to
make sufficient recommendations for that user. For very high levels of sparsity, it is possible
that no algorithm may be able to predict even one rating for that user. However, different
algorithms may have different levels of coverage, and the coverage of a user can be estimated
by running each algorithm and determining the number of items for which a prediction
is made. A tricky aspect of user-space coverage is that any algorithm can provide full
coverage by simply predicting random ratings for user-item combinations, whose ratings
it cannot reliably predict. Therefore, user-space coverage should always be evaluated in
terms of the trade-off between accuracy and coverage. For example, in a neighborhood-
based recommender increasing the size of the neighborhood provides a curve showing the
trade-off between coverage and accuracy.

232 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

An alternative definition of user-space coverage is in terms of the minimum amount
of profile that must be built for a user before it is possible to make recommendations for
that user. For a particular algorithm, it is possible to estimate through experiments the
minimum number of observed ratings of any user for which a recommendation could be
made. However, it is often difficult to evaluate this quantity because the metric is sensitive
to the identity of the items for which the user specifies ratings.

The notion of item-space coverage is analogous to that of user-space coverage. Item-
space coverage measures the fraction of items for which the ratings of at least k users
can be predicted. In practice, however, this notion is rarely used, because recommender
systems generally provide recommendation lists for users, and they are only rarely used for
generating recommended users for items.

A different form of item-space coverage evaluation is defined by the notion of catalog
coverage, which is specifically suited to recommendation lists. Note that the aforementioned
definition was tailored to the prediction of the values of ratings. Imagine a scenario where
every entry in the ratings matrix can be predicted by an algorithm, but the same set of top-
k items is always recommended to every user. Therefore, even though the aforementioned
definition of item-space coverage would suggest good performance, the actual coverage across
all users is very limited. In other words, the recommendations are not diverse across users,
and the catalog of items is not fully covered. Let Tu represent the list of top-k items
recommended to user u ∈ {1 . . .m}. The catalog coverage CC is defined as the fraction
of items that are recommended to at least one user.

CC =
| ∪m

u=1 Tu|
n

(7.3)

Here, the notation n represents the number of items. It is easy to estimate this fraction
through the use of experiments.

7.3.3 Confidence and Trust

The estimation of ratings is an inexact process that can vary significantly with the specific
training data at hand. Furthermore, the algorithmic methodology might also have a signifi-
cant impact on the predicted ratings. This always leads to uncertainty in the user about the
accuracy of the predictions. Many recommender systems may report ratings together with
confidence estimates. For example, a confidence interval on the range of predicted ratings
may be provided. In general, recommender systems that can accurately recommend smaller
confidence intervals are more desirable because they bolster the user’s trust in the system.
For two algorithms that use the same method for reporting confidence, it is possible to mea-
sure how well the predicted error matches these confidence intervals. For example, if two
recommender systems provide 95% confidence intervals for each rating, one can measure
the absolute width of the intervals reported by the two algorithms. The algorithm with the
smaller confidence interval width will win as long as both algorithms are correct (i.e., within
the specified intervals) at least 95% of the time on the hidden ratings. If one of the algo-
rithms falls below the required 95% accuracy, then it automatically loses. Unfortunately, if
one system uses 95% confidence intervals and another uses 99% confidence intervals, it is
not possible to meaningfully compare them. Therefore, it is possible to use such systems
only by setting the same level of confidence in both cases.

While confidence measures the system’s faith in the recommendation, trust measures
the user’s faith in the evaluation. The notion of social trust is discussed in more detail in
Chapter 11. Broadly speaking, trust measures the level of faith that the user has in the

7.3. GENERAL GOALS OF EVALUATION DESIGN 233

reported ratings. Even if the predicted ratings are accurate, they are often not useful if the
user fails to trust the provided ratings. Trust is closely related to, but not quite the same
as, accuracy. For example, when explanations are provided by the recommender system, the
user is more likely to trust the system, especially if the explanations are logical.

Trust often does not serve the same goals as the usefulness (utility) of a recommenda-
tion. For example, if a recommender system suggests a few items already liked and known
by the user, it can be argued that there is little utility provided to the user from such a
recommendation. On the other hand, such items can increase the trust of the user in the
system. This goal is directly in contradiction to other goals such as novelty in which recom-
mendations already known by the user are undesirable. It is common for the various goals in
recommender systems to trade-off against one another. The simplest way to measure trust
is to conduct user surveys during the experiments in which the users are explicitly queried
about their trust in the results. Such experiments are also referred to as online experi-
ments. Numerous online methods for trust evaluation are discussed in [171, 175, 248, 486].
Generally, it is hard to measure trust through offline experiments.

7.3.4 Novelty

The novelty of a recommender system evaluates the likelihood of a recommender system to
give recommendations to the user that they are not aware of, or that they have not seen
before. A discussion of the notion of novelty is provided in [308]. Unseen recommendations
often increase the ability of the user to discover important insights into their likes and
dislikes that they did not know previously. This is more important than discovering items
that they were already aware of but they have not rated. In many types of recommender
systems, such as content-based methods, the recommendations tend to be somewhat obvious
because of the propensity of the system to recommend expected items. While a small number
of such recommendations can improve the trust of the end user in the underlying system,
they are not always useful in terms of improving conversion rates. The most natural way
of measuring novelty is through online experimentation in which users are explicitly asked
whether they were aware of an item previously.

As discussed in the introduction, online experimentation is not always feasible because
of the lack of access to a system supporting a large base of online users. Fortunately, it is
possible to approximately estimate novelty with offline methods, as long as time stamps
are available with the ratings. The basic idea is that novel systems are better at recom-
mending items that are more likely to be selected by the user in the future, rather than at
the present time. Therefore, all ratings that were created after a certain point in time t0
are removed from the training data. Furthermore, some of the ratings occurring before t0
are also removed. The system is then trained with these ratings removed. These removed
items are then used for scoring purposes. For each item rated before time t0 and correctly
recommended, the novelty evaluation score is penalized. On the other hand, for each item
rated after time t0 and correctly recommended, the novelty evaluation score is rewarded.
Therefore, this evaluation measures a type of differential accuracy between future and past
predictions. In some measures of novelty, it is assumed that popular items are less likely to
be novel, and less credit is given for recommending popular items.

7.3.5 Serendipity

The word “serendipity” literally means “lucky discovery.” Therefore, serendipity is a mea-
sure of the level of surprise in successful recommendations. In other words, recommendations

234 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

need to be unexpected. In contrast, novelty only requires that the user was not aware of the
recommendation earlier. Serendipity is a stronger condition than novelty. All serendipitious
recommendations are novel, but the converse is not always true. Consider the case where a
particular user frequently eats at Indian restaurants. The recommendation of a new Pak-
istani restaurant to that user might be novel if that user has not eaten at that restaurant
earlier. However, such a recommendation is not serendipitious, because it is well known
that Indian and Pakistani food are almost identical. On the other hand, if the recommender
system suggests a new Ethiopian restaurant to the user, then such a recommendation is
serendipitious because it is less obvious. Therefore, one way of viewing serendipity is as a
departure from “obviousness.”

There are several ways of measuring serendipity in recommender systems. This notion
also appears in the context of information retrieval applications [670]. The work in [214]
proposed both online and offline methods for evaluating serendipity:

1. Online methods: The recommender system collects user feedback both on the useful-
ness of a recommendation and its obviousness. The fraction of recommendations that
are both useful and non-obvious, is used as a measure of the serendipity.

2. Offline methods: One can also use a primitive recommender to generate the informa-
tion about the obviousness of a recommendation in an automated way. The primitive
recommender is typically selected as a content-based recommender, which has a high
propensity for recommending obvious items. Then, the fraction of the recommended
items in the top-k lists that are correct (i.e., high values of hidden ratings), and are
also not recommended by the primitive recommender are determined. This fraction
provides a measure of the serendipity.

It is noteworthy that it is not sufficient to measure the fraction of non-obvious items, because
a system might recommend unrelated items. Therefore, the usefulness of the items is always
incorporated in the measurement of serendipity. Serendipity has important long-term effects
on improving the conversion rate of a recommender system, even when it is opposed to the
immediate goal of maximizing accuracy. A number of metrics for serendipity evaluation are
discussed in [214, 450].

7.3.6 Diversity

The notion of diversity implies that the set of proposed recommendations within a single
recommended list should be as diverse as possible. For example, consider the case where
three movies are recommended to a user in the list of top-3 items. If all three movies
are of a particular genre and contain similar actors, then there is little diversity in the
recommendations. If the user dislikes the top choice, then there is a good chance that she
might dislike all of them. Presenting different types of movies can often increase the chance
that the user might select one of them. Note that the diversity is always measured over
a set of recommendations, and it is closely related to novelty and serendipity. Ensuring
greater diversity can often increase the novelty and serendipity of the recommendations.
Furthermore, greater diversity of recommendations can also increase the sales diversity and
catalog coverage of the system.

Diversity can be measured in terms of the content-centric similarity between pairs of
items. The vector-space representation of each item description is used for the similarity
computation. For example, if a set of k items are recommended to the user, then the pairwise
similarity is computed between every pair of items in the list. The average similarity between

7.4. DESIGN ISSUES IN OFFLINE RECOMMENDER EVALUATION 235

all pairs can be reported as the diversity. Lower values of the average similarity indicate
greater diversity. Diversity can often provide very different results from those of accuracy
metrics. A discussion of the connection of diversity and similarity is provided in [560].

7.3.7 Robustness and Stability

A recommender system is stable and robust when the recommendations are not significantly
affected in the presence of attacks such as fake ratings or when the patterns in the data
evolve significantly over time. In general, significant profit-driven motivations exist for some
users to enter fake ratings [158, 329, 393, 444]. For example, the author or publisher of a
book might enter fake positive ratings about a book at Amazon.com, or they might enter
fake negative ratings about the books of a rival. Attack models for recommender systems
are discussed in Chapter 12. The evaluation of such models is also studied in the same
chapter. The corresponding measures can be used to estimate the robustness and stability
of such systems against attacks.

7.3.8 Scalability

In recent years, it has become increasingly easy to collect large numbers of ratings and
implicit feedback information from various users. In such cases, the sizes of the data sets
continue to increase over time. As a result, it has become increasingly essential to design
recommender systems that can perform effectively and efficiently in the presence of large
amounts of data [527, 528, 587]. A variety of measures are used for determining the scala-
bility of a system:

1. Training time: Most recommender systems require a training phase, which is separate
from the testing phase. For example, a neighborhood-based collaborative filtering
algorithm might require pre-computation of the peer group of a user, and a matrix
factorization system requires the determination of the latent factors. The overall time
required to train a model is used as one of the measures. In most cases, the training
is done offline. Therefore, as long as the training time is of the order of a few hours,
it is quite acceptable in most real settings.

2. Prediction time: Once a model has been trained, it is used to determine the top
recommendations for a particular customer. It is crucial for the prediction time to be
low, because it determines the latency with which the user receives the responses.

3. Memory requirements:When the ratings matrices are large, it is sometimes a challenge
to hold the entire matrix in the main memory. In such cases, it is essential to design the
algorithm to minimize memory requirements. When the memory requirements become
very high, it is difficult to use the systems in large-scale and practical settings.

The importance of scalability has become particularly great in recent years because of the
increasing importance of the “big-data” paradigm.

7.4 Design Issues in Offline Recommender Evaluation

In this section, we will discuss the issue of recommender evaluation design. The discussions
in this section and the next pertain to accuracy evaluation of offline and historical data sets.
It is crucial to design recommender systems in such a way that the accuracy is not grossly

236 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

overestimated or underestimated. For example, one cannot use the same set of specified
ratings for both training and evaluation. Doing so would grossly overestimate the accuracy
of the underlying algorithm. Therefore, only a part of the data is used for training, and the
remainder is often used for testing. The ratings matrix is typically sampled in an entry-wise
fashion. In other words, a subset of the entries are used for training, and the remaining
entries are used for accuracy evaluation. Note that this approach is similar to that used
for testing classification and regression modeling algorithms. The main difference is that
classification and regression modeling methods sample rows of the labeled data, rather
than sampling the entries. This difference is because the unspecified entries are always
restricted to the class variable in classification, whereas any entry of the ratings matrix
can be unspecified. The design of recommender evaluation systems is very similar to that
of classifier evaluation systems because of the similarity between the recommendation and
classification problems.

A common mistake made by analysts in the benchmarking of recommender systems
is to use the same data for parameter tuning and for testing. Such an approach grossly
overestimates the accuracy because parameter tuning is a part of training, and the use of
test data in the training process leads to overfitting. To guard against this possibility, the
data are often divided into three parts:

1. Training data: This part of the data is used to build the training model. For example,
in a latent factor model, this part of the data is used to create the latent factors from
the ratings matrix. One might even use these data to create multiple models in order
to eventually select the model that works best for the data set at hand.

2. Validation data: This part of the data is used for model selection and parameter tuning.
For example, the regularization parameters in a latent factor model may be determined
by testing the accuracy over the validation data. In the event that multiple models
have been built from the training data, the validation data are used to determine the
accuracy of each model and select the best one.

3. Testing data: This part of the data is used to test the accuracy of the final (tuned)
model. It is important that the testing data are not even looked at during the process
of parameter tuning and model selection to prevent overfitting. The testing data are
used only once at the very end of the process. Furthermore, if the analyst uses the
results on the test data to adjust the model in some way, then the results will be
contaminated with knowledge from the testing data.

An example of a division of the ratings matrix into training, validation, and testing data is
illustrated in Figure 7.1(a). Note that the validation data may also be considered a part of
the training data because they are used to create the final tuned model. The division of the
ratings matrix into the ratios 2:1:1 is particularly common. In other words, half the specified
ratings are used for model-building, and a quarter may be used for each of model-selection
and testing, respectively. However, when the sizes of the ratings matrices are large, it is
possible to use much smaller proportions for validation and testing. This was the case for
the Netflix Prize data set.

7.4.1 Case Study of the Netflix Prize Data Set

A particularly instructive example of a well-known data set used in collaborative filtering is
the Netflix Prize data set, because it demonstrates the extraordinary lengths to which Netflix
went to prevent overfitting on the test set from the contest participants. In the Netflix data

7.4. DESIGN ISSUES IN OFFLINE RECOMMENDER EVALUATION 237

VALIDATION

50% 25% 25%

(TUNING,
MODEL

SELECTION)

TESTING
DATAMODEL BUILDING

USED FOR BUILDING
TUNED MODEL

PROBE SET

95.91% 1.36% 1.36% 1.36%

(TUNING,
MODEL

SELECTION)

TEST
SET

TRAINING SET
EXCLUDING PROBE SET
(MODEL BUILDING)

QUIZ
SET

USED FOR BUILDING QUALIFYING SET
TUNED MODEL

Q
WITH HIDDEN

RATINGS
RATINGS HIDDEN BUT

PERFORMANCE REVEALED RATINGS HIDDEN AND

ON LEADER BOARD PERFORMANCE NOT
REVEALED

(a) Proportional division of ratings

(b) Division in Netflix Prize data set (not drawn to scale)

Figure 7.1: Partitioning a ratings matrix for evaluation design

set, the largest portion of the data set contained 95.91% of the ratings. This portion of the
data set was typically used by the contest participants for model-building. Another 1.36%
of the data set was revealed to the participants as a probe set. Therefore, the model-building
portion of the data and the probe data together contained 95.91 + 1.36 = 97.27% of the
data. The probe set was typically used by contests for various forms of parameter tuning and
model selection, and therefore it served a very similar purpose as a validation set. However,
different contestants used the probe set in various ways, especially since the ratings in the
probe set were more recent, and the statistical distribution of the ratings in the training
and probe sets were slightly different. For the case of ensemble methods [554], the probe set
was often used to learn the weights of various ensemble components. The combined data set
with revealed ratings (including the probe set) corresponds to the full training data, because
it was used to build the final tuned model. An important peculiarity of the training data
was that the distributions of the probe set and the model-building portion of the training
set were not exactly identical, although the probe set reflected the statistical characteristics
of the qualifying set with hidden ratings. The reason for this difference was that most of the
ratings data were often quite old and they did not reflect the true distribution of the more
recent or future ratings. The probe and qualifying sets were based on more recent ratings,
compared to the 95.91% of the ratings in the first part of the training data.

The ratings of the remaining 2.7% of the data were hidden, and only triplets of the
form 〈User,Movie,GradeDate〉 were supplied without actual ratings. The main difference
from a test set was that participants could submit their performance on the qualifying set

238 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

to Netflix, and the performance on half the qualifying data, known as the quiz set, was
revealed to the participants on a leader-board. Although revealing the performance on the
quiz set to the participants was important in order to give them an idea of the quality
of their results, the problem with doing so was that participants could use the knowledge
of the performance of their algorithm on the leader-board to over-train their algorithm on
the quiz set with repeated submissions. Clearly, doing so results in contamination of the
results from knowledge of the performance on the quiz set, even when ratings are hidden.
Therefore, the part of the qualifying set that was not in the quiz set was used as the test
set, and the results on only this part of the qualifying set were used to determine the final
performance for the purpose of prize determination. The performance on the quiz set had
no bearing on the final contest, except to give the participants a continuous idea of their
performance during the contest period. Furthermore, the participants were not informed
about which part of the qualifying set was the quiz set. This arrangement ensured that a
truly out-of-sample data set was used to determine the final winners of the contest.

The overall division of the Netflix data set is shown in Figure 7.1(b). The only difference
from the division in Figure 7.1(a) is the presence of an additional quiz set. It is, in fact,
possible to remove the quiz set entirely without affecting the Netflix contest in any significant
way, except that participants would no longer be able to obtain an idea of the quality of
their submissions. Indeed, the Netflix Prize evaluation design is an excellent example of the
importance of not using any knowledge of the performance on the test set at any stage of
the training process until the very end. Benchmarking in research and practice often fails
to meet these standards in one form or the other.

7.4.2 Segmenting the Ratings for Training and Testing

In practice, real data sets are not pre-partitioned into training, validation, and test data
sets. Therefore, it is important to be able to divide the entries of a ratings matrix into these
portions automatically. Most of the available division methods, such as hold-out and cross-
validation, are used to divide1 the data set into two portions instead of three. However, it is
possible to obtain three portions as follows. By first dividing the rating entries into training
and test portions, and then further segmenting the validation portion from the training
data, it is possible to obtain the required three segments. Therefore, in the following, we
will discuss the segmentation of the ratings matrix into training and testing portions of the
entries using methods such as hold-out and cross-validation. However, these methods are
also used for dividing the training data into the model-building and validation portions.
This hierarchical division is illustrated in Figure 7.2. In the following, we will consistently
use the terminology of the first level of division in Figure 7.2 into “training” and “testing”
data, even though the same approach can also be used for the second level division into
model building and validation portions. This consistency in terminology is followed to avoid
confusion.

7.4.2.1 Hold-Out

In the hold-out method, a fraction of the entries in the ratings matrix are hidden, and
the remaining entries are used to build the training model. The accuracy of predicting the
hidden entries is then reported as the overall accuracy. Such an approach ensures that the
reported accuracy is not a result of overfitting to the specific data set, because the entries

1The actual design in methods such as cross-validation is slightly more complex because the data are
segmented in multiple ways, even though they are always divided into two parts during a particular execution
phase of training.

7.4. DESIGN ISSUES IN OFFLINE RECOMMENDER EVALUATION 239

RATINGS
MATRIX

DIVIDE USING
HOLD OUT OR

CROSS VALIDATION

TESTING
ENTRIES

TRAINING
ENTRIES

DIVIDE USING
HOLD OUT OR

CROSS VALIDATION

TRAINING
WITHOUT

VALIDATIONSET
VALIDATION

SET

Figure 7.2: Hierarchical division of rated entries into training, validation, and testing
portions

used for evaluation are hidden during training. Such an approach, however, underestimates
the true accuracy. First, all entries are not used in training, and therefore the full power
of the data is not used. Second, consider the case where the held-out entries have a higher
average rating than the full ratings matrix. This means that the held-in entries have a lower
average rating than the ratings matrix, and also the held-out entries. This will lead to a
pessimistic bias in the evaluation.

7.4.2.2 Cross-Validation

In the cross-validation method, the ratings entries are divided into q equal sets. Therefore,
if S is the set of specified entries in the ratings matrix R, then the size of each set, in
terms of the number of entries, is |S|/q. One of the q segments is used for testing, and the
remaining (q − 1) segments are used for training. In other words, a total of |S|/q entries
are hidden during each such training process, and the accuracy is then evaluated over these
entries. This process is repeated q times by using each of the q segments as the test set.
The average accuracy over the q different test sets is reported. Note that this approach can
closely estimate the true accuracy when the value of q is large. A special case is one where
q is chosen to be equal to the number of specified entries in the ratings matrix. Therefore,
|S| − 1 rating entries are used for training, and the one entry is used for testing. This
approach is referred to as leave-one-out cross-validation. Although such an approach can
closely approximate the accuracy, it is usually too expensive to train the model |S| times.
In practice, the value of q is fixed to a number such as 10. Nevertheless, leave-one-out cross-
validation is not very difficult to implement for the specific case of neighborhood-based
collaborative filtering algorithms.

7.4.3 Comparison with Classification Design

The evaluation design in collaborative filtering is very similar to that in classification. This
is not a coincidence. Collaborative filtering is a generalization of the classification problem,
in which any missing entry can be predicted rather than simply a particular variable, which

240 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

is designated as the dependent variable. The main difference from classification is that the
data are segmented on a row-wise basis (between training and test rows) in classification,
whereas the data are segmented on an entry-wise basis (between training and test entries) in
collaborative filtering. This difference closely mirrors the nature of the relationship between
the classification and the collaborative filtering problems. Discussions of evaluation designs
in the context of the classification problem can be found in [18, 22].

One difference from classification design is that the performance on hidden entries often
does not reflect the true performance of the system in real settings. This is because the
hidden ratings are not chosen at random from the matrix. Rather, the hidden ratings are
typically items that the user has chosen to consume. Therefore, such entries are likely to
have higher values of the ratings as compared to truly missing values. This is a problem of
sample selection bias. Although this problem could also arise in classification, it is far more
pervasive in collaborative filtering applications. A brief discussion of this issue is provided
in section 7.6.

7.5 Accuracy Metrics in Offline Evaluation

Offline evaluation can be performed by measuring the accuracy of predicting rating values
(e.g., with RMSE) or by measuring the accuracy of ranking the recommended items. The
logic for the latter set of measures is that recommender systems often provide ranked lists
of items without explicitly predicting ratings. Ranking-based measures often focus on the
accuracy of only the ranks of the top-k items rather than all the items. This is particularly
true in the case of implicit feedback data sets. Even in the case of explicit ratings, the
ranking-based evaluations provide a more realistic perspective of the true usefulness of
the recommender system because the user only views the top-k items rather than all the
items. However, for bench-marking, the accuracy of ratings predictions is generally preferred
because of its simplicity. In the Netflix Prize competition, the RMSE measure was used for
final evaluation. In the following, both forms of accuracy evaluation will be discussed.

7.5.1 Measuring the Accuracy of Ratings Prediction

Once the evaluation design for an offline experiment has been finalized, the accuracy needs
to be measured over the test set. As discussed earlier, let S be the set of specified (observed)
entries, and E ⊂ S be the set of entries in the test set used for evaluation. Each entry in E
is a user-item index pair of the form (u, j) corresponding to a position in the ratings matrix.
Note that the set E may correspond to the held out entries in the hold-out method, or it
may correspond to one of the partitions of size |S|/q during cross-validation.

Let ruj be the value of the (hidden) rating of entry (u, j) ∈ E, which is used in the test
set. Furthermore, let r̂uj be the predicted rating of the entry (u, j) by the specific training
algorithm being used. The entry-specific error is given by euj = r̂uj − ruj . This error can be
leveraged in various ways to compute the overall error over the set E of entries on which
the evaluation is performed. An example is the mean squared error, denoted by MSE:

MSE =

∑
(u,j)∈E e2uj

|E| (7.4)

Clearly, smaller values of the MSE are indicative of superior performance. The square-root
of this value is referred to as the root mean squared error (RMSE), and it is often used
instead of the MSE:

7.5. ACCURACY METRICS IN OFFLINE EVALUATION 241

RMSE =

√∑
(u,j)∈E e2uj

|E| (7.5)

The RMSE is in units of ratings, rather than in units of squared ratings like the MSE. The
RMSE was used as the standard metric for the Netflix Prize contest. One characteristic of
the RMSE is that it tends to disproportionately penalize large errors because of the squared
term within the summation. One measure, known as the mean-absolute-error (MAE), does
not disproportionately penalize larger errors:

MAE =

∑
(u,j)∈E |euj |

|E| (7.6)

Other related measures such as the normalized RMSE (NRMSE) and normalized MAE
(NMAE) are defined in a similar way, except that each of them is divided by the range
rmax − rmin of the ratings:

NRMSE =
RMSE

rmax − rmin

NMAE =
MAE

rmax − rmin

The normalized values of the RMSE and MAE always lie in the range (0, 1), and therefore
they are more interpretable from an intuitive point of view. It is also possible to use these
values to compare the performance of a particular algorithm over different data sets with
varying scales of ratings.

7.5.1.1 RMSE versus MAE

Is RMSE orMAE better as an evaluation measure? There is no clear answer to this question,
as this depends on the application at hand. As the RMSE sums up the squared errors, it is
more significantly affected by large error values or outliers. A few badly predicted ratings
can significantly ruin the RMSE measure. In applications where robustness of prediction
across various ratings is very important, the RMSE may be a more appropriate measure.
On the other hand, the MAE is a better reflection of the accuracy when the importance
of outliers in the evaluation is limited. The main problem with RMSE is that it is not a
true reflection of the average error, and it can sometimes lead to misleading results [632].
Clearly, the specific choice should depend on the application at hand. A discussion of the
relative benefits of the two kinds of measures can be found in [141].

7.5.1.2 Impact of the Long Tail

One problem with these metrics is that they are heavily influenced by the ratings on the
popular items. The items that receive very few ratings are ignored. As discussed in Chap-
ter 2, ratings matrices exhibit a long-tail property, in which the vast majority of items are
bought (or rated) rarely. We have replicated Figure 2.1 of Chapter 2 in Figure 7.3. The
X-axis represents the indices of the items in decreasing order of popularity, and the Y -axis
indicates the rating frequency. It is evident that only a few items receive a large number
of ratings, whereas most of the remaining items receive few ratings. The latter constitute
the long tail. Unfortunately, items in the long tail often contribute to the vast majority
of profit for merchants [49]. As a result, the most important items often get weighted the
least in the evaluation process. Furthermore, it is often much harder to predict the values of

242 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

ITEM INDEX ORDERED BY DECREASING FREQUENCY

N
U

M
B

E
R

 O
F

 R
A

T
IN

G
S

LONG TAIL

Figure 7.3: The long tail of rating frequencies (Revisiting Figure 2.1 of Chapter 2)

the ratings in the long tail because of greater local sparsity [173]. Therefore, the prediction
accuracies on sparse items will typically be different from those on popular items. One way
of handling this problem is to compute the RMSE or MAE separately for all the hidden
ratings associated with each item, and then average over the different items in a weighted
way. In other words, the accuracy computations of Equations 7.5 and 7.6 can be weighted
with an item-specific weight, depending on the relative importance, profit, or utility to the
merchant. It is also possible to perform these computations with user-specific weighting
(rather than item-specific weighting), although the practical applicability of user-specific
weighting is limited.

7.5.2 Evaluating Ranking via Correlation

The aforementioned measures are designed to evaluate the prediction accuracy of the actual
rating value of a user-item combination. In practice, the recommender system creates a
ranking of items for a user, and the top-k items are recommended. The value of k may
vary with the system, item, and user at hand. In general, it is desirable for highly rated
items to be ranked above items which are not highly rated. Consider a user u, for which the
ratings of the set Iu of items have been hidden by a hold-out or cross-validation strategy.
For example, if the ratings of the first, third, and fifth items (columns) of user (row) u are
hidden for evaluation purposes, then we have Iu = {1, 3, 5}.

We would like to measure how well the ground-truth orderings of the ratings in Iu are
related to the ordering predicted by the recommender system for the set Iu. An important
issue to keep in mind is that ratings are typically chosen from a discrete scale, and many
ties exist in the ground truth. Therefore, it is important for the ranking measures to not
penalize the system for ranking one item above another when they are tied in the ground
truth. The most common class of methods is to use rank correlation coefficients. The two
most commonly used rank correlation coefficients are as follows:

7.5. ACCURACY METRICS IN OFFLINE EVALUATION 243

1. Spearman rank correlation coefficient: The first step is to rank all items from 1 to |Iu|,
both for the recommender system prediction and for the ground-truth. The Spearman
correlation coefficient is simply equal to the Pearson correlation coefficient applied on
these ranks. The computed value always ranges in (−1,+1), and large positive values
are more desirable.

The Spearman correlation coefficient is specific to user u, and it can then be averaged
over all users to obtain a global value. Alternatively, the Spearman rank correlation
can be computed over all the hidden ratings over all users in one shot, rather than
computing user-specific values and averaging them.

One problem with this approach is that the ground truth will contain many ties,
and therefore random tie-breaking might lead to some noise in the evaluation. For
this purpose, an approach referred to as tie-corrected Spearman is used. One way of
performing the correction is to use the average rank of all the ties, rather than using
random tie-breaking. For example, if the ground-truth rating of the top-2 ratings is
identical in a list of four items, then instead of using the ranks {1, 2, 3, 4}, one might
use the ranks {1.5, 1.5, 3, 4}.

2. Kendall rank correlation coefficient: For each pair of items j, k ∈ Ii, the following
credit C(j, k) is computed by comparing the predicted ranking with the ground-truth
ranking of these items:

C(j, k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1 if items j and k are in the same relative order in

ground-truth ranking and predicted ranking (concordant)

−1 if items j and k are in a different relative order in

ground-truth ranking and predicted ranking (discordant)

0 if items j and k are tied in either the

ground-truth ranking or predicted ranking

(7.7)

Then, the Kendall rank correlation coefficient τu, which is specific to user u, is com-
puted as the average value of C(j, k) over all the |Iu|(|Iu| − 1)/2 pairs of test items
for user i:

τu =

∑
j<k C(j, k)

|Iu| · (|Iu| − 1)/2
(7.8)

A different way of understanding the Kendall rank correlation coefficient is as follows:

τu =
Number of concordant pairs−Number of discordant pairs

Number of pairs in Iu
(7.9)

Note that this value is a customer-specific value of the Kendall coefficient. The value of
τu may be averaged over all users u to obtain a heuristic global measure. Alternatively,
one can perform the Kendall coefficient computation of Equation 7.8 over all hidden
user-item pairs, rather than only the ones for customer u, in order to obtain a global
value τ .

A number of other measures, such as the normalized distance-based performance measure
(NDPM), have been proposed in the literature. Refer to the bibliographic notes.

244 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

7.5.3 Evaluating Ranking via Utility

In the previous discussion, the ground-truth ranking is compared to the recommender sys-
tem’s ranking. Utility-based methods use the ground-truth rating in combination with the
recommender system’s ranking. For the case of implicit feedback data sets, the rating is
substituted with a 0-1 value, depending on whether or not the customer has consumed the
item. The overall goal of utility-based methods is to create a crisp quantification of how
useful the customer might find the recommender system’s ranking. An important principle
underlying such methods is that recommendation lists are short compared to the total num-
ber of items. Therefore, most of the utility of a particular ranking should be based on the
relevance of items, which are high in the recommended list. In this sense, the RMSEmeasure
has a weakness because it equally weights the errors on the low-ranked items as compared to
those on the highly-ranked items. It has been suggested [713] that small changes in RMSE
such as 1%, can lead to large changes of more than 15% in the identities of the top-rated
items. These are the only items that the end-user of the recommender system will actually
see. Correspondingly, utility-based measures quantify the utility of a recommendation list
by giving greater importance to the top-ranked items.

As in the previous sections, it is assumed that the ground-truth rating of each item in
Iu is hidden from the recommender system before evaluation. Here, Iu represents the set of
items rated by user u, which are hidden from the recommender system before evaluation.
We will develop both user-specific and global utility quantifications.

In utility-based ranking, the basic idea is that each item in Iu has a utility to the user,
which depends both on its position in the recommended list and its ground-truth rating.
An item that has a higher ground-truth rating obviously has greater utility to the user.
Furthermore, items ranked higher in the recommended list have greater utility to the user
i because they are more likely to be noticed (by virtue of their position) and eventually
selected. Ideally, one would like items with higher ground-truth rating to be placed as high
on the recommendation list as possible.

How are these rating-based and ranking-based components defined? For any item j ∈ Iu,
its rating-based utility to the user i is assumed to be max{ruj−Cu, 0}, where Cu is a break-
even (neutral) rating value for user u. For example, Cu might be set to the mean rating
of user u. On the other hand, the ranking-based utility of the item is 2−(vj−1)/α, where vj
is the rank of item j in the list of recommended items and α is a half-life parameter. In
other words, the ranking-based utility exponentially decays with its rank, and moving down
the ranks by α reduces the utility by a factor of 2. The logic of the decay-based ranking
component is to ensure that the final utility of a particular ranking is regulated primarily
by the top few items. After all, the user rarely browses the items that are very low in the
list. The utility F (u, j) of item j ∈ Iu to user u is defined as the product of the rating-based
and ranking-based utility values:

F (u, j) =
max{ruj − Cu, 0}

2(vj−1)/α
(7.10)

The R-score, which is specific to user u, is the sum of F (u, j) over all the hidden ratings in
Iu:

R-score(u) =
∑

j∈Iu

F (u, j) (7.11)

Note that the value of vj can take on any value from 1 to n, where n is the total number
of items. However, in practice, one often restricts the size of the recommended list to a

7.5. ACCURACY METRICS IN OFFLINE EVALUATION 245

maximum value of L. One can therefore compute the R-score over a recommended list of
specific size L instead of using all the items, as follows:

R-score(u) =
∑

j∈Iu,vj≤L

F (u, j) (7.12)

The idea here is that ranks below L have no utility to the user because the recommended
list is of size L. This variation is based on the principle that recommended lists are often
very short compared to the total number of items. The overall R-score may be computed
by summing this value over all the users.

R-score =

m∑

u=1

R-score(u) (7.13)

The exponential decay in the utility implies that users are only interested in top-ranked
items, and they do not pay much attention to lower-ranked items. This may not be true
in all applications, especially in news recommender systems, where users typically browse
multiple items lower down the list of recommended items. In such cases, the discount rate
should be set in a milder way. An example of such a measure is the discounted cumulative
gain (DCG). In this case, the discount factor of item j is set to log2(vj +1), where vj is the
rank of item j in the test set Iu. Then, the discounted cumulative gain is defined as follows:

DCG =
1

m

m∑

u=1

∑

j∈Iu

guj
log2(vj + 1)

(7.14)

Here, guj represents the utility (or gain) of the user u in consuming item j. Typically, the
value of guj is set to an exponential function of the relevance (e.g., non-negative ratings or
user hit rates):

guj = 2reluj − 1 (7.15)

Here, reluj is the ground-truth relevance of item j for user u, which is computed as a
heuristic function of the ratings or hits. In many settings, the raw ratings are used. It is
common to compute the discounted cumulative gain over a recommendation list of specific
size L, rather than using all the items:

DCG =
1

m

m∑

u=1

∑

j∈Iu,vj≤L

guj
log2(vj + 1)

(7.16)

The basic idea is that recommended lists have size no larger than L.
Then, the normalized discounted cumulative gain (NDCG) is defined as ratio of the

discounted cumulative gain to its ideal value, which is also referred to as ideal discounted
cumulative gain (IDCG).

NDCG =
DCG

IDCG
(7.17)

The ideal discounted cumulative gain is computed by repeating the computation for DCG,
except that the ground-truth rankings are used in the computation.

Another measure that is commonly used, is the average reciprocal hit rate (ARHR) [181].
This measure is designed for implicit feedback data sets, in which each value of ruj ∈ {0, 1}.
Therefore, a value of ruj = 1 represents a “hit” where a customer has bought or clicked on
an item. A value of ruj = 0 corresponds to a situation where a customer has not bought

246 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

or clicked on an item. In this implicit feedback setting, missing values in the ratings matrix
are assumed to be 0.

In this case, the rank-based discount rate is 1/vj, where vj is the rank of item j in the
recommended list, and the item utility is simply the hidden “rating” value ruj ∈ {0, 1}.
Note that the discount rate is not as rapid as the R-score metric, but it is faster than DCG.
Therefore, the combined utility of an item is given by ruj/vj . This expression represents the
contribution of item j ∈ Iu to the utility. Then, the ARHR metric for the user i is defined
by summing up these values over all the hidden items in Iu:

ARHR(u) =
∑

j∈Iu

ruj
vj

(7.18)

It is also possible to define the average reciprocal hit-rate for a recommended list of size L
by adding only those utility values for which vj ≤ L.

ARHR(u) =
∑

j∈Iu,vj≤L

ruj
vj

(7.19)

One quirk of the average reciprocal hit-rate is that it is typically used when the value of
|Iu| is exactly 1, and when the value ruj of the corresponding (hidden) item j ∈ Iu is
always 1. Therefore, there is exactly one hidden item for each user, and the user has always
bought or clicked on this item. In other words, the average reciprocal hit-rate rewards
the utility (in a rank-reciprocal way) for recommending the single correct answer at a
high position on the recommended list. This was the setting in which this measure was
introduced [181], although one can generalize it to arbitrary settings in terms of the number
of hidden items and explicit-feedback settings. The aforementioned expression provides this
generalized definition because one can use a set Iu of arbitrary size in an explicit feedback
setting. The global ARHR value is computed by averaging this value over the m users:

ARHR =

∑m
u=1 ARHR(u)

m
(7.20)

The average reciprocal hit-rate is also referred to as the mean reciprocal rank (MRR). In
cases where the value of |Iu| is 1, the average reciprocal hit-rate always lies in the range
(0, 1). In such cases, the hidden entry is usually an item for which ruj = 1 and the length of
the recommendation list is restricted to L. Note that only “hits” contribute to the utility
in these cases. A simplification of this measure is the hit-rate, in which the rank-reciprocal
weighting is not used, and the value of |Iu| is exactly 1. Therefore, the hit-rate (HR) is
simply the fraction of users for which the correct answer is included in the recommendation
list of length L. The disadvantage of the hit-rate is that it gives equal importance to a hit,
irrespective of its position in the recommended list.

The ARHR and HR are almost always used in implicit feedback data sets, in which
missing values are treated as 0. Nevertheless, the definition of Equation 7.19 is stated in a
more general way. Such a definition can also be used in the context of explicit feedback data
sets, in which the values of ruj need not be drawn from {0, 1}. In such cases, the ratings
of any number of items of each user are hidden, and the values of the hidden ratings can
be arbitrary. Furthermore, the missing values need not be treated as 0s, and Iu is always
selected from the observed items.

A related measure is the mean average precision (MAP), which computes the fraction
of relevant items in a recommended list of length L for a given user. Various equally spaced

7.5. ACCURACY METRICS IN OFFLINE EVALUATION 247

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

 (
R

E
C

A
LL

)

ALGORITHM A

ALGORITHM B

RANDOM ALGORITHM

PERFECT ORACLE

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

RECALL

P
R

E
C

IS
IO

N

ALGORITHM A

ALGORITHM B

RANDOM ALGORITHM

PERFECT ORACLE

(b)Precision-recall(a) ROC

Figure 7.4: ROC curve and precision-recall curves

values of L are used, and the precision is averaged over these recommendation lists of varying
lengths. The resulting precision is then averaged over all the users.

Numerous other measures have been proposed in the literature to evaluate the effective-
ness of rankings. For example, the lift index [361] divides the ranked items into deciles to
compute a utility score. Refer to the bibliographic notes.

7.5.4 Evaluating Ranking via Receiver Operating Characteristic

Ranking methods are used frequently in the evaluation of the actual consumption of items.
For example, Netflix might recommend a set of ranked items for a user, and the user might
eventually consume only a subset of these items. Therefore, these methods are well suited to
implicit feedback data sets, such as sales, click-throughs, or movie views. Such actions can
be represented in the form of unary ratings matrices, in which missing values are considered
to be equivalent to 0. Therefore, the ground-truth is of a binary nature.

The items that are eventually consumed are also referred to as the ground-truth positives
or true positives. The recommendation algorithm can provide a ranked list of any number
of items. What percentage of these items is relevant? A key issue here is that the answer
to this question depends on the size of the recommended list. Changing the number of
recommended items in the ranked list has a direct effect on the trade-off between the fraction
of recommended items that are actually consumed and the fraction of consumed items that
are captured by the recommender system. This trade-off can be measured in two different
ways with the use of a precision-recall or a receiver operating characteristic (ROC) curve.
Such trade-off plots are commonly used in rare class detection, outlier analysis evaluation,
and information retrieval. In fact, such trade-off plots can be used in any application where
a binary ground truth is compared to a ranked list discovered by an algorithm.

The basic assumption is that it is possible to rank all the items using a numerical score,
which is the output of the algorithm at hand. Only the top items are recommended. By
varying the size of the recommended list, one can then examine the fraction of relevant
(ground-truth positive) items in the list, and the fraction of relevant items that are missed
by the list. If the recommended list is too small, then the algorithm will miss relevant items
(false-negatives). On the other hand, if a very large list is recommended, this will lead
to too many spurious recommendations that are never used by the user (false-positives).

248 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

Table 7.1: Rank of ground-truth positive instances

Algorithm Rank of items that are truly used
(ground-truth positives)

Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7, 11, 13, 15

Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1, 2, 3, 4, 5

This leads to a trade-off between the false-positives and false-negatives. The problem is
that the correct size of the recommendation list is never known exactly in a real scenario.
However, the entire trade-off curve can be quantified using a variety of measures, and two
algorithms can be compared over the entire trade-off curve. Two examples of such curves
are the precision-recall curve and the receiver operating characteristic (ROC) curve.

Assume that one selects the top-t set of ranked items to recommend to the user. For any
given value t of the size of the recommended list, the set of recommended items is denoted
by S(t). Note that |S(t)| = t. Therefore, as t changes, the size of S(t) changes as well. Let
G represent the true set of relevant items (ground-truth positives) that are consumed by
the user. Then, for any given size t of the recommended list, the precision is defined as the
percentage of recommended items that truly turn out to be relevant (i.e., consumed by the
user).

Precision(t) = 100 · |S(t) ∩ G|
|S(t)|

The value of Precision(t) is not necessarily monotonic in t because both the numerator
and denominator may change with t differently. The recall is correspondingly defined as the
percentage of ground-truth positives that have been recommended as positive for a list of
size t.

Recall(t) = 100 · |S(t) ∩ G|
|G|

While a natural trade-off exists between precision and recall, this trade-off is not necessarily
monotonic. In other words, an increase in recall does not always lead to a reduction in
precision. One way of creating a single measure that summarizes both precision and recall
is the F1-measure, which is the harmonic mean between the precision and the recall.

F1(t) =
2 · Precision(t) ·Recall(t)

Precision(t) +Recall(t)
(7.21)

While the F1(t) measure provides a better quantification than either precision or recall, it
is still dependent on the size t of the recommended list and is therefore still not a complete
representation of the trade-off between precision and recall. It is possible to visually examine
the entire trade-off between precision and recall by varying the value of t and plotting the
precision versus the recall. As shown later with an example, the lack of monotonicity of the
precision makes the results harder to intuitively interpret.

A second way of generating the trade-off in a more intuitive way is through the use of
the ROC curve. The true-positive rate, which is the same as the recall, is defined as the
percentage of ground-truth positives that have been included in the recommendation list of
size t.

TPR(t) = Recall(t) = 100 · |S(t) ∩ G|
|G|

7.5. ACCURACY METRICS IN OFFLINE EVALUATION 249

The false-positive rate FPR(t) is the percentage of the falsely reported positives in the
recommended list out of the ground-truth negatives (i.e., irrelevant items not consumed by
the user). Therefore, if U represents the universe of all items, the ground-truth negative set
is given by (U − G), and the falsely reported part in the recommendation list is (S(t)−G).
Therefore, the false-positive rate is defined as follows:

FPR(t) = 100 · |S(t) − G|
|U − G| (7.22)

The false-positive rate can be viewed as a kind of “bad” recall, in which the fraction of the
ground-truth negatives (i.e., items not consumed), which are incorrectly captured in the rec-
ommended list S(t), is reported. The ROC curve is defined by plotting the FPR(t) on the
X-axis and TPR(t) on the Y -axis for varying values of t. In other words, the ROC curve
plots the “good” recall against the “bad” recall. Note that both forms of recall will be at
100% when S(t) is set to the entire universe of items. Therefore, the end points of the
ROC curve are always at (0, 0) and (100, 100), and a random method is expected to exhibit
performance along the diagonal line connecting these points. The lift obtained above this
diagonal line provides an idea of the accuracy of the approach. The area under the ROC
curve provides a concrete quantitative evaluation of the effectiveness of a particular method.
Although one can directly use the area shown in Figure 7.4(a), the staircase-like ROC curve
is often modified to use local linear segments which are not parallel to either the X-axis
or the Y -axis. The trapezoidal rule [195] is then used to compute the area slightly more
accurately. From a practical point of view, this change often makes very little difference to
the final computation.

To illustrate the insights gained from these different graphical representations, consider
an example of a scenario with 100 items, in which 5 items are truly relevant. Two algorithms
A and B are applied to this data set that rank all items from 1 to 100, with lower ranks
being selected first in the recommended list. Thus, the true-positive rate and false-positive
rate values can be generated from the ranks of the 5 relevant items. In Table 7.1, some
hypothetical ranks for the 5 truly relevant items have been illustrated for the different
algorithms. In addition, the ranks of the ground-truth positive items for a random algorithm
have been indicated. This algorithm ranks all the items randomly. Similarly, the ranks for a
“perfect oracle” algorithm, which ranks the correct top 5 items in the recommended list, have
also been illustrated in the table. The resulting ROC curves are illustrated in Figure 7.4(a).
The corresponding precision-recall curves are illustrated in Figure 7.4(b). Note that the
ROC curves are always increasing monotonically, whereas the precision-recall curves are
not monotonic. While the precision-recall curves are not quite as nicely interpretable as the
ROC curves, it is easy to see that the relative trends between different algorithms are the
same in both cases. In general, ROC curves are used more frequently because of greater
ease in interpretability.

What do these curves really tell us? For cases in which one curve strictly dominates
another, it is clear that the algorithm for the former curve is superior. For example, it is
immediately evident that the oracle algorithm is superior to all algorithms and that the
random algorithm is inferior to all the other algorithms. On the other hand, algorithms
A and B show domination at different parts of the ROC curve. In such cases, it is hard
to say that one algorithm is strictly superior. From Table 7.1, it is clear that Algorithm
A ranks three relevant items very highly, but the remaining two items are ranked poorly.
In the case of Algorithm B, the highest ranked items are not as well ranked as Algorithm
A, though all 5 relevant items are determined much earlier in terms of rank threshold.
Correspondingly, Algorithm A dominates on the earlier part of the ROC curve, whereas

250 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

Algorithm B dominates on the later part. It is possible to use the area under the ROC
curve as a proxy for the overall effectiveness of the algorithm. However, not all parts of the
ROC curve are equally important because there are usually practical limits on the size of
the recommended list.

The aforementioned description illustrates the generation of customer-specific ROC
curves, because the ROC curves are specific to each user. It is also possible to generate
global ROC curves by ranking user-item pairs and then using the same approach as dis-
cussed above. In order to rank user-item pairs, it is assumed that the algorithm has a
mechanism to rank them by using predicted affinity values. For example, the predicted
ratings for user-item pairs can be used to rank them.

7.5.5 Which Ranking Measure is Best?

Although ROC curves are often used for evaluating recommender systems, they do not
always reflect the performance from the end-user perspective. In many settings, the end
user sees only a small subset of top-ranked items. Measures such as ROC and Kendall
coefficient, which treat higher and lower ranked items equally, are unable to capture the
greater importance of higher ranked items. For example, the relative ranking between two
items ranked first and second on the recommendation list is far more important than the
relative ranking of two items, which are ranked 100th and 101st on the list. In this context,
utility-based measures such as NDCG do a much better job than rank-correlation coefficients
or ROC measures at distinguishing between higher-ranked and lower-ranked items.

7.6 Limitations of Evaluation Measures

Accuracy-based evaluation measures have a number of weaknesses that arise out of selection
bias in recommender systems. In particular, the missing entries in a ratings matrix are
not random because users have the tendency of rating more popular items. As shown in
Figure 7.3, a few items are rated by many users, whereas the vast majority of items may be
found in the long tail. The distributions of the ratings on popular items are often different
from those on items in the long tail. When an item is very popular, it is most likely because
of the notable content in it. This factor will affect2 the rating of that item as well. As a
result, the accuracy of most recommendation algorithms is different on the more popular
items versus the items in the long tail [564]. More generally, the fact that a particular user
has chosen not to rate a particular item thus far has a significant impact on what her rating
would be if the user were forced to rate all items. This issue is stated in [184] in a somewhat
different context as follows:

“Intuitively, a simple process could explain the results: users chose to rate songs
they listen to, and listen to music they expect to like, while avoiding genres
they dislike. Therefore, most of the songs that would get a bad rating are not
voluntarily rated by the users. Since people rarely listen to random songs, or
rarely watch random movies, we should expect to observe in many areas a differ-
ence between the distribution of ratings for random items and the corresponding
distribution for the items selected by the users.”

2A related effect is that observed ratings are likely to be specified by users who are frequent raters.
Frequent raters may show different patterns of rating values compared to infrequent raters.

7.6. LIMITATIONS OF EVALUATION MEASURES 251

These factors cause problems of bias in the evaluation process. After all, in order to perform
the evaluation on a given data set, one cannot use truly missing ratings; rather, one must
simulate missing items with the use of hold-out or cross-validation mechanisms on ratings
that are already specified. Therefore, the simulated missing items may not show similar
accuracy to that one would theoretically obtain on the truly consumed items in the future.
The items that are consumed in the future will not be randomly selected from the missing
entries for the reasons discussed above. This property of rating distributions is also known
as Missing Not At Random (MNAR), or selection bias [402, 565]. This property can lead
to an incorrect relative evaluation of algorithms. For example, a popularity-based model in
which items with the highest mean rating are recommended might do better in terms of
gaining more revenue for the merchant than its evaluation on the basis of randomly missing
ratings might suggest. This problem is aggravated by the fact that items in the long tail
are especially important to the recommender system, because a disproportionate portion of
the profits in such systems are realized through such items.

There are several solutions to this issue. The simplest solution is to not select the missing
ratings at random but to use a model for selecting the test ratings based on their likeli-
hood of being rated in the future. Another solution is to not divide the ratings at random
between training and test, but to divide them temporally by using more recent ratings as
a part of the test data; indeed, the Netflix Prize contest used more recent ratings in the
qualifying set, although some of the recent ratings were also provided as a part of the probe
set. An approach that has been used in recent years, is to correct for this bias by modeling
the bias in the missing rating distribution within the evaluation measures [565, 566]. Al-
though such an approach has some merits, it does have the drawback that the evaluation
process itself now assumes a model of how the ratings behave. Such an approach might
inadvertently favor algorithms that use a model similar to that used for the prediction of
ratings as for the evaluation process. It is noteworthy that many recent algorithms [309]
use implicit feedback within the prediction process. This raises the possibility that a future
prediction algorithm might be designed to be tailored to the model used for adjusting for
the effect of user selection bias within the evaluation. Although the assumptions in [565],
which relate the missing ratings to their relevance, are quite reasonable, the addition of
more assumptions (or complexity) to evaluation mechanisms increases the possibility of
“gaming” during benchmarking. At the end of the day, it is important to realize that these
limitations in collaborative filtering evaluation are inherent; the quality of any evaluation
system is fundamentally limited by the quality of the available ground truth. In general, it
has been shown through experiments on Netflix data [309] that the use of straightforward
RMSE measures on the observed ratings often correlate quite well with the precision on all
items.

Another source of evaluation bias is the fact that user interests may evolve with time. As
a result, the performance on a hold-out set might not reflect future performance. Although it
is not a perfect solution, the use of temporal divisions between training and test ratings seems
like a reasonable choice. Even though temporal division results in training and testing tests
with somewhat different distributions, it also reflects the real-world setting more closely. In
this sense, the Netflix Prize contest again provides an excellent model of realistic evaluation
design. Several other variations of temporal methods in the evaluation process are discussed
in [335].

252 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

7.6.1 Avoiding Evaluation Gaming

The fact that missing ratings are not random can sometimes lead to unintended (or in-
tended) gaming of the evaluations in settings where the user-item pairs of the test entries
are specified. For example, in the Netflix Prize contest, the coordinates of the user-item pairs
in the qualifying set were specified, although the values of the ratings were not specified.
By incorporating the coordinates of the user-item pairs within the qualifying set as implicit
feedback (i.e., matrix F in section 3.6.4.6), one can improve the quality of recommenda-
tions. It can be argued that such an algorithm would have an unfair advantage over one
that did not include any information about the identities of rated items in the qualifying
set. The reason is that in real-life settings, one would never have any information about
future coordinates of rated items, as are easily available in the qualifying set of the Net-
flix Prize data. Therefore, the additional advantage of incorporating such implicit feedback
would disappear in real-life settings. One solution would be to not specify the coordinates
of test entries and thereby evaluate over all entries. However, if the ratings matrix has very
large dimensions (e.g., 107 × 105), it may be impractical to perform the prediction over
all entries. Furthermore, it would be difficult to store and upload such a large number of
predictions in an online contest like the Netflix Prize. In such cases, an alternative would
be to include (spurious) unrated entries within the test set. Such entries are not used for
evaluation but they have the effect of preventing the use of coordinates of the test entries
as implicit feedback.

7.7 Summary

The evaluation of recommender systems is crucial in order to obtain a clear idea about the
quality of different algorithms. The most direct method of measuring the effectiveness of a
recommender system is to compute the conversion rate at which recommended items are
converted to actual usages. This can be done through either user studies or online studies.
Such studies are often difficult for researchers and practitioners because of the difficulty in
obtaining access to the relevant infrastructure with large groups of users. Offline methods
have the advantage that they can be used with multiple historical data sets. In such cases,
it is dangerous to use accuracy as the only criterion, because maximizing accuracy does
not always lead to long-term maximization of conversion rates. A variety of criteria, such as
coverage, novelty, serendipity, stability, and scalability, are used to evaluate the effectiveness
of recommender systems.

The proper design of recommender evaluation systems is necessary to ensure that there
are no biases in the evaluation process. For example, in a collaborative filtering application,
it is important to ensure that all the ratings are evaluated with an out-of-sample approach.
A variety of methods such as hold-out and cross-validation are used in order to ensure out-
of-sample evaluation. The error is computed with measures, such as the MAE, MSE, and
RMSE. In some measures, items are weighted differently to account for their differential
importance. In order to evaluate the effectiveness of ranking methods, rank correlation,
utility-based measures or usage-based measures may be used. For usage-based measures,
precision and recall are used to characterize the trade-off inherent in varying the size of the
recommended list. The F1-measure is also used, which is the harmonic mean between the
precision and the recall.

7.8. BIBLIOGRAPHIC NOTES 253

7.8 Bibliographic Notes

Excellent discussions on evaluating recommender systems may be found in [246, 275, 538].
Evaluation can be performed either with user studies or with historical data sets. The earliest
work on evaluation with user studies may be found in [339, 385, 433]. An early study of
evaluation of recommendation algorithms with historical data sets may be found in [98].
Metrics for evaluating recommender systems in the presence of cold-start are discussed
in [533]. Controlled experiments for online evaluation in Web applications are discussed
in [305]. A general study of online evaluation design is provided in [93]. The evaluation
of multi-armed bandit systems is discussed in [349]. A comparison of online recommender
systems with respect to human decisions is provided in [317].

The work in [246] presents several variants of accuracy metrics for evaluation. This ar-
ticle is perhaps one of the foremost authorities on the evaluation of recommender systems.
The pitfalls of using the RMSE as an evaluation measure are presented in [632]. A brief
technical note on the relative merits of using MAE and RMSE as accuracy measures may
be found in [141]. The challenges and pitfalls in the use of accuracy metrics are discussed
in [418]. Alternative methods for evaluating recommender systems are provided in [459].
A discussion of the importance of novelty is provided in [308]. Online methods for measur-
ing the novelty of a recommender system are provided in [140, 286]. The use of popularity
in the measurement of novelty is discussed in [140, 539, 680]. The work in [670] showed
that serendipity can be achieved in a recommender system with the help of user labeling.
Metrics for serendipity evaluation are discussed in [214, 450]. The work in [214] also studies
the use of coverage metrics. Diversity metrics are discussed in [560]. The impact of recom-
mender systems on sales diversity is discussed in [203]. Robustness and stability metrics for
recommender systems are discussed in [158, 329, 393, 444]. A study of the evaluation of
classification systems may be found in [18, 22]. The discussions in these books provide an
understanding of the standard techniques used, such as hold-out and cross-validation.

Rank correlation methods are discussed in [298, 299]. The normalized distance preference
measure is discussed in [505]. The R-score for the utility-based evaluation of rankings is
discussed in [98]. The NDCG measure is discussed in [59]. The lift index is discussed in [361],
whereas the average reciprocal hit rate (ARHR) is proposed in [181]. A discussion of ROC
curves in the context of classification may be found in [195], although the same ideas are
also applicable to the case of recommender systems. The use of customer-specific and global
ROC curves is discussed in [533].

One limitation of recommender systems is that the values on the ratings are related
to their relative frequency and that missing items are often in the long tail. Therefore,
the use of cross-validation or hold-out mechanisms leads to a selection bias against less
frequent items. A number of recent methods for correcting for missing item bias are discussed
in [402, 564–566]. The approach in [565] proposes the use of different assumptions for the
relevant and non-relevant items, in terms of deciding which ratings are missing. A training
algorithm is also designed in [565] based on these assumptions. A temporal framework for
realistic evaluation is discussed in [335]. Recommender systems also need to be evaluated
somewhat differently in various settings, such as in the presence of specific contexts. These
contexts could include time, location, or social information. An evaluation framework for
recommender systems in the context of temporal data is provided in [130]. A recent workshop
that was devoted exclusively to recommender systems’ evaluation may be found in [4].

254 CHAPTER 7. EVALUATING RECOMMENDER SYSTEMS

7.9 Exercises

1. Suppose that a merchant knows the amount of profit qi made on the sale of the
ith item. Design an error metric for a collaborative filtering system that weights the
importance of each item with its profit.

2. Suppose that you designed an algorithm for collaborative filtering and found that
it was performing poorly on ratings with value 5, but it was performing well on the
other ratings. You used this insight to modify your algorithm and tested the algorithm
again. Discuss the pitfalls with the second evaluation. Relate your answer to why
Netflix chose to separate the quiz set and the test set in the Netflix Prize data set.

3. Implement an algorithm for constructing the ROC and the precision-recall curves.

4. Suppose you have an implicit feedback data set in which the ratings are unary. Would
an ROC curve provide more meaningful results or would the RMSE metric?

5. Consider a user John, for whom you have hidden his ratings for Aliens (5), Terminator
(5), Nero (1), and Gladiator (6). The values in brackets represent his hidden ratings,
and higher values are better. Now consider a scenario where the recommender system
ranks these movies in the order Terminator, Aliens, Gladiator, Nero.

(a) Compute the Spearman rank correlation coefficient as a measure of recommen-
dation ranking quality.

(b) Compute the Kendall rank correlation coefficient as a measure of ranking quality.

6. For the problem in Exercise 5, John’s utility for a movie j is given by max{rij − 3, 0},
where rij is his rating.

(a) Under this utility assumption, compute the R-score specific to John. Assume a
half-life value of α = 1.

(b) For the same utility assumption, compute the component of the discounted cu-
mulative gain (DCG) specific to John, if there are a total of 10 users in the
system.

7. For the problem in Exercise 5, assume that the only hidden ratings belong to John,
and the predicted ratings from the recommender system are Aliens (4.3), Terminator
(5.4), Nero (1.3), and Gladiator (5). The values in brackets represent the predicted
ratings.

(a) Compute the MSE of the predicted ratings.

(b) Compute the MAE of the predicted ratings.

(c) Compute the RMSE of the predicted ratings.

(d) Compute the normalized MAE and RMSE, assuming that all ratings lie in the
range {1 . . .6}.

Chapter 8

Context-Sensitive Recommender
Systems

“For me context is the key – from that comes the understanding
of everything.”– Kenneth Noland

8.1 Introduction

Context-sensitive recommender systems tailor their recommendations to additional infor-
mation that defines the specific situation under which recommendations are made. This
additional information is referred to as the context. Some examples of context are as follows:

1. Time: Recommendations can be affected by many aspects of time, such as weekdays,
weekends, holidays, and so on. A recommendation that is relevant to the morning con-
text, may not be relevant in the evening and vice versa. Clothing recommendations
during summer and winter may be different. A number of time-sensitive recommen-
dation methods are discussed in Chapter 9. In fact, some of the methods discussed in
this chapter, such as pre-filtering and post-filtering, are re-examined in Chapter 9 in
the temporal context.

2. Location: With the increasing popularity of GPS-enabled mobile phones, location-
sensitive recommendations have gained increasing importance in recent years. For
example, a traveling user might wish to determine a recommendation for a restaurant
in her locality. Context-sensitive systems can provide more relevant recommendations
by using the location as a context. The next chapter will provide several examples of
location-aware systems.

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 8

255

256 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

3. Social information: The social context is often important from the perspective of
recommender systems. For example, the choice of a user’s friends, tags, and social
circles can affect the recommendation process. Similarly, a person might choose to
watch a different movie depending on whether she is watching it with her parents
or with her boyfriend [5]. Social recommender systems are discussed in Chapters 10
and 11. Some of these systems can be considered contextual systems as well.

The context of a user can be detected in a variety of ways. In some cases, it can be learned
with little effort because the data is already available. For example, the GPS receiver on
a mobile phone would indicate a customer’s location, and the time-stamp of a customer
transaction indicates the time. Such methods are referred to as implicit collection meth-
ods [466]. In other cases, the context is not quite as readily available. For example, it can
be learned explicitly by gathering information through surveys or other means. Finally, in
some cases, data mining and inference tools can be used to gather contextual information.

In traditional recommender systems with user set U and item set I, the set of possibilities
in U × I is mapped to a rating. This mapping results in (an incompletely specified) ratings
matrix of size |U |×|I|. In a context-aware system, an additional set of contextual possibilities
is present in the set C. For example, the set C might be {morning, afternoon, night}, with
the context corresponding to the time of day. In this case, it is no longer possible to map the
possibilities in U × I to the ratings, because the same user might have different preferences
for an item depending on whether the time is in the morning, afternoon, or night. The
context must be included in the mapping in order to provide a more refined and accurate
recommendation. Therefore, in context-sensitive recommender systems, the possibilities in
U×I×C are mapped to the ratings. Formally, the function hR, which maps the user, items,
and context to the rating, can be written as follows:

hR : U × I × C → rating

The function hR is subscripted with R to denote the data set to which it is applied. In this
case, the ratings data R is a 3-dimensional ratings data cube corresponding to the user, item,
and context. It is possible to use multiple types of context within a single recommendation
application. For example, aside from the time, one might use location, weather, or the social
context. Therefore, one might have multiple contextual dimensions. This would result in an
multidimensional cube for representing the ratings. As we will see later in this chapter, the
notion of multidimensional representation can be used to seamlessly represent a variety of
different contexts. In this chapter, we will work with such an multidimensional contextual
model.

This chapter is organized as follows. Section 8.2 discusses the multidimensional model
for contextual recommendations. A contextual pre-filtering and reduction approach is de-
scribed in section 8.3. Post-filtering methods are described in section 8.4. The process of
incorporating context directly into the recommendation process is discussed in section 8.5.
A summary is given in section 8.6.

8.2 The Multidimensional Approach

The traditional problem of recommendations can be viewed as that of learning a mapping
function from the user-item combinations to the ratings. The corresponding function fR
may be defined as follows:

fR : U × I → rating (8.1)

8.2. THE MULTIDIMENSIONAL APPROACH 257

The 2-dimensional ratings matrix is used by this function to create the mapping. Therefore,
this function maps a data point in the 2-dimensional space of users and items to ratings.
Of course, the dimensions could, in principle, correspond not just to users or items, but
to any type of context. This general principle motivates the multidimensional approach [6]
to recommendations, in which the rating problem is seen as that of mapping a set of w
different dimensional values to a rating.

gR : D1 ×D2 . . .×Dw ⇒ rating

In this case, the ratings data R contain w different dimensions that are mapped to ratings,
just as the 2-dimensional user-item combinations are mapped to ratings in the traditional
setting. This results in a w-dimensional cube rather than a 2-dimensional matrix. The
w different dimensions are denoted by D1 . . .Dw. Note that two of these dimensions will
always be users and items, as in the classical case of multidimensional recommendations,
but the other values of Di might correspond to other contexts. For example, these contexts
could correspond to time, location, and so on. Therefore, the traditional recommendation
problem can be viewed as a special case of the multidimensional approach in which the
only two dimensions are users and items. A nice way of viewing this generalization is as
an online analytical processing (OLAP) data cube [145], which is traditionally used in
data warehousing. An example of such an OLAP cube with three dimensions is shown in
Figure 8.1 corresponding to user, item (movie), and time. Each cell in this cube contains a
rating for a particular user, item, and time combination. Although the context in this case
is an ordered variable (time), it is usually treated as a discrete value during the analytical
process. Furthermore, some representations of time, such as weekday, weekend, or season,
are not ordered. Similarly, the contextual dimension could very well have been location,
which is not an ordered variable. Treating the contextual dimensions in a discrete setting
is essential to the data cube paradigm.

The rating function gR is defined as a partial function, in which the number of arguments
is equal to the number of dimensions w. In the example of Figure 8.1, the rating function
gR(David,Terminator, 9 PM) refers to the rating of user David when he watches the movie
Terminator at 9 PM. This cell is shaded in Figure 8.1. The mapping function gR is referred
to as partial because it is defined only for the subset of cells corresponding to observed
rating values. The remaining values need to be learned in a data-driven manner for making
contextual recommendations. Note that the context can be a property of the user, a property
of the item, a property of the user-item combination, or a completely independent property.
For example, when David watches Terminator at 9 PM, the context of 9 PM relates to
both, because the user watches the movie at that specific time and the time does not
exclusively relate to either the user or the item. However, it is also possible for the context
to relate to only one of the two. For example, consider a movie recommendation application
in which the movies are recommended to a user based on the ratings matrix and also her
demographic characteristics. In such a case, the context is clearly related to the user. In
general, however, it is not important who the context is related to, because it is treated as
a completely independent entity from the user or the item. Therefore, a separate dimension
is assigned to each context, just as there are individual dimensions assigned to the user and
item, respectively. This abstraction helps in addressing the most general cases of context-
sensitive recommendations.

At a more general level, this idea can be related to that of querying for top-ranked
combinations of values with the use of two disjoint subsets from D1 . . .Dw. The selected
subsets of dimensions in D1 . . . Dw are either “what” dimensions, or they are “for whom”

258 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

gR (DAVID, TERMINATOR, 9 PM)

DAVID

SAYANI

JOSE

MARK

ANN

JIM

N
AT

O
R

SH
RE

K

RM
AN

AN
DH

I

JIM

TE
RM

INS

SP
ID

ERG
A

Figure 8.1: The multidimensional rating cube

dimensions. Each of the dimensions belongs to one of the two categories but it cannot be-
long to both categories. A typical query is of the following form:

Determine the top-k possibilities in the “what” dimensions for a particular set of speci-
fied values in the “for whom” dimensions.

In traditional recommender systems, the item dimension always belongs to the former
category, whereas the user dimension always belongs to the latter category. However, in mul-
tidimensional recommender systems, this constraint does not apply. Formally, the problem
of multidimensional recommendations can be defined as follows [6]:

Definition 8.2.1 (Multidimensional Recommendations) Given the recommendation
space D1 × D2 × . . . Dw and the rating function gR : D1 × D2 . . . × Dw → rating, the
recommendation problem is defined by selecting certain “what” dimensions Di1 . . . Dip and
certain “for whom” dimensions Dj1 . . . Djq that do not overlap, and recommending for a
query tuple (dj1 . . . djq) ∈ Dj1 × . . .×Djq the top-k tuples (di1 . . . dip) ∈ Di1 × . . .×Dip with
the maximum predicted value of the rating gR(d1, d2, . . . , dw).

In other words, a ranked list of the “what” dimension combinations are recommended in
response to “for whom” queries. The traditional 2-dimensional model of recommendations is
a special case of this scenario in which items are recommended to users. Therefore, items al-
ways belong to the “what” category and users always belong to the “for whom” category. In
a multidimensional recommender system, a more general framework is used, where the seg-
mentation between the “what” and the “for whom” items might be arbitrary. For example,
one might recommend best item-time combinations for each user, or one might recommend
best user-time combinations for each item. Alternatively, one might recommend the best

8.2. THE MULTIDIMENSIONAL APPROACH 259

time(s) for each user-item combination. Note that both users and items belong to the “for
whom” category in the last case. In a social application, one might wish to recommend the
best companions to watch a movie with for a particular user-movie combination. Note that
the union of the “what” and “for whom” dimensions might be a proper subset of the full
set of w dimensions. For example, consider the case where w = 4 and we have the time and
location context in addition to the user and item dimensions. It is possible for the query to
completely ignore the time and only use the location context to make recommendations.

As is reflected in the above descriptions, the multidimensional model is particularly
rich, and it allows broad leeway in deciding the formulation of the recommendations. In
fact, a query language [9], referred to as Recommendation Query Language (RQL), has been
developed for formulating different types of recommendation requests in a multidimensional
recommender system. Such query languages are particularly useful for selecting different
subsets of “what” and “for whom” dimensions in the querying process, and in developing a
systematic query response methodology.

8.2.1 The Importance of Hierarchies

In the traditional OLAP model, hierarchies are often defined over various dimensions. For
example, in a sales application, the various cells of the data cube correspond to sales values,
and the location dimensions may have various hierarchical levels, such as city, state, region,
and so on. One can aggregate the sales at the level of state, region, or the country. Fur-
thermore, one can combine the location dimension with the time dimension by aggregating
the sales in a particular region over a particular period of time. Such aggregation can also
be performed in multidimensional recommender systems. Hierarchies are also useful in the
context-sensitive recommender systems because they provide various levels of abstraction
in which one might perform aggregated analysis.

In order to perform aggregated analysis, it is assumed that some or all of the dimen-
sions have hierarchies associated with them. These hierarchies are part of the input to the
recommender system. The nature of the hierarchy is highly domain-specific, and it depends
on the application at hand. Some examples are as follows:

1. The location dimension can have a hierarchy corresponding to city, state, region,
country, and so on.

2. If demographic information is associated with users, then one can also arrange the
person dimension in a hierarchy of demographic attributes, such as age or occupa-
tion. A dimension such as age can be discretized into various hierarchical levels of
granularity.

3. The item dimension can use a standard industry hierarchy, such as the North American
Industry Classification System (NAICS). Alternatively, one can use a variety of genres
or subgenres to represent the items in a number of product domains (with the movie
domain being an example).

4. Dimensions such as time can be represented in various granular levels of hierarchy,
such as hours, days, weeks, months, and so on.

Clearly, the user needs to make careful choices up front about the hierarchy to use, so that
the most relevant analysis may be performed in a given application. It is also important to
select the most relevant contextual dimensions D1 . . . Dw for the application at hand. This
problem is closely related to that of feature selection [18, 22] in the traditional classification
and machine learning literature. Alternatively, these dimensions can be selected by domain
experts.

260 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

TAXONOMY OF CONTEXTUAL DIMENSION

ALL TIMES

MORNING MIDDAY AFTERNOON EVENING NIGHT

8 AM 11 AM 3 PM 7 PM 9 PM

(0, 100)

(0, 50) (51, 100)

(0, 25) (26, 50) (51, 75) (76, 100)

SAYANI JIM ANN JOSE MARK DAVID

USER TAXONOMY BY AGE

ALL GENRES

ITEM TAXONOMY BY GENRE

ACTION COMEDY CHILDREN BIOGRAPHY

TE
RM

IN
AT

O
R

SP
ID

ER
M

AN

SH
RE

K

G
AN

DH
I

Figure 8.2: Taxonomies of users, items, and context

Examples of possible hierarchies for users, items (movies), and time are shown in
Figure 8.2. The users are categorized by age, the movies are categorized by genre, and
the time is categorized by the time-of-day. Now consider the case where these hierar-
chies are used in the example of Figure 8.1. With these hierarchies, one can now make
more general (aggregated) queries, such as gR(David,Terminator,Evening), instead of

8.2. THE MULTIDIMENSIONAL APPROACH 261

gR(David,Terminator, 7 PM). The former provides an average prediction of how much
David likes the movie Terminator, if he watches it at any time in the evening, whereas
the latter provides a prediction of how much he would like it, if he saw the movie in the
7 PM show. At the extreme end, a query such as gR(David,Action,Any Time) corresponds
to completely ignoring the time context and focusing on a specific genre of movies. This
query estimates the average rating of David for action movies that are watched at any time.
Therefore, the hierarchies are useful not only from the contextual perspective, but also from
the perspective of hierarchical analysis on the user and item dimensions.

It is possible to combine the hierarchical analysis on the user and item dimensions. For
example, one can aggregate further by querying how much users in the age range [20, 30] like
action movies rather than focusing on a specific user such as David. This is achieved with the
function gR(Users ∈ Age[20, 30],Action,Any Time). Note that the hierarchy in Figure 8.2
groups the users by age. Such aggregated queries can be viewed as a sort of aggregation in
multidimensional recommender systems. For example, one can view the aggregated rating
gR(David,Action,Any Time) in terms of an aggregation function as follows:

gR(David,Action,Any Time) = AGGR
(x∈Action,All y)

gR(David, x, y) (8.2)

In traditional OLAP applications, one can obtain the relevant aggregation by summing the
relevant values in the cells. This is also referred to as the “roll-up” operator in traditional
OLAP systems. However, in recommender systems, it is more meaningful to talk of averages
rather than additions. One might determine either the average rating of David for action
movies or the average of his top-k ratings for action movies. The main challenge here is
that the ratings are not completely observed in the original data cube, which is defined
as a partial function. In most cases, the ratings are specified in a very sparse way at the
bottom level of the hierarchy. In some cases, it is also possible for the observed ratings to be
specified at the higher levels. For example, in some systems, David might be able to directly
specify his interests for action or comedy movies, rather than providing ratings for individual
movies. Multidimensional recommender systems are designed to address these scenarios as
well. Therefore, a crucial step is to able to estimate the missing ratings at all levels of the
hierarchy. These estimated ratings, together with the originally specified ratings, can be
used to provide responses to various queries. Therefore, the multi-level multidimensional
rating estimation problem is stated as follows:

Definition 8.2.2 (Multi - level Multidimensional Rating Estimation Problem)
Given an initial set of user-assigned ratings specified at different levels of the multi-
dimensional cube of ratings, the task is to estimate all other ratings in the cube at all
the levels of the OLAP hierarchies.

Although full use of the hierarchical information is not always possible with various strate-
gies, most techniques are able to predict ratings at the lowest level from other ratings. The
techniques for performing contextual recommendation fall into one of three categories:

1. Contextual pre-filtering: In these methods, a segment of the ratings is pre-filtered
corresponding to the relevant context. This relevant segment of ratings is then used
to make targeted recommendations.

2. Contextual post-filtering: In these methods, the recommendations are first performed
on the entire global set of ratings. Subsequently, the ranked recommendation lists are
filtered or adjusted as a post-processing step with the use of temporal context.

3. Contextual modeling: In this case, the contextual information is incorporated directly
into the prediction function, rather than as a pre-filtering or post-filtering step. This

262 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

is fundamentally different from the previous case, in which traditional 2-dimensional
recommender systems are used under the covers. Contextual modeling is the most
general approach in which one directly works with the w-dimensional representation of
the ratings matrix in the modeling process. This approach provides the most integrated
results, but it is sometimes computationally intensive or otherwise difficult to execute
in a high-dimensional setting.

In the following sections, we will discuss these different classes of techniques for making
recommendations. It is noteworthy that some of these techniques, such as post-filtering, use
additional side-information about the various dimensions. These pieces of side information
are referred1 to as attributes. For example, a user might have demographic information
associated with them, such as their name, address, age, gender, or profession. An item,
such as a movie, might have side information associated with it, such as the title, actors,
directors, and so on. Attributes are associated not just with the user and item dimensions,
but also with the contextual dimensions. For example, consider a case where a user wishes to
watch a movie with a specific companion. The companion dimension might contain a name,
companion type (e.g., friend or parent), and age. As we will see later in this chapter, these
types of side information are often important for some types of contextual recommendation
applications. The set of attributes associated with a dimension is referred to as its profile.
Note that item profiles and user profiles are used frequently for learning content-based
recommendation models (cf. Chapter 4). Such attributes are also useful in many algorithms
for the contextual setting.

8.3 Contextual Pre-filtering: A Reduction-Based

Approach

Contextual pre-filtering is also referred to as reduction [6]. In the reduction-based approach,
the idea is to reduce the w-dimensional estimation problem to a set of 2-dimensional estima-
tions. The 2-dimensional estimation problem is equivalent to that in traditional collaborative
filtering systems.

In order to understand this point, we will use an example of a 3-dimensional recom-
mender system. Consider the case where the three attributes are users (U), movie items
(I), and time (T). In such a case, the rating function gR is defined as follows:

gR : U × I × T → rating

Note that the data set R is a 3-dimensional cube in this case. Consider a traditional 2-
dimensional recommender system in which the mapping fR′ is as follows:

fR′ : U × I → rating

In this case, the data cube R′ is a 2-dimensional cube, in which only the two dimensions
U and I are present. Clearly, ignoring the contextual dimension is equivalent to using
a 2-dimensional recommender system. The 3-dimensional prediction function can be ex-
pressed in terms of the 2-dimensional prediction function by using a reduced derivative
of the 3-dimensional ratings matrix. At any queried time t, this is achieved by deriving a

1In the traditional database context, the notions of dimension and attribute mean the same thing. In
this case, however, they do not mean the same thing. A set of attributes is associated with a dimension.

8.3. CONTEXTUAL PRE-FILTERING: A REDUCTION-BASED APPROACH 263

2-dimensional ratings matrix R′(t) from R with a pair of standard database operations:

R′(t) = ProjectU,I(SelectT=t(R))

= πU,I(σT=t(R))

Note that projection and selection are standard database operators. The matrix R′(t) is
obtained by first selecting the ratings in which the time is fixed to t, and then projecting
down to the user and item dimensions. In other words, the 2-dimensional slice of the data
cube in which the time is fixed to t corresponds to R′(t). This is shown in Figure 8.3, where
the entire user-item slice at 9 PM is shaded. Note that this 2-dimensional slice creates
a user-item matrix, which can be used with traditional collaborative filtering algorithms.
Such an approach can be used to perform the ratings prediction with the context fixed at
9 PM. In general, the 3-dimensional ratings estimation can be systematically reduced to
2-dimensional ratings estimation on this slice with the following relationship between the
3-dimensional function gR and the traditional 2-dimensional collaborative filtering function
fR′(t):

∀(u, i, t) ∈ U × I × T, gR(u, i, t) = fR′(t)(u, i)

This approach can easily be generalized to the case where there are w > 3 dimensions
D1 . . . Dw by fixing the remaining w−2 dimensions. The two dimensions, which are not fixed,
are referred to as the main dimensions, whereas the other dimensions are the contextual
dimensions. In typical applications, the users and items are the main dimensions. By fixing
the values of the contextual dimensions, we can extract specific slices or segments of the
data that are defined on only the two main dimensions. Traditional collaborative filtering
algorithms can be used on such segments.

Because only a small subset of the ratings are used in a given slice, one may sometimes
not have sufficient ratings to perform an accurate recommendation. In such cases, one
may aggregate the rating at t with other adjacent time slices to create more accurate
recommendations. For example, instead of using t = 9 PM, one might use all values of t in
the evening, from 7 PM to 11 PM, and then average the ratings in these slices to create the
resulting matrix. The 2-dimensional recommender is then applied to this averaged slice.

The main advantage of the approach is that it performs the collaborative filtering only
over the relevant ratings in which the ratings have been selected with the use of the context.
This can lead to improved accuracy in many cases, although the trade-off is that fewer
ratings are now being used for prediction. Averaging over adjacent slices allows retention of
a limited amount of local relevance, while reducing sparsity. The problem of sparsity can,
nevertheless, be significant in many cases, and it may not always be possible to use such
an averaging in order to increase the number of ratings. When fewer ratings are available,
overfitting becomes more likely, and it is easy to envision scenarios in which the accuracy
of the approach is not very high.

There are many natural solutions to reducing the sparsity problem at the expense of
losing refinement. At one extreme, one might ignore the context altogether, and the rat-
ings matrix is averaged over all the possible (combinations of) values of the contextual
dimension(s). Such an approach will contain less relevant ratings than the local model that
pre-selects the ratings based on context. This is clearly an extreme generalization of the
approach discussed in the previous section where one averages only over adjacent values
of the contextual variable (e.g., averaging the ratings in slices from 7 PM to 11 PM in-
stead of using only the slice at 9 PM). We refer to this extreme approach as the global
approach. Although the global approach uses less relevant ratings than the approach of
using contextually localized slices, it will be able to use more ratings from the averaged
slice. The comparative accuracy between the two alternatives depends on the nature of the

264 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

PERFORM TRADITIONAL
COLLABORATIVE FILTERING
ON SHADED SLICE TO FIND
RECOMMENDATIONS WITH
CONTEXT FIXED TO 9 PMDAVID

SAYANI

JOSE

MARK

ANN

JIMJIM

TE
RM

IN
AT

O
R

SH
RE

K

SP
ID

ER
M

AN

G
AN

DH
I

Figure 8.3: Extracting a 2-dimensional slice by fixing the context in reduction methods

trade-off between relevance and data sparsity. In many practical applications, it has been
observed that either of the two alternatives might be better, depending on the part of the
ratings matrix that one is looking at.

8.3.1 Ensemble-Based Improvements

Because of the unpredictability in the relative quality obtained with the global and local
method, a question arises, as to how one might combine the two methods to obtain a
technique that provides high accuracy in most scenarios. Although the local method provides
more relevant results, it could also cause overfitting when there are too few relevant ratings
for that context. We will discuss an ensemble-based method to improve the quality of the
prediction. The goal of the ensemble-based method is to use the best of both worlds in
the prediction process. In other words, either the local or the global matrix may be used,
depending on the part of the ratings matrix that one is looking at. This approach results
in the best trade-off between sparsity and local relevance. In this context, the bucket-of-
models hybrid (cf. section 6.4.2 of Chapter 6) is very useful because it can help decide
between alternative models of varying quality. The approach, however, needs to be tailored
so that instead of selecting the best model, it selects the best data segment to train the
model.

In the following discussion, a define a data segment of the ratings cube with the use of
a combination of values of the contextual variables. For example, if the main variables are
users and items, and the contextual variables are location and time, then each possible value
of a location-time pair defines a data segment. When a recommendation problem is posed
with a particular location-time context, it is important for the recommendation algorithm
to determine whether or not using that context is indeed helpful.

8.3. CONTEXTUAL PRE-FILTERING: A REDUCTION-BASED APPROACH 265

In the training step, the approach first identifies the cross-validated accuracy on each
data segment. For example, when the context is location and time, one determines the
cross-validated accuracy of using all location-time pairs. In cases, where a hierarchical
tree-like structure of the context is available, the higher-level nodes of the tree can be
included as possibilities for the location-time pairs. A table is created for each location-time
possibility, which contains its best generalization to use to obtain the highest accuracy.
For example, if the contextual variables are location and time, examples of generalizations
of (9 PM,Boston) might be (night,Boston), (9 PM,Massachusetts), (night,Massachusetts),
(9 PM, ∗), (∗,Boston), (night, ∗), (∗,Massachusetts), and (∗, ∗). For each contextual possi-
bility such as (9 PM,Boston), the table will contain the correct level of generalization to
use in order to obtain the best accuracy. This level is determined using a cross-validation
procedure on the training data. Segments that contain too few ratings are ignored. In the
testing step, the appropriate data segment is identified for the test instance using this table.
Only the specific data segment is used, which provides the best quality results.

How is the cross-validation procedure performed? For example, for the context
(9 PM,Boston), the relevant ratings in the training cube are identified, which correspond
to the context of 9 PM and Boston. These ratings are segmented into folds using the cross-
validation approach described in Chapter 7. The same folds are used to test the various
alternative generalizations of (9 PM,Boston), which are enumerated above. The fold pro-
viding the best accuracy is retained. In practice, a more refined way of choosing the best
segment is used, while keeping in mind that overfitting is more likely for more specialized
segments. A local segment is selected over its generalization only if it significantly outper-
forms the latter according to standardized statistical tests.

One problem with this approach is that it can be very expensive when the number of
contextual possibilities is large. For example, in the aforementioned example, one must test
the accuracy of all generalizations of all possible local-time combinations. Clearly, this is
possible only in the cases in which the number of possible contextual alternatives to the
tested is small. Otherwise, the training phase can become too expensive. In some cases, sim-
pler heuristics are used instead of explicitly learning the accuracy of various generalizations.
Instead of using the accuracy, one might simply determine the number of training entries
(i.e., ratings) for each possible generalization of a particular context. The lowest-level (i.e.,
most specific) generalization that contains the required minimum number of ratings is used.
The basic idea is to ensure that overfitting is avoided because of limited training data.

8.3.2 Multi-level Estimation

So far, we have only discussed how to estimate the ratings at the lowest level of the hierarchy
from other ratings at the lowest level. However, in some cases, a user might have expressed
ratings at upper levels of the hierarchy. For example, a user might have specified ratings for
genres of movies, as opposed to individual movies. A question arises as to how one might use
these higher-level ratings to improve the estimation process. The basic idea here is to assign
ratings at the lowest level, so that the computed average of the observed and predicted
ratings at the lower levels (descendent nodes) is as close as possible to the observed rating
at the higher level (ancestor node). For example, David might have specified ratings for
action movies such as “Terminator” and also for the genre of action movies. How can one
integrate the ratings at various levels to provide a holistic prediction?

266 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

Let the rating of David for action movies be ra. In such cases, David’s predicted ratings
of action movies at the lowest level should be such that the average value of his observed
and predicted ratings is as close as possible to his rating ra of action movies. In the extreme
case, we can impose exact equality. In other words, we impose the constraint that the
sum of the predicted and observed ratings of David on action movies is equal to na · ra,
where na is the total number of action movies. Note that this is a linear constraint on
the variables of the collaborative filtering problem. There will be many such constraints
for various users, and the ratings specified at various levels. Therefore, in addition to the
standard techniques used for collaborative filtering, genre-specific constraints are introduced
for predicting David’s rating. This problem can be formulated as an optimization problem
with added linear constraints. The work in [6] does not provide further details of how one
might use this approach in an actual collaborative filtering algorithm, and leaves the solution
of this problem to further research. This type of optimization modeling could provide a
promising direction for future research; the main caveat is that sufficient ratings must be
available to prevent overfitting.

8.4 Post-Filtering Methods

In pre-filtering methods, relevant segments (slices) of the data are extracted and the col-
laborative filtering algorithm is applied on these extracted slices. Therefore, the filtering
is performed on the input data, before applying the collaborative filtering algorithm. The
qualifier “pre-” in pre-filtering derives its name from this fact. In post-filtering, the filter-
ing steps are applied to the output obtained after applying a global collaborative filtering
algorithm that ignores the contextual information in the data set.

In post-filtering methods, the contextual information is ignored, and a global 2-
dimensional ratings matrix is created by aggregating the ratings over all the possible con-
textual values. For example, the rating for each user-item combination may be derived by
averaging the available ratings over all contextual alternatives of that combination. Subse-
quently the ratings are adjusted with the use of context. Therefore, the approach comprises
two steps:

1. Recommendations are generated on all the data by applying a conventional collabo-
rative filtering model on an aggregated user-item matrix. Thus, context is ignored in
the first step.

2. Context is then used to adjust or filter the recommended list.

How is the multidimensional ratings cube aggregated into a 2-dimensional ratings matrix?
In the case of explicit ratings, the aggregation process refers to the averaging of (observed)
ratings, whereas in the case of implicit feedback matrices (e.g., units sold), the process of
aggregation refers to the sum of the values. Note that the use of sums or averages will not
yield the same result in general because of the varying number of observed values across
different user-item combinations. In implicit feedback matrices, it is more appropriate to
use the sum rather than averages because the number of nonzero values is highly indicative
of the user interest in the item.

Consider a scenario where a user has provided a separate rating for the same item over
three different contexts (e.g., morning, afternoon, evening). In this case, the ratings are
averaged over these contexts in order to create a global 2-dimensional user-item ratings
matrix. For implicit feedback matrices, the number of 1s over the different contexts need to

8.4. POST-FILTERING METHODS 267

be added up. The resulting matrix no longer contains context-specific information because
the contextual dimension has been aggregated. For the case of w-dimensional cubes, the
rating values need to be aggregated over all the (w − 2)-dimensional combinations. For
example, if there are two contexts corresponding to location and time, then the user ratings
of the same item over various location-time combinations need to be aggregated. If the user
has never rated the item in any context, then the corresponding entry is also missing in
the resulting aggregated matrix. The final result is always a 2-dimensional matrix, which is
similar to that of traditional collaborative filtering.

Traditional collaborative filtering algorithms can be applied to this aggregated matrix
in order to create predicted ratings r̂uj and a corresponding ranked list of items for each
user u. However, this ranked list is not sensitive to the contextual information, because
the contextual dimension was ignored in the recommendation process. The post-filtering
strategy adjusts the results after the estimations have been made. The adjustments can be
made in one of two different ways. The first method corresponds to filtering out irrelevant
items, and the second method corresponds to adjusting the ranking of the recommendations
in the list based on the underlying context. The latter approach can be viewed as a soft
version of the former. Both forms of post-filtering adjust the predicted rating r̂uj for a given
user-item combination.

One approach is to use heuristic methods to adjust or filter the recommended list based
on the attributes associated with users and items. The notion of attributes associated with
dimensions is discussed at the end of section 8.2. For example, if the context corresponds
to {summer,winter}, then a clothing merchant might want to filter out sweaters and heavy
jackets in the summer context, even if they are high in the list of recommended items. Such
items can be detected with the use of attribute information.

For example, the attribute “wool” for a clothing item may be relevant to the context
of the season attribute. One heuristic approach is to find the common item attributes
that are relevant to a given context. Those items that do not have a significant number
of these attributes are then filtered. In a more refined version of the approach, one can
actually build a predictive model that uses the attributes to estimate the probability of
relevance of the item to the context at hand. This approach is desirable because one can now
use many of the traditional machine-learning techniques to build these predictive models.
Those items that have very low probability of relevance are then filtered out. Such an
approach is akin to determining a context-based probability P (u, j, C) of the user u liking
item j in context C, with the use of content-based models. The value of P (u, j, C) need
not be estimated with the use of content-based models. For example, one can even use
a collaborative approach in conjunction with pre-filtering to estimate P (u, j, C). This is
identical to the pre-filtering approach discussed in the previous section. However, instead
of using the pre-filtered prediction directly as the final result, it is normalized to the range
(0, 1), and then multiplied with the predicted rating r̂uj , which was estimated with the
global data. The value of P (u, j, C) · r̂uj now defines an adjusted value of the prediction
after post-filtering, and it may be used to adjust the ranking. Alternatively, one might
simply remove the items j from the ranked list, for which the value of P (u, j, C) · r̂uj is very
small. Post-filtering can be more robust than pre-filtering in a larger number of situations
because one combines the local information P (u, j, C) with the rating r̂uj determined using
all the data.

In cases where the amount of data available for context C is very limited, the value of
P (u, j, C) can be determined independent of the user u. In other words, the training data
is used over all users to relate the item j to context C with a content-based model. For
each item k, its attributes are treated as the feature variables, and the fraction of time that

268 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

the item k is consumed in context C is treated as a numeric dependent variable. A linear
regression model is constructed to relate the attributes to context C. Then, for each item
j, this linear regression model can be used to estimate P (∗, j, C). Note that we use a “*”
(don’t care) as the user argument, because this model is independent of the user at hand.
The final predicted value of the rating of user i for item j after the post-filtering step is
given by P (∗, j, C) · r̂uj .

8.5 Contextual Modeling

In both pre-filtering and post-filtering, the collaborative filtering problem is reduced to the
2-dimensional setting, and the context is used during pre-processing or post-processing.
The main disadvantage of this approach is that context is not integrated very tightly into
the recommendation algorithm. Such an approach prevents the full use of the relation-
ships between various user-item combinations and contextual values. Contextual modeling
methods have been designed to explore this possibility.

It is possible to incorporate context directly into the recommendation process by modi-
fying existing models (such as neighborhood-based methods) to the w-dimensional setting.
Such an approach provides the most flexible and generalized view of context-sensitive recom-
mendations, which is independent of the shackles of 2-dimensional algorithms. The following
sections will review some of these methods.

8.5.1 Neighborhood-Based Methods

It is possible to adapt ideas from existing neighborhood-based methods to perform context-
sensitive recommendations. An example of such an approach was presented in [7, 8]. How-
ever, the approach can sometimes be subtly different from traditional user-user or item-item
methods because of the use of contextual dimensions in the similarity computation process.
For the purpose of discussion, let us consider the case where the specific context used is time.
Therefore, we have three dimensions corresponding to users, items, and time. The first step
is to compute the distances separately on the users, items, and time. Consider two points
in the 3-dimensional cube, corresponding to A = (u, i, t) and B = (u′, i′, t′) respectively.
Then, the distance between A and B can be defined as the sum of the weighted distances
between the individual dimensions. In other words, we have:

Dist(A,B) = w1 ·Dist(u, u′) + w2 ·Dist(i, i′) + w3 ·Dist(t, t′) (8.3)

Here, w1, w2, and w3, respectively, reflect the relative importance of the user, item, and
context (time) dimensions. Note that one can add as many contextual dimensions as are
of interest to the aforementioned summation, rather than only time. Alternatively, one can
also use the weighted Euclidean metric:

Dist(A,B) =
√
w1 ·Dist(u, u′)2 + w2 ·Dist(i, i′)2 + w3 ·Dist(t, t′)2 (8.4)

Then, for a given cell of the 3-dimensional matrix, the closest r (observed) ratings are
determined by using this metric. The weighted average of these ratings is reported as the
predicted rating. The weighting used is the similarity between A and B, which is also defined
as 1/Dist(A,B). In order to perform the recommendation for a given user u and context t,
one would need to apply this process to each item, and then report the top-k items as the
recommendations.

8.5. CONTEXTUAL MODELING 269

A question arises as to how Dist(u, u′), Dist(i, i′), and Dist(t, t′) may be determined.
There are several different ways of doing this:

1. Collaborative: In this case, one can use the Pearson method or the adjusted cosine
to calculate Dist(u, u′), Dist(i, i′), and Dist(t, t′). For example, in order to compute
the distance between users u and u′, one can extract the 2-dimensional slices corre-
sponding to the users u and u′. We can generalize the neighborhood-based similarity
measure (cf. Chapter 2)) to compute the Pearson coefficients between all the ratings
with the users fixed at u and u′, respectively. Therefore, the individually observed
ratings of users u and u′ over the entire Item× Context grid are used in the Pearson
computation. The inverse of the similarity is used to determine the distance values.
A similar approach can be used to compute the item-wise and context-wise distances
Dist(i, i′) and Dist(t, t′).

2. Content-based: In this case, the attributes associated with the dimensions (i.e., user
profiles and item profiles) are used to compute the profile. A variety of text-based
measures, such as the cosine, may be used. A similar approach may be used to com-
pute Dist(t, t′) by associating each context with its frequently co-occurring content
attributes. Alternatively, the attributes associated with a specific context, such as sea-
son, weekday, and so on, may be used. This approach may be viewed as a monolithic
hybrid method because the representation is content-centric, but the overall approach
uses the framework of collaborative methods.

3. Combined: It is possible to combine the collaborative and content-based measures to
obtain a more robust measure of similarity. The relative weighting may be inferred
with the use of cross-validation methods, so as to maximize the prediction accuracy.

Significant variations exist in terms of how the distance function may be designed for the
specific application at hand. The aforementioned approach describes the broader idea al-
though the specific implementation may vary with the application at hand. It is noteworthy
that this approach can be viewed as a contextual generalization of the user-item approach
discussed in section 2.3.6 of Chapter 2.

8.5.2 Latent Factor Models

Tensor factorization can be considered a generalization of matrix factorization, in which
an n-dimensional data cube is factorized, rather than a 2-dimensional matrix. The tradi-
tional context-sensitive representation is indeed an w-dimensional cube, and therefore it is
particularly well suited to tensor factorization. In this sense, tensor factorization methods
can be considered contextual generalizations of conventional matrix factorization methods
in recommender systems. While a detailed discussion of tensors is beyond the scope of this
book, the reader is referred to [212, 294, 332, 495, 496] for details of such methods. A par-
ticularly notable example of a higher-order tensor factorization method is the Multiverse
Recommendation model [294]. The Multiverse Recommendation model uses the higher-order
Tucker decomposition [605], whose complexity increases exponentially with the order of the
decomposition.

Such an application of tensor factorization is computationally very intensive, especially
when the underlying data cubes are large. In most cases, the use of higher-order tensor
factorization is an overkill in such settings [496]. There are, however, other simplified ways of
applying the principles of latent factor models in multidimensional settings. Some simplified

270 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

forms of these factorization methods use only pairwise interactions between the different
dimensions [496, 498].

Here, we describe one such pairwise interaction approach. A closely related ranking
method, referred to as Pairwise Interaction Tensor Factorization (PITF) [496], has also
been used for tag recommendation. This description can be viewed as a very special case of
the notion of factorization machines discussed in [496]. Let R = [rijc] be a 3-dimensional
ratings cube of size m×n×d with m users, n items, and d different values of the contextual
dimension. For example, in Figure 8.1, we have m = 6, n = 4, and d = 5. Let U = [uis],
V = [vjs], and W = [wcs] be m× k, n× k, and d× k, matrices. Here, U denotes the user-
factor matrix, V denotes the item-factor matrix, and W denotes the context-factor matrix.
The notation k denotes the rank of the latent factor model. Then, the basic principle
of the simplified prediction function of the (i, j, k)th element of the data cube is based
on pairwise interactions between users, items, and contexts. This implies the following
prediction function:

r̂ijc = (UV T)ij + (VWT)jc + (UWT)ic (8.5)

=

k∑

s=1

(uisvjs + vjswcs + uiswcs) (8.6)

It is easy to see that this prediction function is a straightforward generalization of latent
factor models. One can now use this prediction function to set up the optimization problem
as in all latent factor models. Let S be the set of all observed entries in R.

S = {(i, j, c) : rijc is observed} (8.7)

In cases where R is an implicit feedback matrix, a sample of unobserved entries also need
to be included within S, under the assumption that these entries are observed as 0s. The
detailed reasons for doing so are described in section 3.6.6.2 of Chapter 3.

Then, the errors over all the observed entries needs to be minimized as follows:

Minimize J =
1

2

∑

(i,j,c)∈S

(rijc − r̂ijc)
2 +

λ

2

k∑

s=1

⎛

⎝
m∑

i=1

u2
is +

n∑

j=1

v2js +

d∑

c=1

w2
cs

⎞

⎠

=
1

2

∑

(i,j,c)∈S

(

rijc −
k∑

s=1

[uisvjs + vjswcs + uiswcs]

)2

+

λ

2

k∑

s=1

⎛

⎝
m∑

i=1

u2
is +

n∑

j=1

v2js +

d∑

c=1

w2
cs

⎞

⎠

The last term is the regularization term, where λ > 0 is the regularization parameter.

We need to solve for the optimum values of parameters in U , V , and W . One can
determine the partial derivative of J with respect to the individual elements in U , V ,

8.5. CONTEXTUAL MODELING 271

and W , in order to derive the update directions for a gradient-descent method. Therefore,
all elements of U , V , and W are updated simultaneously as follows:

uiq ⇐ uiq − α
∂J

∂uiq
∀i ∀q ∈ {1 . . . k}

vjq ⇐ vjq − α
∂J

∂vjq
∀j ∀q ∈ {1 . . . k}

wcq ⇐ wcq − α
∂J

∂wcq
∀c ∀q ∈ {1 . . . k}

Here, α > 0 is the step size. As in traditional latent factor models, the descent direction
depends on the error eijc = rijc − r̂ijc over the observed entries in S. The corresponding
updates are as follows:

uiq ⇐ uiq + α

⎛

⎝
∑

j,c:(i,j,c)∈S

eijc · (vjq + wcq)− λ · uiq

⎞

⎠ ∀i ∀q ∈ {1 . . . k}

vjq ⇐ vjq + α

⎛

⎝
∑

i,c:(i,j,c)∈S

eijc · (uiq + wcq)− λ · vjq

⎞

⎠ ∀j ∀q ∈ {1 . . . k}

wcq ⇐ wcq + α

⎛

⎝
∑

i,j:(i,j,c)∈S

eijc · (uiq + vjq)− λ · wcq

⎞

⎠ ∀c ∀q ∈ {1 . . . k}

A faster alternative is to use stochastic gradient descent. In stochastic-gradient descent,
instead of descending over the gradient with respect to all the errors in S simultaneously,
one descends with respect to the error in a single observed entry (i, j, c) ∈ S, which is
randomly chosen:

uiq ⇐ uiq − α

[
∂J

∂uiq

]

Contributed by (i, j, c)
∀q ∈ {1 . . . k}

vjq ⇐ vjq − α

[
∂J

∂vjq

]

Contributed by (i, j, c)
∀q ∈ {1 . . . k}

wcq ⇐ wcq − α

[
∂J

∂wcq

]

Contributed by (i, j, c)
∀q ∈ {1 . . . k}

On computing these contributions, the following steps may be executed for each specified
entry (i, j, c) ∈ S and the qth latent component (1 ≤ q ≤ k):

uiq ⇐ uiq + α

(

eijc · (vjq + wcq)−
λ · uiq

nuser
i

)

∀q ∈ {1 . . . k}

vjq ⇐ vjq + α

(

eijc · (uiq + wcq)−
λ · vjq
nitem
j

)

∀q ∈ {1 . . . k}

wcq ⇐ wcq + α

(

eijc · (uiq + vjq)−
λ · wcq

ncontext
c

)

∀q ∈ {1 . . . k}

Here, nuser
i , nitem

j , and ncontext
c represent the number of observed entries in the data cube

for user i, item j, and context c, respectively. Using these terms to normalize the regular-
ization terms results in better convergence, although they can be (heuristically) omitted

272 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

and a smaller value of λ may be used instead. It is necessary to repeatedly cycle through
the specified entries in S with each of the aforementioned updates. These gradient descent
steps may be executed to convergence to obtain the matrices U , V , and W . The resulting
updates are similar to the case of traditional matrix factorization discussed in section 3.6.4
of Chapter 3. Refer to Figure 3.9 for the algorithmic framework of stochastic gradient de-
scent. The main change to that pseudocode is the use of an additional set of context factors,
and the corresponding changes to the update equations. One now needs to cycle through
each observed triplet (i, j, c) within the algorithmic framework of Figure 3.9 in order to
execute the updates. Better convergence may be achieved by selecting different regulariza-
tion parameters for each of the matrices U , V , and W . The values of these regularization
parameters may be learned using cross-validation. One can also incorporate bias into the
model by using a straightforward 3-dimensional generalization of the baseline predictors in
section 3.7.1 of Chapter 3. The resulting baseline predictions Bijc for user i, item j, and
context c may be subtracted from the corresponding (observed) entries in the data cube be-
fore applying the factorization process. These values may be added back to the predictions
in a post-processing phase.

This approach is less complex than higher-order tensor factorization models, and it
can work particularly well in sparse matrices. It uses the 2-dimensional interactions in an
additive way without going through the higher-order interactions, which can unnecessarily
hamper the model both in terms of computational time and overfitting. In real settings, the
ratings cube is generally too sparse to take full advantage of higher-order models. These
issues are stated as the primary criticisms of Multiverse Recommendation methods [496].

This general principle can also be extended to w-dimensional cubes for w > 3. Consider
an w-dimensional data cube R, in which a rating entry is denoted by ri1...iw , with corre-
sponding matrix dimensions n1 . . . nw. Then, one can express the predicted rating value in
terms of w different latent factor matrices Uia of respective sizes na × k (a ∈ {1 . . . w}) as
follows:

r̂i1...iw =
∑

a<b≤w

[Ua(Ub)
T]iaib (8.8)

A least-squares optimization problem can be set up, as in the case of the 3-dimensional cube.
A standard gradient descent approach can be used to solve this problem. The derivation of
the update equations in this case is provided in Exercise 6.

8.5.2.1 Factorization Machines

The latent factor approach in the previous section can be viewed as a special case of fac-
torization machines. Large classes of models (such as SVD and SVD++) are special cases
of factorization machines. In factorization machines, the basic idea is to model each rat-
ing as a linear combination of interactions between input variables. The input variables
are derived from the original ratings matrix. For example, consider the case in which we
have a 3-dimensional cube containing m users, n items, and d values of the contextual di-
mension, and each rating is associated with a unique triplet. One can then “flatten” this
3-dimensional cube into a set of (m + n + d)-dimensional rows, such that each row corre-
sponds to the user, item, and contextual value of an observed rating. Therefore, there are as
many rows as the number of observed ratings. In this specific example, each row is a vector
of binary indicator variables, in which exactly three of the values are 1s, depending on the
specific user-item-context triplet relevant to that observed rating. All the remaining values
are 0s. We represent the variables of the row by x1 . . . xm+n+d, all of which are either 0s or
1s. Furthermore, the target variable for that row corresponds to the rating represented by

8.5. CONTEXTUAL MODELING 273

DA
VI

D

SA
YA

N
I

JO
SE

M
AR

K

AN
N

JIM

G
AN

DH
I

SH
RE

K

SP
ID

ER
M

AN

TE
RM

IN
AT

O
R

7
PM

8
PM

9
PM

10
 P

M

11
 P

M

RA
TI

N
G

 5

 5

 2

 4

REGRESSORS REGRESSAND

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0

 0

 0

0

0

0 0

0

0

0

0 0

 0 0

0 0

 0

0 0 0

 0

 0

 0

0 0 0 0

0

0 0 0

 0 0 0

 0 1 1 1 1

Figure 8.4: The flattened representation of five observed ratings in the data cube of
Figure 8.1. Most recommendation problems can be transformed to sparse classification and
regression problems.

that row. In Figure 8.4, we have shown the flattened representation of five observed ratings
of the data cube in Figure 8.1. At first sight, it would seem that we could use a classification
or regression predictor on this flattened representation in a straightforward way; however,
it would not work very well because of the extraordinary data sparsity, in which there are
only three nonzero entries in each row. It is here that factorization machines rescue us from
the perils of sparsity.

The basic idea is to associate a k-dimensional latent factor with each of the p = (m+n+d)
decision variables x1 . . . xp. Assume that the factor vector associated with the ith variable
is denoted by vi = (vi1 . . . vik). Similarly, the ith column has a bias bi associated with
it, and we also have a global bias variable g. The rating prediction ŷ(x) of second-order
factorization machines uses pairwise interactions between the factors as follows:

ŷ(x) = g +

p∑

i=1

bixi +

p∑

i=1

p∑

j=i+1

(vi · vj)xixj (8.9)

The variables to be learned are g, the different values of bi, and each of the vectors vi.
Although the number of interaction terms might seem alarmingly large, most of them will
evaluate to zero in sparse settings. In the example shown in Figure 8.4, only three of the in-
teraction terms will be nonzero, which seems suspiciously similar2 to the three factorization
terms in Equation 8.6. In fact, it can be easily shown that Equation 8.9 is a generalization
of Equation 8.6 with added bias variables, and we can set up a similar least-squares model.
As in matrix factorization, the stochastic-gradient descent method cycles through the ob-
served ratings to estimate the aforementioned parameters. The update step with respect

2This similarity might not be obvious at first because the two equations do not use the same notation.
Each k-dimensional factor vector vi of the factorization machine is equivalent to one of the k-dimensional
rows of either the user, item, or context factor matrix in Equation 8.6.

274 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

to any particular model parameter θ depends on the error e(x) = y(x)− ŷ(x) between the
predicted and observed values:

θ ⇐ θ(1 − α · λ) + α · e(x)∂ŷ(x)
∂θ

(8.10)

Here, α > 0 is the learning rate, and λ > 0 is the regularization parameter. The partial
derivative in the update equation is defined as follows:

∂ŷ(x)

∂θ
=

⎧
⎪⎨

⎪⎩

1 if θ is g

xi if θ is bi

xi

∑p
j=1 vjs · xj − vis · x2

i if θ is vis

(8.11)

The term Ls =
∑p

j=1 vjs · xj in the third case is noteworthy. To avoid redundant effort,
this term can be pre-stored while evaluating ŷ(x) for computation of the error term e(x) =
y(x)− ŷ(x). This is because Equation 8.9 can be algebraically rearranged as follows:

ŷ(x) = g +

p∑

i=1

bixi +
1

2

k∑

s=1

⎛

⎝[

p∑

j=1

vjs · xj]
2 −

p∑

j=1

v2js · x2
j

⎞

⎠

= g +

p∑

i=1

bixi +
1

2

k∑

s=1

⎛

⎝L2
s −

p∑

j=1

v2js · x2
j

⎞

⎠

Furthermore, the parameters vi and bi do not need to be updated when xi = 0. This allows
for an efficient update process in sparse settings, which is linear in both the number of
nonzero entries and the value of k.

In this specific example, we have assumed that the vector x contains indicator variables
with exactly three 1s. Factorization machines, however, allow arbitrary values of x to in-
crease expressiveness. For example, it is possible for the values of x to be real, or to contain
multiple nonzero values from the same dimension (e.g., context). This flexibility also allows
the interaction between latent factors of pairs of users or pairs of contexts. There could be
settings in which a context could correspond to a set of keywords or a set of entities. In the
traditional data-cube model, there is no mechanism to represent such set-wise attributes.
For example, consider the case where the context represents the companions with which
a user watches a movie, and therefore each rating is associated with a set of companions
(as context). In this case, the context variables xi correspond to individual companions. If
John watches a movie with Alice, Bob, and Jack, then the value of xi for each of the three
companions will be 1/3. This scenario is not quite so simple to represent with the straight-
forward latent factor approach, and it provides an example of the greater expressiveness of
factorization machines. It is also relatively easy to see that this approach can be generalized
to a setting in which each context is a document with associated word frequencies. For
any given ratings matrix, all we have to do is to spend some time in a feature engineering
effort. The observed ratings (target variables) are associated with a set of carefully designed
attributes, some of which might be given (e.g., user, item, and context), and others might
be extracted (e.g., implicit feedback). The versatility of factorization machines is striking.
For example, by removing the contextual columns in Figure 8.4, one obtains traditional ma-
trix factorization. By replacing the contextual columns in Figure 8.4 with implicit feedback
variables, one roughly obtains SVD++ (with a few additional terms).

8.5. CONTEXTUAL MODELING 275

Factorization machines can be used for any (massively sparse) classification or regression
task; ratings prediction in recommender systems is only one example of a natural applica-
tion. Although the model is inherently designed for regression, binary classification can be
handled by applying the logistic function on the numerical predictions to derive the prob-
ability whether ŷ(x) is +1 or −1. Applications to classification and pairwise ranking are
discussed in section 13.2.1 of Chapter 13. In fact, factorization machines can be shown to
be sparsity-resistant generalizations of polynomial regression [493]. Note that Equation 8.9
is not very different from the prediction function of second-order polynomial regression.
The most important difference is that the regression coefficients wij of pairwise interac-
tions xixj are assumed to satisfy the low-rank assumption, and can therefore be expressed
as wij = vi · vj . For example, we could have tried to directly learn wij without making
this low-rank assumption; this would be almost equivalent to using kernel regression with
a second-order polynomial kernel. Since there are O(p2) = O([m + n + d]2) such values of
wij , overfitting is extremely likely. Factorization machines assume that the p× p regression
coefficient matrix W = [wij] is of low rank and can be expressed as V V T . This reduces the
O(p2) coefficients in W = [wij] to the O(p · k) coefficients in V = [vjs] and therefore helps
in reducing overfitting. Under the covers, factorization machines are polynomial regression
models with an added low-rank assumption on the coefficients. The basic idea here is that
it would be difficult to accurately estimate the interaction coefficient wij between Jim and
Terminator (with off-the-shelf polynomial regression) if Jim has never rated Terminator.
However, the low-rank assumption enables accurate estimation of such regression coeffi-
cients by forcing inter-coefficient relationships in the parameter space. This is particularly
useful in sparse settings.

The description in this section is based on second-order factorization machines that
are popularly used in practice. In third-order polynomial regression, we would have O(p3)
additional regression coefficients of the form wijk, which correspond to interaction terms of
the form xixjxk. These coefficients would define a massive third-order tensor, which can
be compressed with tensor factorization. Although higher-order factorization machines have
also been developed, they are often impractical because of greater computational complexity
and overfitting. A software library, referred to as libFM [494], provides an excellent set of
factorization machine implementations. The main task in using libFM is an initial feature
engineering effort, and the effectiveness of the model mainly depends on the skill of the
analyst in extracting the correct set of features.

8.5.2.2 A Generalized View of Second-Order Factorization Machines

Although second-order factorization machines assume that all pairs of variables xi and
xj interact with one another, this may not always be desirable. For example, when the
contextual variables correspond to word frequencies of documents, it may not always be
desirable for the word frequencies to interact with one another. In some cases, such as
SVD++, implicit feedback variables might interact with item factors, but not with the user
factors. Similarly, implicit feedback variables do not interact with one another in SVD++.
In order to handle this setting, we define an interaction indicator δij , which indicates pairs
of variables that are allowed to interact with one another:

δij =

{
1 if xi and xj are allowed to interact

0 otherwise
(8.12)

The interaction indicators are typically defined on the basis of the block structure of the
variables, and therefore all p2 values do not need to be explicitly stored. For example, user

276 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

variables might not be allowed to interact with context variables, contexts might not be
allowed to interact with other contexts, and so on. This provides the analyst flexibility in
specifying domain knowledge about important pairs of interacting blocks of variables. We
can use this indicator to generalize Equation 8.9 as follows:

ŷ(x) = g +

p∑

i=1

bixi +

p∑

i=1

p∑

j=i

(vi · vj)δijxixj (8.13)

Unlike Equation 8.9, this equation allows xi to interact with itself when δii is nonzero.
This can be useful in some versions of polynomial regression, when xi is real. This model
can be used to exactly simulate SVD++ by defining m user-indicator variables, n item-
indicator variables, and an additional set of n implicit feedback variables associated with
items. Therefore, there are two sets of item variables corresponding to explicit and implicit
feedback, respectively. For implicit feedback variables, the feature values are nonzero only
for items in the set Iu rated by the relevant user u. These nonzero values are all set to 1/

√
Iu.

The value of δij is set to 1 only for interactions between users and explicit feedback (item)
variables, and between implicit and explicit feedback (item) variables. With this definition,
one can easily show that Equation 8.13 is exactly SVD++.

The solution methodology is almost the same as that of factorization machines. The
update step of Equation 8.10 can be used for stochastic gradient-descent. The only difference
is that the partial derivative of the predicted variable with respect to each model parameter
θ needs to be modified:

∂ŷ(x)

∂θ
=

⎧
⎪⎨

⎪⎩

1 if θ is g

xi if θ is bi

xi

∑p
j=1 δij · vjs · xj if θ is vis

(8.14)

A recent method, referred to as SVDFeature [151], can also be shown to be a special case of
this setting by defining δij appropriately. SVDFeature and factorization machines were the
top two finishers in a network recommendation task at the KDD Cup contest (2012) [715].

8.5.2.3 Other Applications of Latent Parametrization

Factorization machines impose a low-rank structure on a large parameter space in order
to reduce overfitting. A rarely noticed fact is that this general principle had been used
earlier in the completely different context of conditionally factored Restricted Boltzmann
Machines (RBMs) for collaborative filtering [519]. The basic idea is that the number of
weights between two successive layers of a neural network can be represented as a matrix
W = [wij] (see Figure 8.5). The size of the matrix can be rather large in the collaborative
filtering setting because the size of the input layer scales with the number of items and
the size of the hidden layer can be of the order of several hundred units. The size of W is
defined by the product of these two values. A large parameter space will inevitably lead
to overfitting. Therefore, the work in [519] assumes that the matrix W = UV T is the
product of two low-rank matrices U and V T . Instead of learning W , the approach then
learns the parameters of U and V . It has been shown in [519] that this type of low-rank
reduction of the parameter space has significant advantages both in terms of accuracy and
running time. These results show that a natural approach for effectively handling large and
matrix-structured parameter spaces is by imposing a low-rank structure on them. Although
the approach in [519] has been designed for conventional collaborative filtering, it can be

8.5. CONTEXTUAL MODELING 277

Xi
4

Xi
3

Xi
2

Xi
1

INPUT
LAYER

Zi

HIDDEN
LAYER

OUTPUT LAYER

Xi
5

wij

W = [wij] =UVT

LEARN U AND V INSTEAD OF W

Figure 8.5: Low-rank parametrization of neural networks to avoid overfitting

easily extended to context-sensitive scenarios by adding appropriate input nodes for context
features. An untapped potential of this approach is to leverage the low-rank parametrization
in deep-learning methods for collaborative filtering. Deep neural networks with many layers
can benefit [516] from the low-rank decomposition of the matrices corresponding to the
weights between successive layers of neurons. This can be particularly useful because of the
pervasive problem of overfitting in deep-learning methods.

8.5.3 Content-Based Models

A variety of machine learning models, such as support vector machines and linear regression,
are used in conjunction with context-sensitive recommender systems. These methods can be
viewed as generalizations of content-based models because they use the attributes associated
with users, items, and context. Recall that content-based models use only the attributes
associated with the items. However, in this case, we make the more general assumption that
attributes are associated with any of the dimensions.

In most of these cases, the users or items are represented as vectors in feature space, and
the ratings correspond to the dependent or class variable. One of the earliest methods, which
used support vector machines, was proposed in [458]. In this case, a restaurant recommender
system is proposed, in which additional contextual dimensions, such as weather, companion,
and time, are used. In this case, each item-context combination is represented as a feature
vector that is either liked or disliked. A support vector machine is constructed that separates
the liked items from the disliked items. A previously unseen item-context combination will
be recommended as liked if it falls on the liked side of the support-vector separation. This
model can be viewed as a direct generalization of content-centric models because a separate
model is built for each user, and the prediction for the model is specific to each user.
Furthermore, the attributes of the user are not used in this model. However, it is possible,
in principle, to use a global model which is constructed for prediction over all users.

An example of such a model is discussed in [50] where a single linear regression model is
constructed to predict the ratings of any user-item combination. In this case, the attributes
of the user are also used. For ease in discussion, we assume that the features are treated

278 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

as the frequencies of discrete keywords, although one can also use numeric attributes after
discretization. Note that the features of users and items are contained in the user or item
profile.

First, we describe a simple linear regression model that does not use any contextual
information. Later, we will show how to extend this model with the use of context. Consider
the following linear regression model, which estimates the rating rij as a linear function of
the user features, item features, and Kronecker cross-product features:

r̂ij = W1 · yi +W2 · zj +W3 · (yi ⊗ zj) (8.15)

Here, W1, W2, and W3 are linear regression coefficient vectors of the appropriate length.
For example, the length of the coefficient vector W1 is the same as that of the feature space
representing all the different yi. Furthermore, yi corresponds to the feature variable vector
of user i (e,g., gender or race), zj corresponds to the feature variable vector of item j (e.g.,
movie genre and production studio), and (yi ⊗ zj) corresponds to the entries in the Kro-
necker product between the feature vectors of user i and item j. The Kronecker product
is defined by all possible cross-product combinations between the feature values of user i
and item j. In the aforementioned example, combinations correspond to various possibili-
ties for gender-genre, race-genre, gender-studio, and race-studio. For a particular user-item
instance, the relevant combinations might be male-comedy, Caucasian-comedy, male-Sony,
and Caucasian-Sony. The values of these combinations are set to 1, and those of all other
possible combinations (e.g., female-comedy) are set to 0. In this case, all feature values
are binary, although it is also possible to work with arbitrary frequencies by multiplying
the frequencies of the corresponding value-pairs. For example, if the keyword “golf” has a
frequency of 2 in the user profile and the keyword “cart” has a frequency of 3 in the item
profile, the corresponding frequency of the keyword pair is 2 × 3 = 6. The basic idea here
is to represent a rating of a user-item combination (i, j) in terms of the features of user i,
the features of item j, and the interaction effects among them.

The observed ratings are used as the training data in order to create the model and
learn the coefficient vectors W1, W2 and W3. The interaction coefficients tell us how various
combinations of user-item features affect the model. The coefficients of the user features
and the item features tell us about the specific biases of the user and the item at hand. The
work in [50] uses a Markov Chain Monte Carlo (MCMC) method in order to estimate these
coefficients and learn the model from the observed ratings. This approach is a generalization
of linear regression models for content-based methods, which create user-specific models
with item features (cf. section 4.4.5 of Chapter 4). Here, the model is constructed over all
users and items, and the features are also extracted from the user-item combination, which
is being rated. Therefore, this approach is richer than an off-the-shelf content-based model.

The approach can be generalized easily to the contextual scenario by introducing ad-
ditional feature variables for the contextual dimensions [7, 607]. As a specific example,
consider the case where time is used as a contextual variable, and the feature variables as-
sociated with the kth possible value of the time dimension are denoted by the vector vk. The
features associated with time might correspond to various descriptions, such as the time of
the day, whether it is a weekday, the season, and so on. Since we have three dimensions, the
ratings rijk are now subscripted by three different values. Here i denotes the index of the
user, j denotes the index of the item, and k denotes the index of the time dimension. Then,
the predicted value r̂ijk of the rating can be computed as a linear function of the feature
variables and interaction variables as follows:

r̂ijk = W1 ·yi+W2 ·zj+W3 ·vk+W4 ·(yi⊗zj)+W5 ·(zj⊗vk)+W6 ·(yi⊗vk)+W7 ·(yi⊗zj⊗vk)
(8.16)

8.6. SUMMARY 279

To reduce the number of coefficients, it is possible to set the third-order coefficients W7

to 0. Such a model is in a similar form as second-order factorization machines, although
interactions only occur between attributes from different dimensions (e.g., users and items).
This is similar to the model of Equation 8.13. A similar gradient-descent approach can be
used.

This generic approach can, in fact, be used in conjunction with any off-the-shelf machine
learning model, and not just regression-based models. The overall approach is as follows:

1. Generate a multi-dimensional data record X ijk for each observed rating rijk, where
the class label of the record is the value rijk.

2. Generate the frequencies of the discrete features corresponding to yi, zj , vk, yi ⊗ zj ,
zj ⊗ vk, and yi ⊗ vk. Let these frequencies represent the feature vector for X ijk.

3. Use the pairs (Xijk , rijk) in conjunction with any off-the-shelf supervised learning
algorithm to build a model M.

4. For any entry (i1, j1, k1) in the ratings cube for which the value is unknown, extract
the feature representation X i1j1k1 using the aforementioned approach, and apply the
machine learning model M to predict the value of the rating.

As the dimensionality of the context-sensitive system increases, the model becomes more
likely to overfit. Furthermore, the scalability of the system is adversely affected. This can
sometimes be a significant challenge in such systems and is, of course, a general drawback
of contextual modeling methods, which directly try to work with the w-dimensional ratings
matrix rather than reducing it to a 2-dimensional problem with pre- or post-filtering meth-
ods. Nevertheless, if sufficient ratings data are available, then direct contextual modeling is
likely to provide the most robust results. Such methods are likely to become increasingly
relevant in the “big-data” era.

8.6 Summary

Various types of context, such as location, time, and social information, have a significant
influence on the recommendation process. The multidimensional model is used frequently to
create a general framework for various types of context-aware recommendations. There are
three primary ways in which context-aware recommendations are performed. In pre-filtering,
the problem is reduced to a 2-dimensional collaborative filtering problem by filtering the
w-dimensional cube to a 2-dimensional ratings matrix before applying the collaborative
filtering algorithm. In post-filtering, the context is ignored during the first phase of collabo-
rative filtering. Subsequently, the results are adjusted with the use of a predictive model that
regulates the relative importance of context. Finally, a recent approach is to incorporate
the context directly into the model by treating it as a w-dimensional prediction problem.
Generalizations of matrix factorization and linear regression models have been proposed in
this setting. This approach is computationally intensive, but it is a generic approach with
the best potential when a large amount of data is available.

280 CHAPTER 8. CONTEXT-SENSITIVE RECOMMENDER SYSTEMS

8.7 Bibliographic Notes

Some of the earliest work on context-aware recommendation systems was performed in the
context of mobile applications [2, 3], such as creating a mobile context-aware tour guide. An
early survey of context-aware computing research for mobile systems may be found in [147].
A recent survey on context-based recommender systems may be found in [7]. Context-
sensitive systems have been used in a wide variety of domains, such as news recommenda-
tion [134], Web search [336], tourist recommendations [2, 3], and database querying [39].
A survey of context-aware recommender systems, which use technology-enhanced learning
technologies, may be found in [612].

The notion of multidimensional recommender systems was proposed in [6]. An inter-
esting discussion is also found in [466]. A query language, referred to as Recommendation
Query Language (RQL) [9], was proposed for context-based systems. Another recent query
language in the context of personalizing recommendations is REQUEST [10].

The use of pre-filtering methods has a rich history in recommender systems. The
reduction-based approach of [6] is one of the seminal techniques for pre-filtering. Many sub-
sequent methods based on this broad methodology have been developed. The work in [62]
uses the notion of item splitting, in which a single item is split into several fictitious items
corresponding to various contexts. The work in [61] develops the notion of micro-profiles,
each of which is relevant to a specific context. Specifically, a different model is constructed
for the user in different contexts. This approach was used for time-sensitive recommender
systems, and it is discussed in section 9.2.2.1 of Chapter 9. The basic idea in [61] is similar
to the reduction-based approach described in this chapter. A mobile advertisement recom-
mender system, which uses pre-filtering, is discussed in [40]. The application of the approach
in an online retailing application is discussed in [374]. A comparison of pre- and post-filtering
methods in context-sensitive systems is provided in [471]. Results on the accuracy and di-
versity of context-sensitive systems are provided in [470]. The use of neighborhood-based
methods for context-sensitive recommendations is discussed in [7, 8]. Many matrix and ten-
sor factorization methods have been proposed for contextual recommendations in which
time is treated as a discrete contextual value [212, 294, 332, 495, 496]. The notion of fac-
torization machines [493] has found significant popularity in these settings. Factorization
machines can be viewed as generalizations of large classes of latent factor models, and they
have found increasing popularity for context-sensitive recommendation applications. Alter-
nating least-squares methods for factorization machines are discussed in [496]. A related
model, referred to as SVDFeature, is proposed in [151].

The support vector machine method for model construction was proposed in [458]. The
work in [63] proposes a family of matrix-factorization methods for context-aware recom-
mendation, although the approach discussed in this book is more general than the methods
discussed in this family. Scalable algorithms for building context-sensitive recommender
systems are discussed in [607].

A major issue is the selection of appropriate attributes for contextual methods. A dis-
cussion of how appropriate attributes may be selected for contextual methods is provided
in [188]. The use of latent contextual information as a possible representation is discussed
in [47].

8.8. EXERCISES 281

8.8 Exercises

1. Discuss how you might decide whether pre-filtering, post-filtering, or contextual mod-
eling is most appropriate for a particular data set.

2. Discuss how you might use hybrid recommender systems to combine the power of pre-
filtering, post-filtering, and contextual modeling. Propose as many schemes as you can
imagine. How would you decide which of these to use?

3. Implement the pre-filtering algorithm with a single contextual attribute. Use an item-
based (neighborhood) collaborative filtering as the base method.

4. Suppose that you have three contextual attributes (say, location, time, and compan-
ion), each of which has its own taxonomy. Your system is designed to recommend
items for a given user in the context of location, time, and companion. For a given
context at the lowest level of the hierarchy, you might have the sparsity problem be-
cause only a modest number (say, 500) of the observed ratings might be available in
which the three contexts are fixed to the queried values. This can cause overfitting in
a pre-filtering method if only 500 ratings are used for the training process. You decide
that you will use a more general level of the taxonomy from each of the three contexts,
in order to extract the relevant segments and increase the amount of training data.
Describe how to determine the specific level of the taxonomy to use for each contextual
attribute. Once you have extracted the taxonomy level for each context, describe the
collaborative filtering algorithm.

5. Consider the w-dimensional matrix factorization discussed in section 8.5.2, in which
the prediction function is of the following form:

r̂i1...iw =
∑

a<b≤w

[Ua(Ub)
T]iaib

(a) Let S be the set of all the w-dimensional coordinates of the specified entries in
the w-dimensional data cube. Show that the objective function for optimization,
with regularization, is of the following form:

J =
∑

(i1...iw)∈S

(ri1...iw −
∑

a<b≤w

[Ua(Ub)
T]iaib)

2 + λ

w∑

a=1

||Ua||2

(b) How would you use this objective function to derive the gradient descent method?

(c) Let ei1...iw = ri1...iw − r̂i1...iw represent the prediction error of an entry (i1 . . . iw)
at an intermediate stage of the gradient descent updates. Show that the gradient-
descent update equations to each Ua (1 ≤ a ≤ w) are of the following form for
each specified entry (i1 . . . iw) ∈ S:

[Ua]iaq ⇐ [Ua]iaq + α(ei1...iw ·
∑

b�=a

[Ub]ibq)− λ · [Ua]iaq) ∀q ∈ {1 . . . k}

Chapter 9

Time- and Location-Sensitive
Recommender Systems

“Time is the wisest counselor of all.”–Pericles

9.1 Introduction

In many real scenarios, the buying and rating behaviors of customers are associated with
temporal information. For example, the ratings in the Netflix Prize data set are associ-
ated with a “GradeDate” variable, and it was eventually shown [310] how the temporal
component could be used to improve the rating predictions. Similarly, many forms of user
activity, such as buying behavior and Web clickstreams, are inherently temporal. In general,
recommender systems use the temporal aspects of user activity in two different ways:

1. Explicit ratings: In this case, dates are associated with explicit ratings. These dates can
be used to improve the accuracy of the prediction process either through the use of
forecasting methods, or through periodic and seasonal information (e.g., day of week).

2. Implicit feedback: These scenarios correspond to customer actions, such as buying items
or clicking on Web pages. The historical sequence of user actions is used to make predic-
tions about future actions. The underlying methods often share many similarities with
forecasting based on sequential patterns. Such techniques are used frequently in many
scenarios such as Web clickstreams or Web log analysis. The techniques can also be used
to make predictions about future customer buying behavior.

Generally, it is much harder to use the temporal information in ratings to make recommen-
dations. As we will see later in this chapter, existing temporal models [310] use the temporal

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 9

283

284 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

information in ratings in a limited and carefully calibrated way. On the other hand, the lit-
erature on implicit feedback and discrete models is quite rich because it has been explored
extensively in the context of Web clickstreams and logs. The latter problem is closely related
to that of forecasting of sequential data with categorical attributes. In this case, discrete
data mining methods, such as Markovian models and sequential pattern-mining, are very
useful. In this chapter, we will study both types of recommenders.

Time can be viewed from a recency and forecasting perspective, or from a contextual
(e.g., seasonal) perspective. From a recency perspective, the basic idea is that recent ratings
are more important than older ratings. Therefore, various aging and filtering strategies are
used to assign greater importance to more recent data. In the contextual perspective, various
periodic aspects, such as season or month, may be used.

The latter scenario is closely related to context-aware recommender systems. In context-
aware recommender systems [7], an additional variable, such as location or time, is used to
refine the recommendation. In standard collaborative filtering with user set U and item set
I, the user-item possibilities in U × I are mapped to ratings. This mapping is learned from
the available data. However, the presence of a context C requires us to learn the mapping
from the possibilities in U ×I×C to the ratings. Note that the context C may itself contain
multiple attributes such as location, time, weather, season, and so on. These properties could
either be dependent or independent of one another. In this particular chapter, we will study
the specific case in which the contextual property is a single attribute corresponding to time.
When time is viewed as a continuous variable, the recommendations are often created as
functions of time. The temporal context can be viewed from a periodic, recency, or modeling
point of view. In periodic contexts, a specific periodic aspect of the time, such as weekday,
time of day, or month is used in order to sharpen the recommendation. For example, it
makes more sense for a North American clothing retailer to recommend winter clothing in
December rather than in July. Context-aware recommenders are discussed in a generic sense
in Chapter 8. However, we have allocated a separate chapter to the time dimension because
of the large amount of literature associated with it. Furthermore, many of the temporal
methods, such as forecasting-based ratings prediction and discrete sequence-based methods,
cannot be easily generalized to other context-sensitive methods and scenarios. Therefore, the
temporal aspect of recommender systems needs to be treated separately from context-aware
systems, although the connections to context-based methods are highlighted throughout the
relevant parts of the chapter.

Time can be treated as a modeling variable by explicitly expressing the predicted ratings
as a function of time. The parameters of this function can be learned in a data-driven manner
by minimizing the squared error of the predicted ratings with respect to the observed ratings.
An example of such a model is time-SVD++, which expresses the predicted ratings as a
function of temporally parameterized biases and factor matrices. This approach is considered
one of the state-of-the-art techniques for temporal prediction. The main advantage of this
approach is that it can capture future trends, which are not easily captured by recency,
decay-based, or periodic models.

Many data domains such as Web clickstreams do not contain explicit ratings, but they
contain discrete action sequences. Such data can be viewed as the temporal version of
implicit feedback data sets. The methods used in such domains are often quite distinct
from those used in the case of ratings. In particular, Markovian models and sequential
pattern-mining methods are commonly used. Such methods have been studied extensively
in the Web-mining domain because Web logs are widely available for mining purposes. In
this chapter, we will also review discrete-sequence mining methods for recommendations in
applications such as Web clickstreams.

9.2. TEMPORAL COLLABORATIVE FILTERING 285

Like time, location is another commonly used context in recommender systems. With
the increasing popularity of GPS-enabled mobile phones, the use of the location context
is useful in a variety of scenarios, such as finding movie theaters, restaurants, or other
entertainment locations. In some cases, the location context can be combined with time.
This chapter will use the location-based scenario as an important example of context-based
systems.

This chapter is organized as follows. In section 9.2, we will introduce methodologies for
temporal collaborative filtering with ordered ratings. In particular, we will introduce three
different types of models. These correspond to recency-based models, periodic models, and
more complex parameterized models. An example of the latter is the time-SVD++ model,
which is considered the state-of-the-art for temporal recommendation. The connections of
various models with the context-based models of Chapter 8 are also discussed. Section 9.3
discusses how discrete models can be extended to the temporal scenario in cases where the
user actions represent discrete selections such as clicks. Markovian models and sequential
pattern-mining methods are discussed in this section. Location-aware recommender systems
are discussed in section 9.4. A summary is given in section 9.5.

9.2 Temporal Collaborative Filtering

In this section, we will study the use of temporal recommendations with ratings. Temporal
information can be used in one of two ways in order to improve the effectiveness of prediction:

1. Recency-based models: Some models consider recent ratings more important than older
ratings. In these cases, window-based and decay-based models are used for more accurate
prediction. The basic idea in all these models is that the recent ratings are given more
importance within the collaborative filtering model.

2. Periodic context-based models: In periodic context-based models, the specific property of
a period, such as the time at the level of specificity of the hour, day, week, month, or sea-
son, is used to perform the recommendation. For example, a clothing retailer would make
very different recommendations depending upon whether it was summer or winter [567].
Similarly, the movie recommendations during the Christmas week might be very different
from those in the week leading to the Oscars [100]. In these methods, time becomes a
contextual variable that is exploited in order to make recommendations. These models
are closely related to contextual recommender systems, as introduced in Chapter 8.

3. Models that explicitly use time as an independent variable: A recent approach, referred
to as time-SVD++, uses time as an independent variable within the modeling process.
Such an approach uses more refined user-specific and item-specific trends to handle local
temporal variations and it can also account for intermittent temporal noise in the ratings.
Generally, such models are more sophisticated than recency-based models because they
include an element of forecasting.

Window-based and decay-based models have the merit that they are simple and easy to
implement in a wide variety of settings. On the other hand, they cannot capture the refined
temporal characteristics captured by the time-SVD++ model. Therefore, the latter method
is considered the state-of-the-art in temporal collaborative filtering. Nevertheless, recency-
based models have the advantage of being easy to implement. Furthermore, a wider variety
of models can be generalized to these cases. On the other hand, only a small number of
models have been proposed in the second category.

286 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

9.2.1 Recency-Based Models

In recency-based models, recent ratings are given greater importance than older ones. The
greater importance of recency can be addressed with either decay-based methods or with
window-based methods. In decay-based methods, older ratings are given less importance
with the use of a decay function. Window-based methods can be viewed as special cases
of decay-based methods, in which binary decay functions are used to completely disregard
data points that are older than a specific amount of time. In other words, the binary decay
function ensures that older ratings are given a weight of 0, whereas recent ratings are given
a weight of 1.

9.2.1.1 Decay-Based Methods

In decay-based methods, a time-stamp tuj is associated with each observed rating of user u
and item j in the m×n ratings matrix R. Therefore, the number of observed values of tuj is
exactly equal to the number of observed ratings in R. It is assumed that all recommendations
should be made at a future time tf . This future time is also referred to as the target time.
Then, the weight wuj(tf) of the rating ruj at target time tf is defined with the use of a
decay function, that penalizes larger distances between tuj and tf . A decay function, which
is commonly used [185], is the exponential function:

wuj(tf) = exp[−λ(tf − tuj)] (9.1)

The decay-rate λ is a user-defined parameter that regulates the importance of time. Larger
values of λ de-emphasize older ratings to a greater degree. These weights can be used in
neighborhood-based methods to regulate the importance of a rating during the prediction
phase.

A method proposed in [185] modifies user-based neighborhood methods by changing the
final prediction function. The simple approach used in [185] first determines the k-nearest
neighbors of each user. The determination of the nearest neighbors (users) is identical to
off-the-shelf user-based neighborhood methods. Subsequently, the only difference from other
neighborhood-based methods is that the ratings of other users are weighted with wuj(tf)
during the aggregation process. Specifically, Equation 2.4 of Chapter 2 can now be modified
as follows for predicting the rating of item j for user u at time tf as follows:

r̂uj(tf) = μu +

∑
v∈Pu(j)

wvj(tf) · Sim(u, v) · (rvj − μv)
∑

v∈Pu(j)
wvj(tf) · |Sim(u, v)| (9.2)

Here, Pu(j) represents the k closest users to user u that have specified ratings for item j.
Note that the main difference of the aforementioned equation from traditional collaborative
filtering is the presence of weights in the prediction function. These weights bias the solutions
in favor of more recent trends by discounting stale ratings.

The approach can be easily applied to both user-based and item-based models with
a small modification in the final step. In both cases, the final prediction step needs to
be augmented with recency-based weights. The optimal value of λ can be learned using
cross-validation methods, although such an approach is not discussed in [185].

9.2. TEMPORAL COLLABORATIVE FILTERING 287

The work in [186] provides a slightly more refined model in which an item-based neigh-
borhood method is used for collaborative filtering. Aside from weighting each item with
item-to-item similarity in the prediction process, a temporal discount factor is also multi-
plied to the rating of each item within the prediction function. This is, of course, similar to
the method used in [185] (and also discussed above). Unlike the work in [185], however, this
discount factor is not a simple exponential decay function. Each item is assigned a discount
factor by estimating its expected future error and then assigning a weight that is inversely
proportional to this error.

Consider a scenario in which the set of peer items of the target item j for which the user
u has specified ratings is Qj(u). The process of determining Qj(u) is identical to that of
item-based neighborhood methods. Then, the discount factor Dui for each item i ∈ Qj(u)
needs to be determined in order to modify the final prediction function. Note that the
discount factor in local to the user u at hand and therefore contains u in the subscript. The
prediction of the rating of item j by user u is computed1 with a discounted version of the
item-based prediction function:

r̂uj =

∑
i∈Qj(u)

Sim(i, j) ·Dui · rui
∑

i∈Qj(u)
|Sim(i, j)| ·Dui

(9.3)

How is each discount factor Dui computed? This is achieved by computing the normalized
difference in ratings between the user rating rui on each item i ∈ Qj(u), and the average
rating Oui of user u on similar items to item i. The similar items to item i are identified
using item-to-item similarity computation. The discount factor (weight) Dui ∈ (0, 1) for
each user u and item i ∈ Qj(u) is computed as a function of these two quantities.

Dui =

(

1− |Oui − rui|
rmax − rmin

)α

(9.4)

Here, rmax and rmin are the maximum and minimum values on the scale of ratings. α is a
tuning parameter, which can be chosen using cross-validation. The basic idea here is that
the difference in the user’s rating between that of item i and the average rating of the
same user on similar items is a manifestation of the error caused by temporal evolution.
Furthermore, different users may have different rates of evolution; therefore, the discount
factor is local to the specific user at hand.

The methods in [185, 186] do not incorporate the decay weights and discount factors
in the similarity computation, and these weights are used only in the prediction phase.
It is, however, also possible to compute the similarity in a weighted way, as discussed in
section 6.5.2.1 of Chapter 6. In fact, any of these weighted models may be used, once wij(t)
has been defined. While these weighted models were developed in [67] in the context of
ensemble methods such as bagging and boosting, they can easily be adapted to the temporal
scenario. Note that the way in which matrix factorization models can be generalized to the
weighted case is also shown in section 6.5.2.1. Given this, matrix factorization methods can
also be easily generalized to recency-based techniques.

1The original work [186] does not use a modulus in the denominator. We have added it in Equation 9.3
because omitting it does not make much sense in the case of negative similarity. Nevertheless, negative
similarities in the peer item-group are rare in practical settings because the peers are defined as the most
similar items.

288 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

9.2.1.2 Window-Based Methods

In window-based methods, ratings that are older than a particular time are pruned from
consideration. This approach can be viewed as a special case of pre-filtering or post-filtering
methods in context-based models. Such methods are discussed in a generic sense in Chap-
ter 8. Furthermore, these methods can also be viewed as (discrete) special cases of decay-
based methods. There are several ways in which windows can be modeled:

1. If the difference between the target time tf and the rating time tij is larger than a
particular threshold, then the rating is dropped. The collaborative filtering model is
otherwise identical to any of the methods discussed in Chapters 2 and 3. This approach
can be viewed as an extreme case of the decay-based model, in which the decay function
is binary. It is often suggested [131] that all of the ratings should be used for similarity
computation in neighborhood-based methods. Window-based pruning is used only within
the prediction function after the similarities have been computed with all the data.
Such an approach can sometimes provide better robustness because of the sparsity of
the ratings, in which any type of pruning can make similarity computations unstable.
Pruning at the time of similarity computation can lead to overfitting.

2. In some cases, it is possible to obtain some insight into the active periods for various items
depending on the underlying domain. In such cases, the windows can be set in a domain-
and item-specific way. For example, the method in [131] uses not only the most recent
ratings, but also the ratings from the same month in the previous years. Therefore, this
approach combines window-based models with some periodic information. This method
is referred to as time-periodic biased k-NN approach.

So far, all the temporal models are based on the time at which an item was rated. A
somewhat different approach is to associate weights with a different temporal attribute
than the rating time. For example, the work in [595] discusses how one might use the
production time of a movie to drop it from consideration. A movie, which is too old, might
not be relevant for a user looking for more recent movies. Note that such an approach prunes
all ratings for the item, because the production time is associated with the item and not
the user-item combination. Pruning all ratings for an item is equivalent to dropping the
item from the ratings matrix. Therefore, such an approach reduces the dimensionality of
the data set by effectively removing them from consideration. However, such an approach
should be used with caution, and only for items which are inherently time-sensitive on
certain well-known traits.

9.2.2 Handling Periodic Context

Periodic context is designed to handle cases in which the time dimension may refer to
a specific period in time, such as hour of the day, day of the week, season, or the time
intervals in the vicinity of specific periodic events (e.g., Christmas). Such cases are best
handled with the use of multidimensional contextual models, as proposed in [6]. These
methods are discussed in detail in Chapter 8.

In this case, the target recommendation time defines the context in which the recom-
mendation is made. This context can sometimes play an all-important role in the recom-
mendation process. For example, for a supermarket, the recommendations targeted for the
weekend before the Thanksgiving holiday would be very different from those targeted during
other times. Several natural ways of handling periodic context are discussed in the following
sections.

9.2. TEMPORAL COLLABORATIVE FILTERING 289

9.2.2.1 Pre-Filtering and Post-Filtering

There are two types of filtering methods used in the context-based methods that are referred
to as pre-filtering and post-filtering, respectively. These methods are discussed in detail in
sections 8.3 and 8.4 of Chapter 8. Here, we provide a brief overview in the context of
temporal recommender systems.

In pre-filtering, a significant part of the ratings data are removed that are not relevant to
the specific target time (i.e., context) within which the recommendation is being performed
or executed. For example, one might use only the ratings from the fortnight before Thanks-
giving of each year, in order to construct the models for making recommendations on the
weekend before Thanksgiving. A particularly interesting approach along this direction was
the use of contextual microfiles [61], which segmented the ratings by context. This kind of
segmentation effectively filters out the irrelevant ratings from each segment. Some exam-
ples of possible segmentations include {Morning,Evening}, {WeekDay,Weekend}, and so
on. Within each context, a separate model is constructed for prediction. After filtering, any
non-contextual method may be used to make predictions on the pruned data within each
segment. The main challenge associated with pre-filtering methods is that the pruned data
set is even more sparse than the original data, and therefore the accuracy of the recommen-
dation process is impacted negatively. This is a direct result of overfitting. The success of
pre-filtering often depends on the sparsity of the pruned data set. Therefore, the approach
cannot be used easily for contexts that are too fine-grained (e.g., day of year). In many
cases, hierarchies are used on the periodic context to improve the accuracy of recommen-
dation. For example, consider a scenario where the context is set to 7 AM. Instead of using
ratings received between 7 AM and 8 AM, one might use all the ratings received between
6 AM to 9 AM. This will result in the use of a larger number of ratings, and the approach
will therefore help to prevent overfitting.

In post-filtering, the recommendations are adjusted based on the context, after a non-
contextual method has been used to generate the recommendation on all the data. Therefore,
the basic approach of post-filtering uses the following two steps:

1. Generate the recommendations using a conventional collaborative filtering approach on
all data, while ignoring the temporal context.

2. Adjust the generated recommendation list with the use of temporal context as a post-
processing step. Either the ranks of the recommended list may be adjusted, or the list
may be pruned of contextually irrelevant items.

After the recommendation lists have been generated, the ranking is either re-adjusted by
weighting with a contextual relevance weight, or the items with very low contextual relevance
weights are removed. Let r̂uj represent the predicted rating of user u for item j using all the
data, before contextual post-filtering has been applied. The resulting ratings (and rankings)
are then adjusted with the use of contextual relevance weights P (u, j, C), where C is the
context. Therefore, the adjusted rating is given by r̂uj · P (u, j, C).

How is the contextual relevance weight determined? In contrast to pre-filtering methods,
which work only with ratings, post-filtering methods often use content properties of items
in order to determine the contextual relevance weights. Under the covers, post-filtering
methods sometimes incorporate pre-filtering techniques to a minor degree in the process of
determining contextual relevance weights. For a given user u for whom a prediction needs to
be made, her ratings for the specific period of interest are pre-filtered, and an off-the-shelf
recommendation model is constructed on the pre-filtered ratings, to predict her ratings for
that specific periodic context C. For example, if movie recommendations are to be made

290 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

in the context of weekends, the relevance of the user for each movie in the weekend is
determined with the use of either a collaborative model or a content-based model on the
pre-filtered data. The work in [471] uses a very simple scheme in which the fraction of
neighbors of a user who have watched a particular movie in the pre-filtered data is used
in order to compute the contextual relevance weight. This relevance weight P (u, j, C) is
assumed (or scaled) to be a probability value in (0, 1), where larger values imply greater
interest. Then, the predicted rating r̂uj is multiplied with the relevance weight P (u, j, C),
or the item is simply removed from the recommended list when P (u, j, C) is very small.
These two methods are referred to as weighting or filtering methods in contextual post-
filtering [471]. Post-filtering methods hedge their bets between the robustness of (larger)
global data sets and the refined accuracy of the pruned data by making use of both in the
recommendation process.

In many cases, the estimation of P (u, j, C) is executed independent of the user u, by
using only the content information in the item j. For example, if comedy movies and Steven
Spielberg movies are often watched over weekends by all users, the genre/actors/director
of the movie can be used as the content, and the label is either weekends or weekdays. The
training data can contain the data over all users and not just user u. A machine learning
model then estimates the value of P (∗, j, C) by using this training data, where “*” denotes
a “don’t care.” Such an approach is less personalized in the computation of P (u, j, C), but it
can handle sparsity more effectively. Note that the final predicted value r̂uj ·P (∗, j, C) is still
personalized to u because of how r̂uj is determined. The specific choice of model used for
estimating P (u, j, C) depends on the data set at hand and its sparsity. Readers are advised
to refer to Chapter 8 for more details about both methods. In particular, post-filtering
methods are discussed in section 8.4.

9.2.2.2 Direct Incorporation of Temporal Context

In pre-filtering and post-filtering methods, the incorporation of context is done either strictly
before or strictly after the recommendation process. In both cases, the approach reduces the
problem to a 2-dimensional model. However, it is also possible to directly modify existing
models such as neighborhood methods in order to incorporate temporal context. In such
cases, one works directly with the 3-dimensional representation corresponding to user, item,
and context. For example, in the user-based neighborhood scheme, one might modify the
distance computation between two users with the use of contextual attributes. If two users
give the same rating to an item during weekends, they should be considered more similar
than a pair of users that have specified these ratings in different temporal contexts. By
using the modified distance computation, the context is automatically incorporated into
the recommendation process. One can also modify regression and latent-factor models to
incorporate the temporal context directly. These methods apply generally to any context-
based scenario (e.g., location), and not just the temporal context. Therefore, this topic is
discussed in detail in Chapter 8 on context-based methods. Refer to section 8.5 of that
chapter.

9.2.3 Modeling Ratings as a Function of Time

In these methods, the ratings are modeled as a function of time and the parameters of the
model are learned in a data-dependent way. A few methods that use time-series models
to make predictions are discussed in the bibliographic notes. In this section, we will study
the use of temporal factor models, which are considered state-of-the-art in this domain.

9.2. TEMPORAL COLLABORATIVE FILTERING 291

These methods can intelligently separate long-term trends from transient and noisy trends.
Furthermore, the models have a natural element of forecasting built into them. These dis-
tinctions are important for making such temporal models robust. Such robustness cannot
be achieved with a mere decay-based or filtering approach to the temporal model. In this
section, we will study the time-SVD++ model, on which a lot of subsequent work in the
field is based.

9.2.3.1 The Time-SVD++ Model

The time-SVD++ model can be viewed as a temporal enhancement of the SVD++ model.
Readers are advised to revisit section 3.6.4.6 of Chapter 3, as the discussion in this section
relies on that previous passage. We will also briefly discuss the SVD++ model here; this
will provide us with the opportunity to introduce slightly different notations from those in
Chapter 3. These notations are relevant to the temporal version of the model.

As in the case of the SVD++ model, we can assume without loss of generality that we
are working with a ratings matrix in which the mean of all ratings in the training data is
0. Note that when the mean (denoted by μ) of all ratings is nonzero, it can be subtracted
from all the entries, and the analysis can be performed with this centered matrix in order
to predicted correspondingly centered ratings. Later, the mean can be added back to the
predicted value of the rating.

Recall that the factor model of section 3.6.4.5, which incorporates bias, expresses the
ratings matrix R = [rij]m×n in terms of the user biases, the item biases, and the factor
matrices. The predicted rating r̂ij is expressed in terms of these variables as follows:

r̂ij = oi + pj +
k∑

s=1

uis · vjs (9.5)

Here, oi is the bias variable for user i, pj is the bias variable for item j, U = [uis]m×k, and
V = [vjs]n×k are factor matrices of rank k. The part (oi+pj) does not use any personalized
rating data, but it simply relies on global properties of the ratings. Intuitively, the variable
oi indicates the propensity of user i to rate all items highly, whereas the variable pj denotes
the propensity of item j to be rated highly. For example, a generous and optimistic user
is likely to have large positive values of oi, and a box office hit is likely to have large
positive values of pj . This basic bias-based model is further enhanced in section 3.6.4.6
with the notion of implicit feedback variables Y = [yij]n×k for each user-item pair. These
variables encode the propensity of each factor-item combination to contribute to implicit
feedback. For example, if |yij | is large, then it means that simply the act of rating item i
contains significant information about the affinity of that user for the jth latent component
(no matter what the actual value of the rating might be). In other words, the jth latent
component of any user who has rated item i should be adjusted based on the value of yij .

Let Ii be the set of items rated by user i. Then, the predicted value of the rating, which
includes implicit feedback, can be expressed as follows:

r̂ij = oi + pj +

k∑

s=1

(

uis +
∑

h∈Ii

yhs
√
|Ii|

)

· vjs (9.6)

Note that the term
∑

h∈Ii
yhs√
|Ii|

on the right-hand side of the aforementioned equation

adjusts the sth latent factor uis of user i, based on the implicit feedback. Refer to sec-
tion 3.6.4.6 of Chapter 3 for a more detailed explanation of this adjustment. Equation 9.6

292 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

is identical to Equation 3.21 of Chapter 3, except that we use slightly different2 notations
here in explicitly separating out the bias variables.

The main difference between the SVD++ model and the time-SVD++ model is that
some of the model parameters are assumed to be functions of time in the latter. Specifically,
the time-SVD++ model assumes that the user biases oi, item biases pj , and the user factors
uis are functions of time. Therefore, these terms will be expressed as oi(t), pj(t), and uis(t)
to denote the fact that they are functions of time. By using these temporal variables, one
now obtains the time-varying predicted value r̂ij(t) of the (i, j)th entry of the ratings matrix
at time t as follows:

r̂ij(t) = oi(t) + pj(t) +

k∑

s=1

(

uis(t) +
∑

h∈Ii

yhs√
|Ii|

)

· vjs (9.7)

It is noteworthy that the item variables vjs and the implicit feedback variables yhs have
not been temporally parameterized, and are assumed to stay constant with time. It is
possible in principle3 to temporally parameterize these variables as well, although the time-
SVD++ model chooses a simplified approach in which each temporal parametrization can
be justified with intuitive arguments. These intuitions are discussed below, together with
the specific form of the temporal parametrization of each of the variables oi(t), pj(t), and
uis(t), respectively:

1. The intuition for choosing the temporal form of the item bias pj(t) is that the popular-
ity of an item can vary significantly with time, but it shows a high level of continuity
and stability over shorter periods. For example, a box-office hit will have an approxi-
mately stable distribution of ratings in the short period after release, but it might be
rated very differently after a couple of years have elapsed. Therefore, the time horizon
can be split into bins of equal size, and the ratings belonging to a particular bin have
the same bias. Smaller bin sizes lead to better granularity but it may also result in
overfitting because enough ratings may not be present in each bin. In the original work
on Netflix movie ratings [310], a total of 30 bins were used, and each bin represented
about 10 consecutive weeks of ratings. The item bias pj(t) can now be split into a
constant part and an offset parameter, which is bin-specific depending on the time t
at which item j is rated:

pj(t) = Cj +Offsetj,Bin(t) (9.8)

Note that both the constant part Cj and offsets are parameters that need to be learned
in a data-driven manner. The optimization problem for this learning process will be
discussed later. Note that the value of pj(t) will be different for different ratings,
depending on when they were rated. Unlike users, items can be more successfully
binned in this way because most items usually have sufficient ratings.

2. A different approach is used to parameterize the user bias oi(t). The binning approach
will not work for users because many users may not have sufficient ratings. Therefore,
a functional form may be used to parameterize the user bias, which captures the

2In the discussion of section 3.6.4.6, the bias variables are absorbed within the factor matrices U and
V by increasing the number of columns in each of the two factor matrices from k to (k + 2). However, in
this exposition, we do not absorb the bias variables in the columns of the factor matrices. This is because
of the more complex and special way in which bias variables are treated in temporal models. For example,
Equation 3.21 of Chapter 3 and Equation 9.6 are identical, but they use somewhat different notations. It is
important to keep these notational distinctions in mind to avoid confusion.

3The work in [293] uses time-varying item factors.

9.2. TEMPORAL COLLABORATIVE FILTERING 293

concept drift of the user over time. Let the mean date of all ratings of user i be
denoted by νi. Then, the concept drift devi(t) of user i at time t can be computed as
a function of t as follows:

devi(t) = sign(t− νi) · |t− νi|β (9.9)

The parameter β is selected using cross-validation. A typical value of β is around 0.4.
In addition, the transient noise at each time t is captured with the parameters εit.
Then, the user bias oi(t) is split into a constant part, a time-dependent part, and
transient noise, as follows:

oi(t) = Ki + αi · devi(t) + εit (9.10)

In practice, the time is often discretized on a day-specific basis. Therefore, εit corre-
sponds to the transient day-specific variability. As in the case of item bias parameters,
the parameters Ki, αi, and εit must be learned in a data-driven manner. The idea
here is that the average rating of the user can vary significantly from that at the mean
date of rating. The user might be rating most items positively (or negatively) now,
but her mean rating might decrease (or increase) in a couple of years. This portion of
variability is captured by αi · devi(t). However, transient mood changes from day to
day might lead to sudden and unpredictable spikes or dips in ratings. A user might
rate all items poorly when she is having a bad day. Such variations are captured by εit.

3. The user factors uis(t) correspond to the affinity of users towards various concepts.
For example, a young user who appreciates action movies today might be interested in
documentaries after a few years. As in the case of user biases, the amount of elapsed
time is a crucial factor in deciding the amount of drift. Therefore, a similar approach
to user biases is used for modeling the temporal change in the user factors:

uis(t) = K ′
is + α′

is · devi(t) + ε′ist (9.11)

As in the case of user biases, the constant effects, long-term effects, and transient
effects are modeled by the three terms. Although we have used similar looking symbols
as user biases to emphasize the similarity between the two modeling cases, we have
added an apostrophe superscript to each variable to emphasize the fact that the
variables in Equations 9.10 and 9.11 are distinct. Note that the same user-specific
deviation function devi(t) is used in the two cases although it is possible to use different
forms of this function for the two cases.

How does one use the aforementioned model to set up the optimization problem? We assume
that the observation time of all the ratings is known. Therefore, for an entry (i, j) whose
rating has been observed at time tij , one must compare the observed value rij with the
predicted value r̂ij(tij) in order to compute the error in prediction. In this case, one needs
to minimize the squared error function [rij − r̂ij(tij)]

2 over all the observed ratings in the
data. The value of r̂ij(tij) is derived with the help of Equation 9.7. In addition, the squared
regularization terms for the various parameters need to be added to the objective function.
In other words, if S contains the set of user-item pairs for which ratings are specified in the
matrix R = [rij]m×n, then one must solve the following optimization problem:

Minimize J =
1

2

∑

(i,j)∈S

[rij − r̂ij(tij)]
2 + λ · (Regularization Term)

294 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

The regularization term contains the sum of the squares of all the variables in the model. As
in the case of all the factorization models discussed in Chapter 3, a gradient descent approach
can be used in order to optimize the objective function J and learn the relevant parameters.
The partial derivative of J is computed with respect to each parameter to determine the
relevant gradient directions. These learned parameters are then used for prediction. The
details of these learning steps are omitted. Readers are referred to the original work [310]
for more details. Here, we will discuss how the model can be used once the parameters have
been learned.

Using the Model for Prediction

After the parameters of the model have been learned, how can they be used for predictions?
For a given user i and item j, one can use Equation 9.7 to determine the predicted rating
r̂ij(t) at future time t by substituting the learned values of the parameters. The main
problem with doing so is the presence of day-specific parameters, such as εit and εist. These
parameters can only be learned for past days from the historical data, but they cannot
be learned for future days. However, these parameters only correspond to transient noise,
which cannot, by definition, be learned in a data-driven manner. Therefore, these values are
set to 0 for future days under the assumption that a noise-free prediction is being made;
accordingly, the learned values of these parameters are not used for prediction. Although
these parameters are not used in the final prediction, they are still quite important for the
modeling process because they absorb the transient noise and spikes in the ratings. For
example, if a user provides very low ratings to all items because she is having a bad day, the
presence of these parameters will dampen the effects of this transient noise in the historical
data. Therefore, the parameters εit and εist help in learning the other parameters in a
more robust way by removing transient spikes and noise. In other words, the day-specific
parameters εit and εist play the role of cleaning the training data in the modeling process.

Practical Issues

An immediate observation is that the aforementioned model has a very large number of
parameters as compared to those in Chapter 3. Therefore, it is crucial to have sufficient
data, so that overfitting may not remain an issue. This can be a problem for smaller data
sets. However, the approach seems to perform quite well [310] for the Netflix data set, which
is quite large. Interestingly, the survey in [312] shows that one can obtain reasonably good
results on the Netflix Prize data set by dropping the factorization completely and using
only the bias terms. The use of only bias terms yielded results that were almost comparable
to Netflix’s Cinematch recommender system. This is because the non-personalized aspect
of the ratings (i.e., user-specific and item-specific bias) can explain a very large part of
the ratings. These results suggest the importance of incorporating the bias terms in latent
factor models, as discussed in section 3.6.4.5 of Chapter 3.

Furthermore, the time-dependent terms in oi(t) and uis(t) can be modeled using other
functional forms such as splines or with the use of periodic trends. These different func-
tional forms can capture different data-specific temporal scenarios. We have restricted our
discussion to the simplest possible choices for ease in discussion. A detailed discussion of
these alternatives is provided in [312].

9.3. DISCRETE TEMPORAL MODELS 295

Observations

It is noteworthy that user factors vary in the temporal sense but item factors do not.
This choice can be intuitively justified. Recall from the discussion in Chapter 3 that the
user factors correspond to user affinities towards various concepts, whereas the item factors
correspond to item affinities towards various concepts. The basic idea here is that user
moods and preferences can change over time, which will be reflected in the changes of their
affinities towards the various concepts. On the other hand, the affinity of an item to a
concept is inherent to that item, and it can be assumed to be stable over time. Therefore,
it is not necessary to increase the complexity of the model by temporally parameterizing
the item factors. Unnecessary temporal parametrization increases the complexity of the
model and leads to overfitting. Nevertheless, the work in [293] shows how one might use
time-varying item factors as well. It is an open question as to whether the use of temporal
parametrization of item biases will lead to overall improvement in accuracy over most data
sets.

9.3 Discrete Temporal Models

Discrete temporal models are relevant to the case where the underlying data is received
as discrete sequences. Such data can be encountered in a variety of application scenarios,
most of which are associated with implicit user feedback rather than explicit ratings. Some
examples of such application scenarios are as follows:

1. Web logs and clickstreams: The user accesses to Web logs can typically be represented
as sequential patterns. User patterns can often show predictable access patterns. For
example, users will frequently access particular sequences of Web pages. The frequent
sequence information can be used to make recommendations [182, 208, 440, 442, 443,
562].

2. Supermarket transactions: The customer buying behavior in supermarkets is a form
of sequential data. In fact, the problem of sequential pattern-mining was defined [37]
to handle this scenario. In fact, because the activity time-stamps are usually available
in supermarket data sets, they can be converted into user-specific sequential patterns
of buying activity. The temporal order is often quite important. For example, it makes
sense to recommend a printer cartridge after a user has bought a printer, but not
vice versa.

3. Query recommendations: Many Web sites record the user queries at their site. The
sequence of queries can be used to make recommendations of other more useful queries.

In this section, two types of models will be discussed. The first of these methods is based
on Markovian models, whereas the second is based on sequential pattern-mining.

9.3.1 Markovian Models

An interesting Markovian model to predict Web page accesses was proposed in [182].
Although the approach is discussed in the context of Web page accesses, it can be gen-
eralized to recommending any type of action, as long as the temporal ordering of the user
actions is available. The discussion in this section is based on this work [182].

In Markovian models, the sequential information is encoded in the form of states, which
are used for predictive purposes. A kth order Markov model defines a state based on the

296 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

last k actions performed by the user. An action is defined in an application-specific way.
It might correspond to the user visiting a particular Web page, or it might correspond to
the user buying a specific item. The actions are represented by a set of symbols Σ. As
the actions are application-specific, the symbol set Σ is application-specific as well. For
example, the symbol set Σ could correspond to the indices of the universe of items in an
e-commerce application, or it could correspond to the URLs of Web pages in a Web log
mining application. We assume that the symbol set Σ contains the symbols Σ = {σ1 . . . σ|Σ|}.
Therefore, a state Q = a1 . . . ak is defined by sequence of k actions, such that each ai is
drawn from Σ. A state with k actions is drawn from an order-k Markovian model. For
example, consider the case in which the symbols in Σ correspond to the act of watching
various movies. Furthermore, consider the following state Q:

Q = Julius Caesar, Nero, Gladiator

This state has three different actions corresponding to the user watching these movies
in a particular sequence. Therefore, this state is drawn from an order-3 Markov model.
Furthermore, the default assumption in such Markov models is that the movies have been
watched consecutively. There are a total of |Σ|k possible states in an order-k Markovian
model, although many of these states might not occur frequently in a particular data set.

In general, a sequence defines the transitions4 in a Markov chain. In an order-k model,
the current state is defined by the last k actions in the Markov chain. Consider a sequence
of actions (e.g., Web page accesses), in which t actions a1a2 . . . at have occurred so far in
sequence, where ai ∈ Σ. Then, the current state of the order-k Markov model at time t
is at−k+1at−k+2 . . . at. The last action in this sequence is at, which resulted in a transition
from the state at−kat−k+1 . . . at−1 to the state at−k+1at−k+2 . . . at. Therefore, the states in a
Markov chain are connected by edges, corresponding to transitions. Each edge is annotated
with an action drawn from Σ, and a probability of transition. In this particular example, the
transition from the state at−kat−k+1 . . . at−1 to the state at−k+1at−k+2 . . . at is associated
with the action at. As there are |Σ| possible transitions out of each of the |Σ|k states,
the total number of edges in a complete Markov model of order k is equal to |Σ|k+1.
Any incoming edge of a state at−k+1at−k+2 . . . at in an order-k Markov chain is always
annotated with the last action at. The sum of the probabilities of the transitions out of a
state is always 1. The probabilities of transitions are learned from the training data (e.g., a
sequence of previous Web page accesses). We have shown an order-1 Markov chain drawn
on the alphabet {A,B,C,D} in Figure 9.1. Note that this Markov chain has 4 states and
4 × 4 = 16 edges. The sequence of actions AABCBCA corresponds to the following path
of states in the Markov chain:

A ⇒ A ⇒ B ⇒ C ⇒ B ⇒ C ⇒ A

Note that a Markov model of order-2 would contain 42 = 16 states and 43 = 64 edges. This
is already too large to neatly show in a diagram like Figure 9.1. The corresponding sequence
of transitions for the action sequence AABCBCA is given by the following:

AA ⇒ AB ⇒ BC ⇒ CB ⇒ BC ⇒ CA

Consider a situation, where we have trained a Markov model of order k, and we need to make
a prediction for the next action after the sequence a1 . . . at. Then, for each action σi ∈ Σ, we
need to estimate the value of the action σi, given the current state of the last k actions. In

4Refer to the bibliographic notes for background on Markov chains.

9.3. DISCRETE TEMPORAL MODELS 297

BA

B

A B
B

A

C

B

D

A

C
BCA D

DC

CD D CD

CD

C

CD

Figure 9.1: An order-1 Markovian model

other words, we need to estimate the probability P (at+1 = σi|at−k+1at−k+2 . . . at) for each
σi ∈ Σ. The top-r actions with the largest probabilities can be returned as the predictions.
Note that the probabilities P (at+1 = σi|at−k+1at−k+2 . . . at) need to be estimated from the
training data. This suggests the following simple approach for training and prediction on a
Markov model of order k.

1. (Training phase) Let S be the set of |Σ|k possible sequences of length k. For each
possible sequence (state) S ∈ S, use the training data to learn the |Σ| probabilities
P (σi|S) corresponding to each candidate action σi ∈ Σ. Note that a total of |Σ|k+1

probabilities need to be learned, which is also equal to the number of edges in an
order-k Markov model. Each of the learned probabilities corresponds to the transition
probability of an edge in the Markov model.

2. (Prediction phase) For a current sequence of user actions, determine the relevant
state St in the Markov chain using the last k actions of the user. Report the top-r
actions in Σ with the largest values of P (σi|St) as the recommendations.

The Markovian approach relies on the short memory assumption of typical user action
sequences. The idea is that the user actions depend only on the set of k immediately
preceding actions. While this assumption may not be completely true in practice, it often
approximates many real-world scenarios.

It remains to be explained how the probabilities are estimated from a given training data
set. This can be achieved by extracting all of the k-sequences from the training database
and determining the fraction of times that each action in σi occurs after this sequence. This
estimate is determined as the relevant probability. Consider a sequence S, which is one of
the |Σ|k possible sequences. If this sequence occurs F (S) times in the training data, and

298 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

the sequence S is followed by the action σi for a total of f(S, σi) ≤ F (S) times in the data,
then the probability P (σi|S) is estimated as follows:

P (σi|S) =
f(S, σi)

F (S)
(9.12)

Note that the training data may contain either one long sequence or multiple sequences.
In either case, the frequencies f(S, σi) and F (S) count the repeated occurrences within a
single sequence as multiple occurrences.

This estimation may sometimes be difficult when the value of F (S) is small. In fact,
when the value of F (S) is 0, the estimated probability becomes indeterminate. In order to
address this problem, we use Laplacian smoothing. A Laplacian smoothing parameter α is
used to modify the aforementioned estimation as follows:

P (σi|S) =
f(S, σi) + α

F (S) + |Σ| · α (9.13)

Typically, the value of α is set to a small quantity. Note that when the value of F (S)
is 0, each action is estimated to the probability value of 1/|Σ|. This is quite reasonable
when we do not have sufficient data about the specific action after a particular sequence.
The notion of Laplacian smoothing serves a similar function to that of regularization by
avoiding overfitting from limited training data. In practice, states with zero frequency are
not represented at all in the Markov model. This means that some of the states are missing,
and it may not be possible to find a matching state for a particular test sequence. Such test
instances are said to be uncovered by the Markov model. How are such states handled?

The work in [182] builds all Markov models up to maximum order l, and then uses the
highest-order model that covers the test instance. In other words, if all models up to order
3 are constructed, the approach first tries to find a matching state in the order-3 Markov
model. If such a state is found, then it is used for prediction. Otherwise, the Markov model
of order 2 is tested, and then the model of order 1 is tested. For most training data sets
of reasonable sizes, all possible |Σ| states are present in the Markov model of order 1, and
therefore it serves as a default model for difficult cases in which matching models of higher
order are not found. If needed, a default catch-all prediction corresponding to the most
frequent action can be returned if no matching state is found.

9.3.1.1 Selective Markov Models

One of the problems with the approach outlined in the previous section is that the num-
ber of possible states may be too large, and most of them may not even be present in a
particular training data set. The large number of states also makes it expensive to train
the model, necessitating the estimation of as many as |Σ|k+1 possible probabilities for an
order-k Markov model. For larger values of k, it may be impractical to train such a model.
Furthermore, many of the states with little presence in the training data may be unreliable
for training purposes.

The main idea in [182] is to propose the notion of selective Markov models, in which
many of the irrelevant states are pruned up front during model construction. This pruning
may be accomplished in several ways:

1. Support-pruned Markov model: The support of a state (or k-sequence) is the fre-
quency of its presence in the training data. The basic assumption is that states with
low support are unreliable in terms of their predictive power on unseen test data.

9.3. DISCRETE TEMPORAL MODELS 299

In particular, the estimated probabilities of states with low support might be unre-
liable because of overfitting. Support pruning can drastically reduce the number of
states in the models of higher orders. The support threshold is defined as an absolute
frequency (rather than as a fraction), and is defined as the same value across models
of all orders. Higher-order models have lower support values, and are therefore more
likely to have their states pruned. This approach greatly reduces the state-space com-
plexity of the model because the number of possible states increases exponentially
with the order of the model.

2. Confidence-pruned Markov model: The confidence-pruned Markov model tends to fa-
vor states in which the highest probability of an outgoing edge from a state is as large
as possible. Note that if all the transition probabilities on the edges exiting a state are
similar, one cannot confidently claim that any of the actions in Σ is significantly more
likely than the others. In the other extreme case, if one of the edges exiting a state has
a probability of almost 1 and the others are almost 0, then one can confidently predict
the next action at this state. Such states are more useful. How can one determine the
appropriate confidence thresholds for pruning?

This approach computes the 100 ·(1−α) confidence interval around the most probable
action, and then determines if the second-highest probability lies in this interval.
Consider a candidate state for pruning, which has raw frequency n in the training
data. Let p1 and p2 be the transition probabilities of the first- and second-highest
probable edges exiting that state. We are already assured that p2 ≤ p1 because p1 is
probability of the most probable edge. Let zα/2 be the absolute value of the Z-number
matching the upper (α/2)-percentage point of the standard normal distribution. Then,
in order for the state to be pruned, the following condition must hold:

p2 ≥ p1 − zα/2

√
p1(1 − p1)

n
(9.14)

Note that
√

p1(1−p1)
n represents the standard deviation of the average of n i.i.d.

Bernoulli variables, each of which have probability p1 of success. The level of pruning
is controlled by the confidence threshold α.

3. Error-pruned Markov model: In the error-pruned Markov model, a validation set is
held out from the training data and is not used for building the Markov model.
This validation set is used to test the accuracy of the model. The accuracy specific
to each state is computed with the validation set. For each higher-order state, its
immediate lower-order prediction alternatives are determined. For example, for an
order-4 state a1a2a3a4, the same action sequence can be predicted with the lower-
order states a2a3a4, a3a4, and a4. If the error rate of a higher-order state is greater
than that of any of its lower-order alternatives, then it is pruned. This process is
recursively applied to states of all orders, starting from the higher to the lower, until
no more states can be pruned. States of order 1 are always retained in order to
maximize coverage.

Although the aforementioned approach compares the errors of higher- and lower-order
states, it does not use the same validation examples to compare the accuracy of a pair
of states. A second approach for error pruning that uses the same set of validation
examples for comparing the error of two states is as follows. First, all the validation
examples that can be predicted with a higher-order state are determined. Then the

300 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

same validation examples are tested with respect to the lower-order states. If the error
with the use of the higher-order state is greater than that of any of the lower-order
states on the same validation examples, then the higher-order state is pruned. This
approach is applied recursively to all states of lower order, except for states of order 1.

These alternatives were experimentally tested in [182]. It was shown that all forms of pruning
provided some advantage, although the greatest advantage was obtained with the use of
error-pruned models. There was little statistical difference between the support-pruned and
confidence-pruned Markov models.

9.3.1.2 Other Markovian Alternatives

In the Markovian models of this section, a contiguous sequence of actions is used to predict
the next action. Furthermore, the states are fully visible and can be directly explained in
terms of the last k user actions. A more sophisticated alternative is the use of HiddenMarkov
Models (HMMs) in which the states are hidden. In such cases, non-contiguous subsequences
can be used to make predictions. The HMM approach is beyond the scope of this book;
refer to the bibliographic notes.

9.3.2 Sequential Pattern Mining

Sequential pattern-mining was originally proposed as a method for mining patterns from
sequences of supermarket data. Sequential patterns can be used to create rule-based predic-
tive models for temporal sequences. Such methods can be considered the temporal analog
of rule-based methods discussed in section 3.3 of Chapter 3. First, we define the notions of
subsequences and frequent subsequences.

Definition 9.3.1 (Subsequence) A sequence of symbols a1a2 . . . ak is said to be a subse-
quence of the sequence b1b2 . . . bn, if we can find k elements bi1 . . . bik , such that i1 < i2 <
. . . < ik, and ar = bir .

In the original definition of sequential pattern mining [37], the elements are themselves
allowed to be sets, and the condition ar = bir is replaced with the condition ar ⊆ bir .
However, in most recommender applications, this complex definition is not necessary, and
we can work with sequences of individual symbols. Therefore, we will use this simplified
definition in this chapter. It is noteworthy that the definition of a subsequence allows gaps in
the matching. The allowance of such gaps is useful in accounting for the noise in sequences.

In sequential pattern-mining methods, the goal is to determine the frequently occurring
subsequences in the data at a support level s. The frequency is defined with respect to a
database D of multiple sequences.

Definition 9.3.2 (Frequent Subsequences) A subsequence a1 . . . ak is said to be a fre-
quent subsequence with respect to a database D of sequences at minimum support s, if it is
a subsequence of at least a fraction s of the sequences in the data.

Note that the support s is always a fraction by definition. One can also define the confidence
of a rule in sequential pattern mining. Traditionally, the notion of confidence is defined only
for non-temporal association rules, but one can also extend the definition to sequential
pattern mining in various ways.

9.3. DISCRETE TEMPORAL MODELS 301

Definition 9.3.3 (Confidence) The confidence of a rule a1 . . . ak ⇒ ak+1 is equal to the
conditional probability that a1 . . . ak+1 is a sequence in the database, given that a1 . . . ak is
a sequence. In other words, if f(S) denotes the support of sequence S, then the confidence
of the rule a1 . . . ak ⇒ ak+1 is defined as follows:

Confidence(a1 . . . ak ⇒ ak+1) =
f(a1 . . . ak+1)

f(a1 . . . ak)

Note that the definition of confidence in sequential rule mining is adapted from association
rule mining. The notion of confidence can be defined in other ways depending on the appli-
cation at hand. For example, one can impose the constraint that ak+1 immediately follows
ak without a gap in some applications.

The definitions of support and confidence can be used to define sequential pattern-based
rules.

Definition 9.3.4 (Sequential Pattern-Based Rule) A rule a1 . . . ak ⇒ ak+1 is said to
be valid at minimum support s and minimum confidence c, if both the following conditions
are satisfied:

1. The support of a1 . . . ak+1 is at least s.

2. The confidence of a1 . . . ak ⇒ ak+1 is at least c.

Algorithms for determining frequent sequential patterns are discussed in [23]. After the
sequential patterns have been determined, one can also determine the rules at the desired
level of minimum support and confidence. The training phase in sequential pattern-mining
methods finds all the rules at the specified level of minimum support and confidence. After
the rules have been determined, the following approach is used for the prediction of the
relevant ranked list of items (e.g., clicks in a Web clickstream) for a current test sequence T :

1. Identify all the matching rules for the test sequence T .

2. Rank the items in the consequents of the matching rules in decreasing order of con-
fidence. Heuristic methods can be used to aggregate the predictions when multiple
rules contain the same item in the consequent.

In some cases, it may be desirable to restrict the gaps between successive elements. For
example, when the sequences are very long, it generally becomes more desirable to impose
gap constraints on the sequences during the training and prediction process. Depending on
the specific application at hand, many variations of this basic approach may be used. These
variations are as follows:

1. Maximum gap constraints may be imposed during the process of finding the frequent
sequences. In other words, the matching process may allow the maximum gap between
a pair of adjacent sequences to be at most δ. Alternatively, one can impose a maximum
constraint on the time difference between the first and last elements of the sequence.
Such constraints can be handled by constrained sequential pattern-mining methods,
and they are particularly important when the individual sequences in the database
are very long. A discussion of constrained sequential pattern-mining methods may be
found in [22].

302 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

2. The entire test sequence T may not be necessary for prediction. Rather, only the most
recent window from the test sequence of a pre-defined size may be used. The windowing
approach is necessary when the lengths of the individual sequences are long.

The most appropriate variation of this methodology depends on the specific application at
hand. The bibliographic notes contain pointers to various recommender systems that use
sequential pattern mining. Many of these systems have been developed in the context of
Web clickstreams. Sequential-pattern-mining methods have the advantage that one can use
numerous off-the-shelf tools for efficiently finding the patterns in large databases.

9.4 Location-Aware Recommender Systems

Location-aware recommender systems can be viewed as special cases of context-aware rec-
ommender systems, in which the context is defined by location. Location can influence the
recommendation process in a wide variety of ways, of which the following two ways are
particularly common:

1. The global geographical location of a user can have a significant influence on her pref-
erences in terms of taste, culture, clothing, eating habits, and so on. For example, an
analysis [343] of the MovieLens data set shows that the top genre preference of users
from Wisconsin is War, whereas the top genre preference of users from Florida is Fan-
tasy. Similar results are also shown on the Foursquare data set. This property is referred
to as preference locality. In this case, the locality is inherently associated with the user,
but not with the item. Therefore, in this case, the users are spatial, whereas the items
are not.

2. Mobile users often want to discover restaurants or leisure places in the vicinity of their
current location. In this case, the recommended items are inherently spatial. This prop-
erty is referred to as travel locality. For example, an analysis [343] of the Foursquare data
set shows that 45% of the users travel 10 miles or less, and 75% of the users travel 50
miles or less to visit a restaurant in their locality. In these applications, the location is
inherently associated with the item (e.g., restaurant). Although users might specify their
current location, this transient property is specified only during querying, and it is not
inherently associated with the ratings specified by the user. Therefore, in this case, items
are spatial, whereas users are not.

3. It is possible to imagine scenarios in which both users and items are spatial. For example,
a traveling user might set up a profile, which indicates their permanent address. At the
same time, they may record their ratings for spatial items such as restaurants. For exam-
ple, consider two users from New Orleans and Boston, respectively, who are spending a
vacation in Hawaii. These tourists might specify their ratings for restaurants in Hawaii.
In this case, both users and items are spatial because their choices of their restaurants
will be affected by their place of origin. At the same time, travel locality preferences will
also play a role in their choice of restaurant, when the users query from specific locations
in Hawaii during their vacation.

Location-aware recommender systems can be treated as special cases of context-sensitive
methods. One can use the multidimensional techniques discussed in the previous sections
in order to handle context within the recommender systems. This is especially true for
the notion of preference locality, in which the multidimensional model of [6] may be used

9.4. LOCATION-AWARE RECOMMENDER SYSTEMS 303

by treating location as a context, associating a hierarchical taxonomy of grid regions with
the spatial location, and then reducing the problem to a traditional collaborative filtering
application within one of the hierarchical regions of the grid. In fact, the Location Aware
Recommender System (LARS) [343] does use a similar reduction-based approach for han-
dling preference locality. However, the approach in [343] is much more sophisticated than
a straightforward application of the multidimensional methodology of [6]. To represent the
hierarchical taxonomy of grid regions, it uses a multidimensional indexing structure. This
indexing structure can support incremental addition of ratings, and can therefore work well
in settings that require scalability. Furthermore, the same work also proposes methods for
handling travel locality and for combining travel and preference locality.

9.4.1 Preference Locality

As discussed earlier, the notion of preference locality shares a number of characteristics
of the reduction-based multidimensional model of recommender systems [6]. For example,
consider the example of the MovieLens data set, where the user locations are available in
addition to ratings information. For a user in California, we might use only the ratings
entered by other users of California in order to provide the recommendations for that user.
This approach is equivalent to extracting a slice of the User× Item × Location data cube,
by fixing the location to California. Then a 2-dimensional recommender system can be used
on this slice. This is a direct application of a reduction-based system [6].

Of course, such an approach is rather crude because the locality information may be
available to a greater degree of granularity. For example, one might have the address of
each user at hand. Users in southern California might show different preferences from those
in northern California. On the other hand, for a small state or locality, enough rating data
might not be available to make a robust recommendation. Therefore, one might need to
combine the data from multiple adjacent regions. How can one meaningfully address such
trade-offs?

The LARS approach [343] divides the entire spatial region in hierarchical fashion using
a pyramid-tree or quad-tree [53, 202]. Note that this approach partitions the data space,
rather than the data points, in order to ensure that every point in the space is included in
one of the partitions. This ensures that new test locations can be effectively handled in the
querying process, even if they are not represented in the data. The pyramid-tree decomposes
the space into H levels. For any level h ∈ {0 . . .H − 1}, the space is partitioned into 4h

grid cells. The top-level at h = 0 contains only one cell, and it contains the entire data
space. For example, consider the case where the top level of the model contains the region
corresponding to the entire United States. Then, the next level divides the United States
into four regions, with a separate model for each. The next level divides each of these regions
into four more regions, and so on. Each grid cell contains a collaborative filtering model
only for the region of the data space bounded by the corresponding rectangle. Therefore,
the top-level grid cell contains a traditional (non-localized) collaborative filtering model
containing all of the ratings. An example of the hierarchical partitioning of the pyramid-
tree is illustrated in Figure 9.2. In the figure, the cell-identifier is denoted by CID, and
the table entry to the left of it contains the pointer to the relevant collaborative filtering
model for that cell. This data structure is maintained dynamically, so that ratings can be
inserted or deleted from the system. One challenge in the dynamic update process is that
it is sometimes not possible to maintain the models for a subset of the cells because of
dynamic merges or splits of the cells during the updates. Note that the models for these
new cells need to be recreated from scratch if cells merge or split during updates. This can

304 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

sometimes be computationally expensive. However, if the tree is built up front without
dynamic updates, then it is possible to maintain the models for all the entries. Therefore,
the approach is straightforward when only static data is considered. The approach can also
be extended to dynamic updates with some modifications. Readers are referred to [343] for
details of the dynamic update process.

MODEL CID

…

…
…

…
…

…
…

ENTIRE SYSTEM AREA
(LEVEL 0)

2 x 2 GRID (LEVEL 1)

4 x 4 GRID (LEVEL 2)

8 x 8 GRID (LEVEL 3)

…
…

Figure 9.2: The pyramid-tree for location-aware query processing [343]

The query processing approach uses this pyramid data structure. In order to recommend
items for a given user, the LARS approach determines the lowest level cell, which is main-
tained in the pyramid structure. The localized collaborative filtering model at this level is
used to predict the rating. An item-based (neighborhood) collaborative filtering technique
is used to perform the recommendations. Note that any conventional collaborative filtering
model can be used in principle. The model does need to be incrementally updated as new
ratings come in. Therefore, it is important to choose a base model that is amenable to
incremental updates.

The approach is also able to support continuous queries where the location of a user
changes with time. Note that the rate of change of the location of the user is highly
application-specific. For cases in which the user-location corresponds to their address, the
rate of change is very slow. However, it is possible to envision other definitions of location
in which the change occurs faster over time. However, preference locality usually does not
change very rapidly as a rule. In continuous queries, an initial recommendation is made as
discussed above. Then, the system waits for the user location to change sufficiently, so that
it crosses a cell boundary. When a cell-boundary is crossed, the lowest level cell is again used
to updated the recommendation. Therefore, the last reported answer can be incrementally
updated over time.

Finally, it is also possible for the users to optionally specify the geographic level of
granularity at which their recommendation process should be executed. Instead of using
the lowest maintained grid-cell, one might work with a user-specified level in the pyramid

9.5. SUMMARY 305

tree. For example, by specifying a level of 0, only the root node can be used. This results in
a traditional collaborative filtering model, which does not use locality at all. This approach
allows the user to specifying varying levels of geographic resolution in her queries.

9.4.2 Travel Locality

In this case, the locations are associated with items and not the users. For example, in a
restaurant recommender system, the locations are associated with the restaurants. However,
the users might specify their current location in a particular query. Clearly, it is desirable
to provide responses that are close to the specified location in the query. This is achieved
in LARS with the notion of travel penalty. The distance Δ(i, j) between the query location
of user i and the location of item j is computed. The rating r̂ij of user i for item j is
first predicted with a traditional collaborative filtering model on the entire data. Then,
the predicted rating is penalized with a function F (·) of Δ(i, j). The adjusted rating r̂Δij is
computed as follows:

r̂Δij = r̂ij − F (Δ(i, j)) (9.15)

Here, F (·) is a non-decreasing function of the distance Δ(i, j), so that the penalty is nor-
malized to the rating scale. The exact nature of the penalty function F (·) is heuristic in
nature. The approach in [343] uses straightforward normalization of the travel distance to
the rating scale in order to define the function. If desired, it can even be assumed to be a
specific function (e.g., linear function) of the distance, and the coefficients of this function
can be optimally chosen with cross-validation. The choice of optimal function is an inter-
esting research problem that can be explored in future work, because it directly affects the
accuracy of the system. It is likely that the optimal choice of function is specific to the data
set at hand.

9.4.3 Combined Preference and Travel Locality

It is possible to have situations in which the locations are associated with both users and
items. For example, a tourist with a primary address in New Orleans might have a different
restaurant preference as compared to one with a primary address in Boston, when the two
of them visit Hawaii for a vacation. At the same time, the recommender system should also
take into account their transient query location within Hawaii during the recommendation
process. In this case, the methods associated with preference locality and travel locality can
be combined. First, the pyramid-tree structure is used, based on the primary user location,
in order to predict the ratings. Then, the transient query location is used in conjunction
with the aforementioned travel penalty. The top-ranked items are then returned to the user.

9.5 Summary

Many types of time- and location-aware systems fall under the category of context-aware
recommender systems. The notion of time can greatly enhance the effectiveness of recom-
mender systems. Temporally sensitive recommender systems can use recency-based meth-
ods, context-based methods, or they may use time as a modeling variable. One of the most
well-known methods of the last type is the time-SVD++ model, which proposes a latent
factor model for recommendations. Recommendation methods have also been proposed for
data that are expressed as discrete sequences. For example, Web clickstreams or supermar-
ket data contain discrete sequences of activity. These scenarios often arise in the context of

306 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

implicit feedback data sets. A variety of discrete sequential methods are used to perform
recommendations in such cases. Discrete Markovian models and sequential pattern-mining
methods are used to perform recommendations in such cases.

Location-aware recommender systems are special cases of context-aware systems, in
which the spatial location provides the context in which the recommendations are made. In
location-based systems, the location could be associated with the user, the item, or both.
These different forms of context lead to distinctly different methods for performing the
recommendations.

9.6 Bibliographic Notes

Temporal recommendations belong to the class of context-aware recommendations, which
are discussed in a generic sense in Chapter 8. A recent survey on time-aware recommender
systems may be found in [130]. Some of the earliest time-weighted and decay-based collab-
orative filtering models are discussed in [185, 186]. A variety of decay functions are tested
in [635]. The work in [249] also incorporates the time-similarity between ratings into the
computation. Methods based on time-windows are proposed in [230] in which ratings from
inactive intervals are essentially pruned. The work in [595] performs movie recommendations
by pruning according to the year of production. Such an approach reduces the dimensional-
ity of the data set because it drops a subset of the items as opposed to a method that only
prunes older ratings.

Methods for extending neighborhood models with evolutionary models are discussed
in [366]. Another technique that uses adaptive neighborhoods for temporal collaborative
filtering is discussed in [333]. This work also showed that many of the existing recommen-
dation algorithms did not seem to work very well on the Netflix Prize data set when using
past ratings in order to predict future ratings. Time-sensitive methods for location-based
recommendation are discussed in [655]. Methods for performing temporal recommenda-
tions with the use of random walk methods are discussed in [639]. An interesting class
of algorithms, related to temporal collaborative filtering, is the multi-arm bandit class of
algorithms in which the recommender trades off exploration vs exploitation in the recom-
mendation space [92, 348]. This methodology is also closely related to active learning, which
is discussed in Chapter 13.

A generic method for performing time-aware recommendation is to treat the time in-
formation as a discrete contextual value to create a multidimensional representation [6, 7].
Subsequent work [626] specifically addressed the temporal context within this framework.
Various forms of context were tested in [61] for performing music recommendations. Al-
though some forms of context, such as “morning” and “evening,” were shown to improve
the recommendation, the greatest improvement was shown using a meaningless split such
as “odd hours” and “even hours.” This might be the result of data-specific characteristics,
and therefore further research is needed to understand these effects.

Realistic methods for evaluating temporal recommender systems are discussed in [335].
A recent survey [130] points to the significant importance of evaluation methods in disam-
biguating the contradictory findings of the recent results and also proposes a number of
evaluation metrics for temporal recommender systems. The combination of multiple vari-
ables such as season, timeOfDay, and dayOfWeek was discussed in [337]. Other ways of
combining temporal dimensions in a more complex way are discussed in [231, 471]. The
work in [100] studies the use of periodic context in movie recommendations. For example,
the movie recommendations during Christmas week are very different from those in the

9.6. BIBLIOGRAPHIC NOTES 307

week leading to the Oscars. The use of contextual methods for improved recommendation
of seasonal products is discussed in [567]. A temporal regression approach was used in this
work. The Context-Aware Movie Recommendation Challenge (CAMRA) [515] was the plat-
form on which the work in [100] was tested. This challenge studied contexts of various types
and not just the temporal context. A contextual method [131] evaluates the effect of various
time dimensions, including the hour of the day, day of the week, and the date of the rating.
The work in [458] used support vector machines to model various types of context, such as
time, weather, and company.

The use of time-series models been used in the context of ratings has been investigated
in multiple studies [136, 435]. In these methods, a time series of user ratings is used to pre-
dict the current user interests. Time-series methods have also been used in cases of implicit
feedback, where explicit ratings are not available. For example, the work in [684] encodes the
Web logs as time series, and time-series techniques are used for the purpose of forecasting.
The work in [266] builds several time-unaware models for different time buckets and then
uses a blending approach to combine the predictions of these models. The use of factoriza-
tion models in temporal recommendations was first proposed in [310]. Similar models have
also been applied to the music recommendation scenario [304]. The work in [310] does not
differentiate the item factors based on time. A more refined model is proposed in [293] in
which differentiated item factors are learned based on the rating time-stamps. Subsequently,
many matrix and tensor factorization methods were also proposed for contextual recom-
mendation in which time is treated as a discrete contextual value [212, 294, 332, 495, 496].
These methods can be viewed as a generic implementation of the multidimensional contex-
tual model of [7].

Discrete methods are common in the context of the Web domain, where the personaliza-
tion needs to be performed with Web clickstreams [109]. A primer on finite Markov chains
is provided in [296]. The sequential pattern-mining problem was defined in the context of
supermarket data [37]. An overview of common algorithms for sequential pattern mining
can be found in [22, 23]. In order to use these methods on Web logs, a significant amount
of data preparation is required [169]. Discrete Markovian methods for predicting Web page
accesses are discussed in [182]. The required background in Markov chains may be found
in [265]. Sequential pattern-mining methods for predicting accesses in Web logs are dis-
cussed in [208, 440, 442, 443, 562]. The use of long repeating subsequences to predict Web
page accesses is discussed in [479]. The use of path profiles for predicting Web page requests
is discussed in [532]. An evaluation of various pattern-mining approaches for next-request
prediction is found in [218]. A detailed discussion on Hidden Markov Models may be found
in [319], and a simplified discussion on applications to data mining may be found in [22].

A significant amount of recent work has focussed on location-aware recommender sys-
tems [64, 108, 343, 447, 464, 645, 649]. Much of this work has been motivated by hardware
enhancements in mobile phone technology and GPS-enabled phones. As a result, the field
of mobile recommender systems [504] has gained increasing prominence. One of the ear-
liest works [54] proposes methods to use the data from GPS-enabled mobile phones to
predict user movement across various locations. Context-aware media recommendations for
smart phones are discussed in [654]. A mobile advertisement recommender system with
the use of collaborative filtering is proposed in [40]. Numerous tourist guide applications,
such as INTRIGUE [52], GUIDE [156], MyMap [177], SPETA [213], MobiDENK [318],
COMPASS [611], Archeoguide [618], and LISTEN [685], have been proposed in the liter-
ature. Some of the location-based recommender systems [633, 649] use hybrid systems in
order to perform context-aware recommendations. The work by Bohnert et al. [89] uses
the sequence of patterns in user visits to various locations to predict the next location.

308 CHAPTER 9. TIME- AND LOCATION-SENSITIVE RECOMMENDER SYSTEMS

It was also explored how a hybrid content-based model that captured user interests could
impact the overall effectiveness of the recommender system. The addition of content pro-
vided only limited improvements. The work in [649] discussed how to handle cold-start in
location-aware recommender systems by combining content and collaborative systems, and
also incorporating community endorsement.

9.7 Exercises

1. Design a method for performing collaborative filtering with the Bayes model, while
incorporating time decay. Refer to Chapter 3 for collaborative filtering with the Bayes
algorithm.

2. Design a latent factor model that incorporates time-decay in the factorization process.

3. Implement the time-SVD++ algorithm.

4. Suppose that you want to design an order-k Markov model on a set of actions Σ,
so that |Σ| = n. Furthermore, we are assured that there is never any repetition of
an action in a window of size (k + 1). What is the maximum number of states and
transition edges in such a model, assuming that we do not keep any states or edges
with probability 0?

5. Implement a sequential pattern mining algorithm for making temporal recommenda-
tions. You have wide leeway in making appropriate design choices for your algorithm.

6. Suppose you have a large log containing sequences of actions from various users. The
discussion in the chapter shows how one might perform recommendations with item-
based rules. Show how to design an analogous approach with user-based rules. How
well do you think such an approach will work in practice?

7. Discuss why an R-Tree might not be as suitable as the pyramid tree for the preference-
locality technique of collaborative filtering.

Chapter 10

Structural Recommendations
in Networks

“In nature, we never see anything isolated, but everything in
connection with something else which is before it, beside it,
under it and over it.”– Johann Wolfgang von Goethe

10.1 Introduction

The growth of various Web-enabled networks has enabled numerous models of recommen-
dation. For example, the Web itself is a large and distributed repository of data, and a
search engine such as Google can be considered a keyword-centric variation of the notion of
recommendation. In fact, a major discourse in the recommendation literature is to distin-
guish between the notions of search and recommendations. While search technologies also
recommend content to users, the results are often not personalized to the user at hand. This
lack of personalization has traditionally been the case because of the historical difficulty in
tracking large numbers of Web users. However, in recent years, many personalized notions
of search have arisen, where the Web pages recommended to users are based on personal
interests. Many search engine providers, such as Google, now provide the ability to deter-
mine personalized results. This problem is exactly equivalent to that of ranking nodes in
networks with the use of personalized preferences.

Networks have become ubiquitous as a modeling tool in many applications, such as
social and information networks. Therefore, it is particularly useful to discuss the various
structural elements of a network that can be recommended in different scenarios. Each of
these different types of structural recommendation may have a different set of applications
in different scenarios. Some key examples of these different variations are as follows:

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 10

309

310 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

1. Recommending nodes by authority and context: In this case, the quality of nodes is
judged by their incoming links, and the personalized relevance of nodes is judged by
their context. Nodes of high quality have many incoming links. This problem is very
closely related to that of search engines. A major observation is that the traditional
notion of search in such engines does not distinguish between various users, and is
therefore not personalized to a specific user. In search engines, Web pages (or nodes
in the Web graph) are ranked on the basis of their authority and their content. Little
emphasis is placed on the identity of the user performing the search. However, notions
such as personalized PageRank were eventually developed that can tailor the results to
various interests. These forms of personalization incorporate context into the ranking
by modifying the traditional notion of PageRank with context-specific personalization.
As will be examined in the next chapter, notions such as FolkRank, which are closely
related to PageRank, are used in social tagging settings.

2. Recommending nodes by example: In many recommendation applications, one may
want to recommend nodes that are similar to other example nodes. This problem is
that of collective classification of nodes. Interestingly, personalized PageRank methods
are often used in the problem of collective classification. Therefore, these two types
of recommendation are closely related. Such applications may also be useful in an
information network of users and other types of nodes in which some of the nodes
may be tagged with specific properties.

3. Recommending nodes by influence and content: In many Web-centric applications,
users may propagate knowledge about products of various types. This problem is
referred to as viral marketing. In these cases, a merchant is looking for users who
are most likely to propagate views about their specific product. In topic-sensitive
influence analysis, users who are most likely to propagate specific topics are sought
out. The problem of influence analysis can be viewed as that of recommending users
to merchants on the basis of their viral potential in influencing others, as well as their
topical specificity.

4. Recommending links: In many social networks, such as Facebook, it is in the interest
of the social network to increase the connectivity of the network. Therefore, users are
often recommended potential friends. This problem is equivalent to that of recom-
mending potential links in a network. Interestingly, many ranking methods are used
for link prediction. Many matrix factorization methods can also be adapted to link
prediction. Furthermore, some of the link prediction methods are used for collective
classification. Some of these interrelationships will be noted in this chapter where
applicable.

The applications of these structural recommendation methods extend beyond the social
network domain. Such structural recommendation methods can be used to recommend
elements in any system, which can be modeled as a Web-centric network. Examples might
include news, blog posts, or other Web-enabled content.

Furthermore, even the traditional product recommendation problem can be addressed
with these methods. This is because any user-product recommendation problem can be
modeled as a user-item graph. In Chapters 2 and 3, we have provided specific examples
of how user-item graphs are used for such product recommendations. The next chapter
provides an even more detailed view of how various forms of content in social systems can
be used to enhance recommendations. While this chapter is closely related to the material

10.2. RANKING ALGORITHMS 311

in the following chapter, our study in this chapter is more deeply focused on the structural
aspects of networks without being explicitly focused on sociocentric aspects such as trust
or user tagging behavior. Furthermore, the methodologies discussed in this chapter can be
used in applications beyond social network analysis. The next chapter focuses on socially
sensitive methods of improving recommendations, whether they are network-centric or not.

This chapter is organized as follows. The next section studies the problem of node
ranking in networks and its use in personalized ranking applications. Section 10.3 reviews
the problem of collective classification and its use in various forms of recommendations.
Section 10.4 examines the problem of link prediction. The problem of influence analysis is
studied in section 10.5. The problem of topic-sensitive influence analysis is also studied in
the same chapter. A summary is given in section 10.6.

10.2 Ranking Algorithms

The PageRank algorithm was first proposed in the context of Web search. The main motiva-
tion of the algorithm was to improve search quality. Since the Web allows open publishing,
a problem faced by the earliest search engines was that the use of purely content-centric
matching of Web pages with keywords for ranking provided results of poor quality. In par-
ticular, users can often publish spam, misleading information, or other incorrect content
on pages, and a purely content-centric matching is unable to distinguish between results
of varying quality. Therefore, a mechanism was needed to determine the reputation and
quality of Web pages. This is achieved using the citation structure of the Web. When a page
is of high quality, many other Web pages point to it. A citation can be logically viewed
as a vote for the Web page. While the number of in-linking pages can be used as a rough
indicator of the quality, it does not provide a complete view because it does not account for
the quality of the pages pointing to it. To provide a more holistic citation-based vote, an
algorithm referred to as PageRank is used. The PageRank algorithm generalizes the notion
of citation-based ranking in a recursive way.

While the PageRank algorithm is not directly a recommendation approach, it is, never-
theless, closely related to the topic of recommendation analysis. Many variations of PageR-
ank are used for personalized ranking mechanisms. This is because many settings for rec-
ommendations can be expressed as linked networks, including the traditional user-item rec-
ommendation scenario. This section will therefore explore the relationship between the two
closely related problems of search and recommendation and the application of the PageR-
ank algorithm in numerous recommendation scenarios. First, we will introduce the generic
PageRank algorithm in the context of traditional Web ranking.

10.2.1 PageRank

The PageRank algorithm models the importance of nodes with the use of the citation (or
linkage) structure in the Web graph. In the context of the Web graph, the nodes corre-
spond to Web pages and the edges correspond to hyper-links. The basic idea is that highly
reputable documents are more likely to be cited (or in-linked) by other reputable Web
pages. Similarly, in a social network such as Twitter, highly reputable users are likely to
be followed by other reputable users. For the purpose of the following discussion, we will
assume a directed graph (like the Web), although the notion can be easily extended to
undirected graphs by replacing each undirected edge with two directed edges. For many
recommendation applications, the undirected representation is usually sufficient.

312 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

A random surfer model on the Web graph is used to achieve the goal of ranking pages.
Consider a random surfer who visits random pages on the Web by selecting random links on
a page. The long-term relative frequency of visits to any particular page is clearly influenced
by the number of in-linking pages to it. Furthermore, the long-term frequency of visits to
any page will be higher if it is linked to by other frequently visited (or reputable) pages. In
other words, the PageRank algorithm models the reputation of a Web page in terms of its
long-term frequency of visits by a random surfer. This long-term frequency is also referred to
as the steady-state probability, and the model is also referred to as the random-walk model.

The basic random surfer model does not work well for all possible graph topologies.
A critical issue is that some Web pages may have no outgoing links, which may result in
the random surfer getting trapped at specific nodes. In fact, a probabilistic transition is
not even meaningfully defined at such a node. Such nodes are referred to as dead ends.
An example of a dead-end node is illustrated in Figure 10.1(a). Clearly, dead ends are
undesirable because the transition process for PageRank computation cannot be defined at
that node. To address this issue, two modifications are incorporated in the random surfer
model. The first modification is to add links from the dead-end node (Web page) to all nodes
(Web pages), including a self-loop to itself. Each such edge has a transition probability of
1/n. This does not fully solve the problem, because the dead ends can also be defined on
groups of nodes. In these cases, there are no outgoing links from a group of nodes to the
remaining nodes in the graph. This is referred to as a dead-end component, or absorbing
component. Figure 10.1(b) provides an illustration of a dead-end component.

Dead-end components are common in the Web graph (and other networks) because the
Web is not strongly connected. In such cases, the transitions at individual nodes can be
meaningfully defined, but the steady-state transitions will stay trapped in these dead-end
components. All the steady-state probabilities will be concentrated in dead-end components
because there can be no transition out of a dead-end component after a transition occurs
into it. Therefore, as long as even a minuscule probability of transition into a dead-end
component1 exists, all the steady-state probability becomes concentrated in such compo-
nents. This situation is not desirable from the perspective of PageRank computation in a
large Web graph, where dead-end components are not necessarily an indicator of popularity.
Furthermore, in such cases, the final probability distribution of nodes in various dead-end
components is not unique and it is dependent on the state at which the random walk
starts. This is easy to verify by observing that random walks starting in different dead-end
components will have their respective steady-state distributions concentrated within the
corresponding components.

While the addition of edges solves the problem for dead-end nodes, an additional step is
required to address the more complex issue of dead-end components. Therefore, aside from
the addition of these edges, a teleportation or restart step is used within the random surfer
model. This step is defined as follows. At each transition, the random surfer may either
jump to an arbitrary page with probability α, or follow one of the links on the page with
probability (1−α). A typical value of α used is 0.1. Because of the use of teleportation, the
steady state probability becomes unique and independent of the starting state. The value
of α may also be viewed as a smoothing or damping probability. Large values of α typically
result in the steady-state probability of different pages becoming more even. For example,
if the value of α is chosen to be 1, then all pages will have the same steady-state probability
of visits.

1A formal mathematical treatment characterizes this in terms of the ergodicity of the underlying Markov
chains. In ergodic Markov chains, a necessary requirement is that it is possible to reach any state from any
other state using a sequence of one or more transitions. This condition is referred to as strong connectivity.
An informal description is provided here to facilitate understanding.

10.2. RANKING ALGORITHMS 313

DEAD END

1 2

1/4

1

1/4

1

1/4 1/31/3
1/4

1/2

3 4
1/2

1/3

1/4

DASHED TRANSITIONS ADDED
TO REMOVE DEAD END

1/2

DEAD END COMPONENT

1 4

DEAD END COMPONENT

1/2

2 3 5 6

1 1
1/2

1/2

1/2
2 3 5 6

11

(a) Dead-end node (b) Dead-end component

Figure 10.1: Transition probabilities for PageRank computation with different types of dead
ends

How are the steady-state probabilities determined? Let G = (N,A) be the directed
network, in which nodes correspond to pages, and edges correspond to hyperlinks. The
total number of nodes is denoted by n. It is assumed that A also includes the added edges
from dead-end nodes to all other nodes. The set of nodes incident on i is denoted by In(i),
and the set of end points of the outgoing links of node i is denoted by Out(i). The steady-
state probability at a node i is denoted by π(i). In general, the transitions of a Web surfer
can be visualized as a Markov chain, in which an n×n transition matrix P is defined for a
Web graph with n nodes. The PageRank of a node i is equal to the steady-state probability
π(i) for node i in the Markov chain model. The probability2 pij of transitioning from node
i to node j, is defined as 1/|Out(i)|. Examples of transition probabilities are illustrated in
Figure 10.1. These transition probabilities do not, however, account for teleportation, which
will be addressed3 separately below.

Let us examine the transitions into a given node i. The steady-state probability π(i) of
node i is the sum of the probability of a teleportation into it and the probability that one
of the in-linking nodes directly transitions into it. The probability of a teleportation into
the node is exactly α/n because a teleportation occurs in a step with probability α, and
all nodes are equally likely to be the beneficiary of the teleportation. The probability of a
transition into node i is given by (1−α) ·

∑
j∈In(i) π(j) · pji, as the sum of the probabilities

of transitions from different in-linking nodes. Therefore, at steady-state, the probability of
a transition into node i is defined by the sum of the probabilities of the teleportation and
transition events:

π(i) = α/n+ (1− α) ·
∑

j∈In(i)

π(j) · pji (10.1)

2In some applications such as bibliographic networks, the edge (i, j) may have a weight denoted by wij .

The transition probability pij is defined in such cases by
wij∑

j∈Out(i) wij
.

3An alternative way to achieve this goal is to modify G by multiplying existing edge-transition proba-
bilities by the factor (1− α) and then adding α/n to the transition probability between each pair of nodes
in G. As a result, G will become a directed clique with bidirectional edges between each pair of nodes. Such
strongly connected Markov chains have unique steady-state probabilities. The resulting graph can then be
treated as a Markov chain without having to separately account for the teleportation component. This
model is equivalent to that discussed in the chapter.

314 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

For example, the equation for node 2 in Figure 10.1(a) can be written as follows:

π(2) = α/4 + (1− α) · (π(1) + π(2)/4 + π(3)/3 + π(4)/2)

There will be one such equation for each node, and therefore it is convenient to write the
entire system of equations in matrix form. Let π = (π(1) . . . π(n))T be the n-dimensional
column vector representing the steady-state probabilities of all the nodes, and let e be an
n-dimensional column vector of all 1 values. The system of equations can be rewritten in
matrix form as follows:

π = αe/n+ (1− α)PTπ (10.2)

The first term on the right-hand side corresponds to a teleportation, and the second term
corresponds to a direct transition from an in-linking node. In addition, because the vector
π represents a probability, the sum of its components

∑n
i=1 π(i) must be equal to 1.

n∑

i=1

π(i) = 1 (10.3)

Note that this is a linear system of equations that can be easily solved using an iterative
method. The algorithm starts off by initializing π(0) = e/n, and it derives π(t+1) from π(t)

by repeating the following iterative step:

π(t+1) ⇐ αe/n+ (1 − α)PTπ(t) (10.4)

After each iteration, the entries of π(t+1) are normalized by scaling them to sum to 1.
These steps are repeated until the difference between π(t+1) and π(t) is a vector with a
magnitude that is less than a user-defined threshold. This approach is also referred to as
the power-iteration method.

The PageRank values can be shown to be the n components of the largest left eigenvec-
tor4 of (a modified version of) the stochastic transition matrix P , for which the eigenvalue
is 1. The modifications to the stochastic transition matrix directly incorporate the effect of
restarts within the transition matrix by adding “restart” edges between every pair of nodes.

10.2.2 Personalized PageRank

The notion of personalized PageRank is also referred to as topic-sensitive PageRank in Web
recommender systems. Although PageRank is an excellent mechanism to find popular nodes
in terms of the linkage structure, it does little for finding items that are well-matched to the
interests of specific users. The notion of personalized PageRank is designed to find popular
nodes, which are also similar to specific nodes in the network. For example, consider an
information network, such as Flickr, in which nodes might be users, image descriptions, or
images. It is desirable to leverage the network structure to recommend popular content in
the network to specific users. However, it is important to personalize this popular content
to the user at hand. How do we recommend specific images or particular users, or vice
versa? The key here is to understand that the teleportation mechanism provides a way of
biasing the random walk towards specific nodes.

4The left eigenvector X of P is a row vector satisfying XP = λX. The right eigenvector Y is a
column vector satisfying PY = λY . For asymmetric matrices, the left and right eigenvectors are not the
same. However, the eigenvalues are always the same. The unqualified term “eigenvector” refers to the right
eigenvector by default.

10.2. RANKING ALGORITHMS 315

Another application of this approach is that of Web recommender systems, for which
providing greater importance to some topics than others is desired in the ranking process.
While personalization is less common in large-scale commercial search engines, it is more
common is smaller scale site-specific search applications. Typically, users may be more
interested in certain combinations of topics than others. The knowledge of such interests
may be available to a personalized search engine because of user registration. For example, a
particular user may be more interested in the topic of automobiles. Therefore, it is desirable
to rank pages related to automobiles higher when responding to queries by this user. This
can also be viewed as the personalization of ranking values. How can this be achieved?

Consider a Web recommender system in which users have the ability to express interest
in specific topics. The first step is to fix a list of base topics, and determine a high-quality
sample of pages from each of these topics. This can be achieved with the use of a resource
such as the Open Directory Project (ODP),5 which can provide a base list of topics and
sample Web pages for each topic. The PageRank equations are now modified, so that the
teleportation is only performed on this sample set of Web documents, rather than on the
entire space of Web documents.

Let ep be an n-dimensional personalization (column) vector with one entry for each
page. An entry in ep takes on the value of 1, if that page is included in the sample set, and
0 otherwise. Let the number of nonzero entries in ep be denoted by np. Then, the PageRank
Equation 10.2 can be modified as follows:

π = αep/np + (1 − α)PTπ (10.5)

The same power-iteration method can be used to solve the personalized PageRank problem.
The selective teleportations bias the random walk, so that pages in the structural locality
of the sampled pages will be ranked higher. As long as the sample of pages is a good
representative of different (structural) localities of the Web graph, in which pages of specific
topics exist, such an approach will work well. Therefore, for each of the different topics, a
separate PageRank vector can be precomputed and stored for use during query time. The
choice of α regulates the trade-off between the topical criterion and the popularity criterion.
Larger values of α will make the approach more topic-sensitive, whereas smaller values of
α will make the approach more sensitive to the structure of the network.

Consider the case where a user has specified an interest in specific combinations of
topics such as sports and automobiles. Clearly, the number of possible combinations of
interests can be very large, and it is not reasonably possible or necessary to prestore every
personalized PageRank vector. In such cases, only the PageRank vectors for the base topics
are computed. The final result for a user is defined as a weighted linear combination of the
topic-specific PageRank vectors, where the weights are defined by the user-specified interest
in the different topics.

The personalized PageRank approach can be viewed as an approach that provides sim-
ilarity scores to nodes based on both their structural similarity to the restart nodes and
their absolute level of connectivity to other nodes in the network. The precise importance
to each of these factors depends on the value of α. There is, however, a limit to this control.
By picking very large values of α, one also loses the sensitivity of the approach in computing
similarity to nodes located at modest distances to the restart nodes, and only the restart
nodes receive the lion’s share of the probability. In some cases, it is desired to cancel out the
popularity effects in a more meaningful way to make the numerical quantities reflect only

5http://www.dmoz.org

http://www.dmoz.org

316 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

similarities. A method to reduce the impact of popularity is to perform standard PageR-
ank, and subtract it from the personalized PageRank. By doing so, the ranking values can
be both positive and negative, reflecting relative similarities or dissimilarities. A value of 0
would be considered the break-even point. This approach is related to the FolkRank method,
which is commonly used in social tagging applications (cf. section 11.4.4.2 of Chapter 11).

10.2.3 Applications to Neighborhood-Based Methods

It is noteworthy that the teleportation mechanism of personalized PageRank methods in-
creases the ranking of nodes which are structurally closer to the nodes at which restart is
executed. This property is particularly useful in defining the neighborhoods of nodes in a
network. When the personalized PageRank algorithm is used, the returned neighborhoods
will also be of higher quality in terms of their citation ranking. The trade-off between qual-
ity and topical specificity can be regulated by modifying the restart probability. The basic
question for neighborhood discovery is as follows:

Given a target node iq and a subset of nodes S ⊆ N from graph G = (N,A), rank the
nodes in S in their order of similarity to iq.

Such a query is very useful in recommender systems in which users and items are arranged
in the form of a bipartite graph of preferences, in which nodes correspond to users and
items, and edges correspond to preferences. The node iq may correspond to an item node,
and the set S may correspond to user nodes. Alternatively, the node iq may correspond to a
user node, and the set S may correspond to item nodes. The use of personalized PageRank
methods are discussed later in this chapter and also in the next chapter. Recommender
systems are closely related to search in that they also perform ranking of target objects,
but do so while taking user preferences into account.

This problem can be viewed as a limiting case of topic-sensitive PageRank, in which
the teleportation is performed to the single node iq. Therefore, the personalized PageRank
Equation 10.5 can be directly adapted by using the teleportation vector ep = eq, that is, a
vector of all 0s, except for a single 1, corresponding to the node iq. Furthermore, the value
of np in this case is set to 1.

π = αeq + (1− α)PTπ (10.6)

The solution to the aforementioned equation will provide high ranking values to nodes in
the structural locality of iq. This definition of similarity is asymmetric because the similarity
value assigned to node j starting from query node i is different from the similarity value
assigned to node i starting from query node j. Such an asymmetric similarity measure is
suitable for query-centered applications such as search engines and recommender systems.
In typical collaborative filtering applications, one attempts to determine neighborhoods of
target users or items. After these neighborhoods have been discovered, they can be used
to make recommendations based on the content properties of these nodes. This approach
can be utilized either for making recommendations in traditional social networks or for
finding neighborhoods in network models of traditional collaborative filtering applications.
We discuss both these cases below. As discussed at the end of the previous section, one
can cancel out the effects related to popularity (if needed) by subtracting the unbiased
PageRank values from the personalized PageRank computation. This approach, referred to
as FolkRank, is also discussed in more detail in section 11.4.4.2 of Chapter 11.

10.2. RANKING ALGORITHMS 317

10.2.3.1 Social Network Recommendations

Consider the case where the underlying network is a social network in which users have
explicitly specified interests, whereas the linkages represent friendship relationships. In such
cases, it may be desirable to leverage the neighborhood profile of the user for the purpose
of recommendations. The neighborhood of a user can be discovered in a social network by
using the personalized PageRank algorithm, which restarts at that user node. The social
profile of the neighborhood can be retrieved in terms of the specified keywords, likes, or
explicitly specified ratings. The social profile in the neighborhood of a target node can be
aggregated, and the most liked items in these profiles can be recommended to the target.
Therefore, this approach can be viewed as a type of hybrid recommender system, in which
the structural data is used to determine the neighbors, but the user-specified interests are
used to make the final recommendations.

This approach leverages the notion of homophily in social networks. The basic idea
is that connected users in social networks often have similar properties. Therefore, the
properties, profiles, and ratings of the neighborhood of a user can be leveraged in order to
make recommendations. This problem is closely related to that of collective classification,
which is discussed in section 10.3 of this chapter. In collective classification, the same goal
is achieved with the use of machine learning models. Interestingly, random walk algorithms
are among the most common methodologies used in collective classification models. This
is because personalized PageRank methods are naturally designed for finding nodes, which
are similar to pre-specified nodes in the network. These pre-specified nodes are the training
data in collective classification algorithms.

10.2.3.2 Personalization in Heterogeneous Social Media

The personalized PageRank approach can be used to determine popular content, which is
relevant to a specific node or query in the network. Such scenarios are common in the con-
text of various forms of content recommendations, product recommendations, or question-
answering systems in which the relevant nodes to a query are naturally embedded in a
linked network structure [16, 81, 602, 640, 663]. In heterogeneous social media, the same
network may contain users, media content, and text descriptions. An example of such a
scenario is the Flickr network [700], in which users, nodes, and text content are connected
with various types of links. A conceptual illustration of a heterogeneous social network with
text, users, and images is illustrated in Figure 10.2. The personalized PageRank approach
can be used to determine high-ranking nodes relevant to specific queries and users. The
main idea in these methods is that high-quality users and content are naturally connected
within the network structure. This notion is similar to the principle used by PageRank
algorithms. Therefore, by using the mutually reinforcing nature of the underlying linkage
structure, it is possible to simultaneusly discover relevant users and content. At the same
time, a personalized ranking methodology needs to be used because the results may be
tailored to specific users or queries. It is important to note that the query to such a network
can be general and can comprise any combination of social (actor), keyword, and content
information. Similarly, the recommendations can also be provided from any one (or more)
of these different modalities.

A heterogeneous ranking approach [602], referred to as SocialRank, has been designed
to provide personalized recommendations in response to user queries. For example, consider
a scenario in which the user enters the keyword “birds” in a social media network such
as Flickr in order to determine images of interest. A personalized PageRank mechanism

318 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

Figure 10.2: Heterogeneous social media network with users, images, and text

is used in which text nodes containing that keyword are weighted to a greater degree for
teleportation purposes. Furthermore, if needed, specific user nodes can also be assigned
greater weights in order to bias the random walk in the vicinity of the nodes. The choice
of the teleportation probability α regulates the trade-off between the importance given to
the personalization process and the citation-based popularity of a particular node in the
network.

The main challenge with the use of the approach in a heterogeneous network is that a
particular modality of the network (e.g., users, images, or text) can overwhelmingly dom-
inate the entire ranking process if a significantly larger number of nodes is present in any
particular modality. This is particularly common in many real settings. Therefore, it is im-
portant to perform the ranking process in such a way that each modality obtains hints from
other modalities, but the ranking process for each class of objects is kept separate. There-
fore, an iterative approach is used in [602], in which a separate ranking process is performed
within each modality, and then the ranks from other modalities are used to modify the
similarity matrix in the next iteration within each modality. Therefore, the approach starts
by constructing a node-node similarity matrix within each modality, and uses the following
two-step iterative process until convergence:

1. Use PageRank separately on the similarity matrix within each modality (e.g., text,
images, actors) to create a ranking for each node.

2. Use ranks to readjust the similarity matrix. The similarity between a pair of nodes is
increased if they are connected to the same node or to highly interconnected nodes of
high rank in a different modality.

The reader should refer to [602] for details of the second step of readjusting the similarity
matrix. It has been shown in [602] how this approach can yield personalized ranking results
by giving greater importance to the underlying social cues.

10.2. RANKING ALGORITHMS 319

AT
O
R

U
R

AT
H
ER

FE
LL
AS

AC
E

AC
U
S

G
LA

D
I

BE
N
H

G
O
D
F

G
O
O
D

SC
AR

F

SP
AR

T

U1 1 5 21

U2

35

5

1

4

U 35

3

1

4

U3

U4

3

5

5

4U6

U5

SMETISRESU

GLADIATORU1

BEN HUR

SPARTACUS

U4

U6

GODFATHERU2

GOODFELLASU3

SCARFACEU5

(a) Ratings matrix (b) User-item graphs of specified ratings

Figure 10.3: A ratings matrix and corresponding user-item graph (Revisiting Figure 2.3 of
Chapter 2)

10.2.3.3 Traditional Collaborative Filtering

The personalized PageRank approach can also be used to discover the neighborhoods in
user-item graphs or user-user graphs in traditional collaborative filtering applications. A
discussion of the use of graph models in traditional collaborative filtering applications is
provided in section 2.7 of Chapter 2. An undirected user-item graph is constructed on the
basis of the specified entries in the ratings matrix. The example from Chapter 2 is replicated
in Figure 10.3. By performing random walks starting from a given user, it is possible to
discover the other users in its neighborhood. This is a direct application of the personalized
PageRank approach. If needed, the unbiased PageRank of nodes can be subtracted to cancel
out the effect of popularity according to the discussion above. After the neighborhood of
the user has been discovered, the specified ratings of the neighborhood can be used to make
predictions. The methodology for constructing the user-item graph from a ratings matrix
is discussed in more detail in section 2.7 of Chapter 2.

Instead of user-item graphs, it is also possible to work with user-user graphs or item-item
graphs. In the following, we will describe the use of item-item graphs. The case of user-user
graphs is similar. The item-item graph is also referred to as the correlation graph [232]
because it defines the correlations between items. In this case, a weighted and directed
network G = (N,A) is constructed, in which each node in N corresponds to an item, and
each edge in A corresponds to a relationship between items. The weight wij is associated
with each edge (i, j). If items i and j have been rated by at least one user, then both
the directed edges (i, j) and (j, i) exist in the network. Otherwise, no edges exist between
nodes i and j. The directed network is, however, asymmetric because the weight of edge
(i, j) is not necessarily the same as that of edge (j, i). Let Ui be the set of users that have
specified ratings for item i and Uj be the set of users that have specified ratings for item j.
The weight of the edge (i, j) is set as follows. First, we set the weight wij of edge (i, j) to
|Ui ∩ Uj|. Then, the weights of the edges are normalized, so that the sum of the weights of

320 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

AT
O
R

AT
HE

R

FE
LL
AS

G
LA

DI

BE
N
HU

R

G
O
DF

G
O
O
D

U1 1 51

U2

35

5

1U 35

3

1U3

U4

3

5 4U6

U5

1
GLADIATOR GODFATHER

1

111 1
2

2

BEN HUR GOODFELLAS

1/4
GLADIATOR GODFATHER

11/4

1/2

2/3
1/2 1/2 1/3

BEN HUR GOODFELLAS

2/3

(a) Ratings matrix

(b) Un-normalized correlation graph (c) Normalized correlation graph

Figure 10.4: A ratings matrix and its correlation graphs (Revisiting Figure 2.5 of Chapter 2)

the outgoing edges of a node is equal to 1. This normalization step results in asymmetric
weights, because each of the weights wij and wji are divided by different quantities. This
results in a graph in which the weights on edges correspond to random-walk probabilities.
An example of the correlation graph for a ratings matrix is illustrated in Figure 10.4. It is
clear that the weights on the normalized correlation graph are not symmetric because of
the scaling of the weights to transition probabilities. Furthermore, it is noteworthy that the
ratings values are not used in the construction of the correlation graph. Only the number
of mutually specified ratings in common between two items are used. It is sometimes not
desirable to ignore the ratings in creating the correlation graph. It is, of course, possible to
define the correlation graph in other ways, such as the use of the cosine function, where the
ratings are used as well.

A variety of personalized PageRank methods can be used to perform the recommenda-
tion. The following two methods are most commonly used:

1. One can perform a random-walk with restart at a particular item node in order to
determine the relevant neighborhood items. Traditional item-based neighborhood al-
gorithms (cf. section 2.3.2 of Chapter 2) can be used to predict the rating of that
item.

2. One can also directly perform the recommendations with the use of an approach
referred to as ItemRank. In this case, the PageRank bias vector is further influenced

10.2. RANKING ALGORITHMS 321

by the ratings given by users to various items. For each user i, a different PageRank
restart vector is used. Therefore, the system of PageRank equations is specific to user
i and one needs to solve this system m times in order to determine the preferences of
all the users. In practice, however, one is usually looking to make a recommendation
for a specific user; therefore, the system needs to be solved only once. For each node
(item) j in the correlation graph, the restart probability is set to be proportional to
the rating rij of user i for item j. The resulting PageRank values over the different
nodes yield the preference of user i for each item. The top-k values are returned as
the corresponding recommendations.

The main criticism of the ItemRank approach is that is still provides importance to nodes
that have been rated poorly by restarting at each node where the user has specified ratings.
In general, it makes sense only to restart at nodes where the user has provided positive
ratings rather than restart at nodes where the user has provided both positive and negative
ratings. The ranking methods are particularly effective in the context of unary ratings,
where there is a mechanism to specify a liking for an item, but no mechanism to specify a
dislike. In such cases, the ItemRank approach will work quite well.

10.2.4 SimRank

In some applications, symmetric pairwise similarity between nodes is required. While it is
possible to average the two topic-sensitive PageRank values in opposite directions to create
a symmetric measure, the SimRank method provides an elegant and intuitive solution.
The approach can be used to determine reputable neighborhoods of specific query nodes.
The notion of SimRank was defined to compute the structural similarity between nodes.
SimRank determines symmetric similarities between nodes. In other words, the similarity
between nodes i and j is the same as that between j and i. Obviously, such a measure is
intended only for undirected networks.

The SimRank approach works as follows. Let In(i) represent the in-linking nodes of i.
The SimRank equation is naturally defined in a recursive way as follows:

SimRank(i, j) =
C

|In(i)| · |In(j)|
∑

p∈In(i)

∑

q∈In(j)

SimRank(p, q) (10.7)

Here C is a constant in (0, 1) that can viewed as a kind of decay rate of the recursion. As
the boundary condition, the value of SimRank(i, j) is set to 1 when i = j. When either i or
j do not have in-linking nodes, the value of SimRank(i, j) is set to 0. To compute SimRank,
an iterative approach is used. The value of SimRank(i, j) is initialized to 1 if i = j, and 0
otherwise. The algorithm subsequently updates the SimRank values between all node pairs,
iteratively using Equation 10.7 until convergence is reached.

The notion of SimRank has an interesting intuitive interpretation in terms of random
walks. Consider two random surfers walking in lockstep backwards from node i and node
j till they meet. The number of steps taken by each of them is a random variable L(i, j).
Then, SimRank(i, j) can be shown to be equal to the expected value of CL(i,j). The decay
constant C is used to map random walks of length l to a similarity value of Cl. Note that
because C < 1, smaller distances will lead to higher similarity and larger distances will lead
to lower similarity.

One shortcoming of the SimRank method is that the path from each user to the common
node must be of the same length. As a result, it is possible for the SimRank value between
two directly connected nodes to be 0, when no path of the same length exists to a common

322 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

C A B

Figure 10.5: A bad case for SimRank

node. This is likely to occur when only paths of odd length occur between a pair of connected
nodes. For example, in Figure 10.5, nodes A and B are connected only by paths of length
3. Therefore, the SimRank between nodes A and B is always 0, even though these nodes
are well connected. On the other hand, even though the nodes A and C are not as well
connected, the SimRank between nodes A and C is nonzero. Therefore, it is important to
be aware of cases where6 the SimRank approach is not applicable. For example, the SimRank
value between a user and item node will always be 0 in a bipartite user-item graph. This is
because all paths between user and item nodes are of odd length. On the other hand, the
SimRank method can be used to effectively compute similarity between pairs of users, or
between pairs of items. Therefore, such an approach can be used for neighborhood-based
methods in traditional collaborative filtering applications by computing user peers or item
peers.

10.2.5 The Relationship Between Search and Recommendation

The discussion in this section shows the close relationship between the two problems of
search and recommendation. The main difference between these two problems is the per-
sonalization aspect. When users search for documents on the Google search engine, they
are not necessarily expecting to discover results that are tailored to their tastes. The only
expectation is to see high-quality content, which is tailored to the search phrase. However, in
a personalized search application, the user expects to discover new items that they will like.
Some applications, such as Google news, have both personalized and non-personalized ver-
sions of search. The main difference is that the latter is agnostic to previous user behavior,
whereas the former directly incorporates user interests into the search process. Nevertheless,
the goals of search algorithms are desired even in personalized applications. For example,
search result relevance and quality are important in both cases. This is the reason that
many variations of random walk algorithms are used in both cases for the ranking process.
In fact, the problems of search and recommendation have become increasingly integrated
in recent years. For example, Google search results may often depend on a user’s location
or browsing history, depending7 on the settings of their browser or sign-in status of their
Google accounts.

6It is possible to ameliorate this problem to some extent by making minor modifications such as adding
self-loops to the graph. However, such methods are not a formal part of the original SimRank algorithm.

7http://googleblog.blogspot.com/2009/12/personalized-search-for-everyone.html

http://googleblog.blogspot.com/2009/12/personalized-search-for-everyone.html

10.3. RECOMMENDATIONS BY COLLECTIVE CLASSIFICATION 323

TEST NODE

BA

BA

Figure 10.6: Label sparsity issues in collective classification

10.3 Recommendations by Collective Classification

Collective classification methods are particularly effective for incorporating content into the
recommendation process. For example, consider the case of a social networking application in
which a golf-equipment manufacturer wishes to determine all individuals interested in “golf.”
It is assumed that the manufacturer might already have several examples of individuals
interested in golf. This might be achieved with several mechanisms in social networks, such
as the utilization of user profile, or specification of a Facebook “like” button on a golf-
related post. Furthermore, in some cases, where customer feedback is available, it may be
possible for the manufacturer to have both like and dislike information for various nodes
in the network. These categories of specific actors in the network can be specified with the
use of labels. Therefore, a subset of the nodes are associated with labels. It is desired to
use these labels as training data to determine the labels of the other nodes where they
are unspecified. It is assumed that for labeled nodes, the index of the label is drawn from
{1 . . . r}. Like the collaborative filtering problem, this is also an incomplete data estimation
problem, except that it is done in the context of network structures.

The solution to this problem is dependent on the notion of homophily. This notion can
be viewed as the social network analog of using neighborhoods. The solution to this model
is crucially dependent on the notion of homophily. Because nodes with similar properties
are usually connected, it is reasonable to assume that this is also true of node labels. A
simple solution to this problem is to examine the k labeled nodes in the proximity of a
given node and report the majority label. This approach is, in fact, the network analog
of a nearest neighbor classifier. However, such an approach is generally not possible in
collective classification because of the sparsity of node labels. An example of a network is
illustrated in Figure 10.6, in which the two classes are labeled A and B. The remaining
nodes are unlabeled. For the test node in Figure 10.6, it is evident that it is generally closer
to instances of A in the network structure, but there is no labeled node directly connected to
the test instance. Thus, the problem of label sparsity arises in the context of network-based
prediction, just as it does in the case of ratings-based data. How can one address these
sparsity issues? In order to handle sparsity, one must not only use the direct connections
to labeled nodes, but also use the indirect connections through unlabeled nodes. In this
chapter, we will briefly discuss two algorithms, one of which is an iterative classification
algorithm, and the other is a random walk-based method.

324 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

10.3.1 Iterative Classification Algorithm

The Iterative Classification Algorithm (ICA) is one of the earliest classification algorithms
in the literature and has been applied to a wide variety of data domains. Consider the
(undirected) network G = (N,A) in which class labels are drawn from {1 . . . r}. Each edge
(i, j) ∈ A is associated with the weight wij . Furthermore, the content Xi is available at
the node i in the form of a multidimensional feature vector. The total number of nodes is
denoted by n, from which nt nodes are unlabeled test nodes.

An important step of the ICA algorithm is to derive a set of link features in addition
to the available content features in Xi. The most important link features correspond to the
distribution of the classes in the immediate neighborhood of the node. Therefore, a feature
is generated for each class, containing the fraction of its incident nodes belonging to that
class. For each node i, its adjacent node j is weighted by wij for computing its credit to
the relevant class. In principle, it is also possible to derive other link features based on
structural properties of the graph such as the degree of the node, PageRank values, number
of closed triangles involving the node, or connectivity features. Such link features can be
derived on the basis of an application-specific understanding of the network data set.

The basic iterative classification algorithm is structured as a meta-algorithm. A base
classifier A is leveraged within an iterative framework. Many different base classifiers have
been used in different implementations, such as the naive Bayes classifier, a logistic regres-
sion classifier, and a neighborhood voting classifier. The main requirement is that these
classifiers should be able to output a numeric score that quantifies the likelihood of a node
belonging to a particular class. While the framework is independent of the specific choice
of classifier, the use of the naive Bayes classifier is particularly common because of the
interpretation of its numeric score as a probability. Therefore, the following discussion will
assume that the algorithm A is instantiated to the naive Bayes classifier.

The link and content features are used to train the naive Bayes classifier. For many nodes,
it is difficult to robustly estimate important class-specific features, such as the fractional
presence of the different classes in their neighborhood. This is a direct result of label sparsity,
and it makes the class predictions of such nodes unreliable. Therefore, an iterative approach
is used for augmenting the training data set. In each iteration, nt/T (test) node labels
are made “certain” by the approach, where T is a user-defined parameter controlling the
maximum number of iterations. The test nodes for which the Bayes classifier exhibits the
highest class membership probabilities are selected to be made final. These labeled test
nodes can then be added to the training data, and the classifier is retrained by extracting
the link features again with the augmented training data set. The approach is repeated
until the labels of all nodes have been made final. Because the labels of nt/T nodes are
finalized in each iteration, the entire process terminates in exactly T iterations. The overall
pseudocode is illustrated in Figure 10.7.

One advantage of the iterative classification algorithm is that it can seamlessly use
content and structure in the classification process. For example, if a node contains features
corresponding to interests in other related products, then these features can also be used in
the labeling process. The classifier can automatically select the most relevant features using
off-the-shelf feature-selection algorithms. On the other hand, the errors in the earlier phases
of iterative classification can propagate and multiply in later phases because of augmented
training examples with incorrect labels. This can increase the cumulative error in noisy
training data sets.

10.3. RECOMMENDATIONS BY COLLECTIVE CLASSIFICATION 325

Algorithm ICA(Graph G = (N, A), Weights: [wij], Node Class Labels: C,
Base Classifier: A, Number of Iterations: T)

begin
repeat

Extract link features at each node with current training data;
Train classifier A using both link and content features of

current training data and predict labels of test nodes;
Make (predicted) labels of most “certain” nt/T

test nodes final, and add these nodes to training
data, while removing them from test data;

until T iterations;
end

Figure 10.7: The iterative classification algorithm

TEST NODE

BA

A B

Figure 10.8: Creating directed transition graphs from undirected graph of Figure 10.6

10.3.2 Label Propagation with Random Walks

The label propagation method directly uses random walks on the undirected network struc-
ture G = (N,A). The weight of edge (i, j) is denoted by wij = wji. To classify an unlabeled
node i, a random walk is executed starting at node i and terminated at the first labeled
node encountered. The class at which the random walk has the highest probability of ter-
mination is reported as the predicted label of node i. The intuition for this approach is that
the walk is more likely to terminate at labeled nodes in the proximity of node i. Therefore,
when many nodes of a particular class are located in its proximity, node i is more likely to
be labeled with that class.

An important assumption is that the graph must be label connected. In other words,
every unlabeled node needs to be able to reach a labeled node in the random walk. For
undirected graphs G = (N,A), this means that every connected component of the graph
needs to contain at least one labeled node. In the following discussion, it will be assumed
that the graph G = (N,A) is undirected and label-connected.

The first step is to model the random walks in such a way that they always terminate
at their first arrival at labeled nodes. This can be achieved by removing outgoing edges
from labeled nodes and replacing them with self-loops. Furthermore, to use a random-
walk approach, we need to convert the undirected graph G = (N,A) into a directed graph
G′ = (N,A′) with an n × n transition matrix P = [pij]. For each undirected edge (i, j) ∈
A, directed edges (i, j) and (j, i) are added to A′ between the corresponding nodes. The
transition probability pij of edge (i, j) is defined as follows:

pij =
wij∑n
k=1 wik

(10.8)

326 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

The transition probability pji of edge (j, i) is defined as follows:

pji =
wji∑n

k=1 wjk
(10.9)

For example, the directed transition graph created from the undirected graph of Figure 10.6
is illustrated in Figure 10.8.

A wide variety of random-walk methods are available for propagating the labels using
this transition graph. Consider the case where the labels are drawn from {1 . . . k}. The idea
is to execute the personalized PageRank algorithm k times, where the personalization vector
for the cth execution restarts at labeled nodes belonging to the cth class. Each class-specific
personalized PageRank probability is multiplied with the prior probability of that class, or,
equivalently, the number of labeled training nodes in that class. For each node, the class
index that yields the highest (prior-scaled) personalized PageRank probability is reported.

10.3.3 Applicability to Collaborative Filtering in Social Networks

Collective classification techniques can also be used for collaborative filtering of users in
social networks. Consider a scenario in which we have the ratings for various products
specified by different users. Furthermore, we also have the data corresponding to the social
connections of various users. Therefore, this problem can be viewed as a generalization of
the traditional problem of collaborative filtering. In this case, a pure neighborhood-based
algorithm for collaborative filtering will take the similarity in ratings into account, but it will
not take the homophily of different users into account. Clearly, it can be advantageous to
take the homophily between users into account in order to perform collaborative filtering.
As discussed in Chapters 1 and 3, collaborative filtering methods are generalizations of
traditional classification problems. This analogy continues to be true even in the social
network setting.

Certain versions of this problem can be easily handled using collective classification
methods. Consider the case where the ratings are unary, in which users have a mechanism
to specify a liking for an item but no mechanism to specify a dislike. In such cases, the
specification of a liking for a product can be included as a keyword at that node. The label
of a node is defined by the particular product of interest. The labels for the other products
are treated as content-centric keywords. The problem now reduces to that of collective
classification with content at the nodes. This variation of the problem can be handled easily
by the ICA algorithm.

In cases where the ratings are not unary, the problem can be modeled as a multilabel
collective classification problem, in which the rating of each product is treated as a separate
label [306]. When the number of possible ratings is small, each value of the rating can be
treated as a discrete value. Since all the items are handled in one shot, a single node may
have multiple nodes corresponding to the ratings of various items. The goal is to use the
specified ratings at the nodes together with the network structure to predict the values
of the ratings for the various items. In such cases, the technique in [306] can be applied
directly.

10.4 Recommending Friends: Link Prediction

In many social networks, it is desirable to predict future links between pairs of nodes in
the network. For example, commercial social networks, such as Facebook, often recommend
users as potential friends. As we will see later, such methods also have direct applicability

10.4. RECOMMENDING FRIENDS: LINK PREDICTION 327

to collaborative filtering techniques. In this section, we will discuss various techniques that
are commonly used for link prediction.

10.4.1 Neighborhood-Based Measures

Neighborhood-based measures use the number of common neighbors between a pair of nodes
i and j in different ways to quantify the likelihood of a link between them in the future.
For example, in Figure 10.9(a), Alice and Bob share 4 common neighbors. Therefore, it
is reasonable to conjecture that a link might eventually form between them. In addition
to their common neighbors, they also have their own disjoint sets of neighbors. There are
different ways of normalizing neighborhood-based measures to account for the number and
relative importance of different neighbors. These are discussed below.

Definition 10.4.1 (Common Neighbor Measure) The common-neighbor measure be-
tween nodes i and j is equal to the number of common neighbors between nodes i and j. In
other words, if Si is the neighbor set of node i, and Sj is the neighbor set of node j, the
common-neighbor measure is defined as follows:

CommonNeighbors(i, j) = |Si ∩ Sj | (10.10)

The major weakness of the common-neighbor measure is that it does not account for the
relative number of common neighbors between them as compared to the number of other
connections. In the example of Figure 10.9(a), Alice and Bob each have a relatively small
node degree. Consider a different case in which Alice and Bob are either spammers or very
popular public figures who were connected to a large number of other actors. In such a case,
Alice and Bob might easily have many neighbors in common, just by chance. The Jaccard
measure is designed to normalize for varying degree distributions.

Definition 10.4.2 (Jaccard Measure) The Jaccard-based link prediction measure be-
tween nodes i and j is equal to the Jaccard coefficient between their neighbor sets Si and
Sj, respectively.

JaccardPredict(i, j) =
|Si ∩ Sj |
|Si ∪ Sj |

(10.11)

The Jaccard measure between Alice and Bob in Figure 10.9(a) is 4/9. If the degrees of either
Alice or Bob were to increase, it would result in a lower Jaccard coefficient between them.
This kind of normalization is important, because of the power-law degree distributions of
nodes.

The Jaccard measure adjusts much better to the variations in the degrees of the nodes
between which the link prediction is measured. However, it does not adjust well to the degrees
of their intermediate neighbors. For example, in Figure 10.9(a), the common neighbors of
Alice and Bob are Jack, John, Jill, and Mary. However, all of these common neighbors
could be very popular public figures with very high degrees. Therefore, these nodes are
statistically more likely to occur as common neighbors of many pairs of nodes. This makes
them less important in the link prediction measure. The Adamic-Adar measure is designed
to account for the varying importance of the different common neighbors. It can be viewed
as a weighted version of the common-neighbor measure, where the weight of a common
neighbor is a decreasing function of its node degree. The typical function used in the case of
the Adamic-Adar measure is the inverse logarithm. In this case, the weight of the common
neighbor with index k is set to 1/log(|Sk|), where Sk is the neighbor set of node k.

328 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

JACK

SAYANI

JIM

NICOLEJOHN

PREDICTED LINK
JIM

ALICE BOB

JILL
MICHAEL

PETER

MARY

ALICE SAYANI JIM

TOM

BOBMARY

(a) Many common neighbors (b) Many indirect connections
between Alice and Bob between Alice and Bob

Figure 10.9: Examples of varying effectiveness of different link-prediction measures

Definition 10.4.3 (Adamic-Adar Measure) The common-neighbor measure between
nodes i and j is equal to the weighted number of common neighbors between nodes i and j.
The weight of node k is defined is 1/log(|Sk|).

AdamicAdar(i, j) =
∑

k∈Si∩Sj

1

log(|Sk|)
(10.12)

The base of the logarithm does not matter in the previous definition, as long as it is chosen
consistently for all pairs of nodes. In Figure 10.9(a), the Adamic-Adar measure between
Alice and Bob is 1

log(4)
+ 1

log(2)
+ 1

log(2)
+ 1

log(4)
= 3

log(2)
.

10.4.2 Katz Measure

While the neighborhood-based measures provide a robust estimation of the likelihood of a
link forming between a pair of nodes, they are not quite as effective when the number of
shared neighbors between a pair of nodes is small. For example, in the case of Figure 10.9(b),
Alice and Bob share one neighbor in common. Alice and Jim also share one neighbor in
common. Therefore, neighborhood-based measures have difficulty in distinguishing between
different pairwise prediction strengths in these cases. Nevertheless, there also seems to
be a significant indirect connectivity in these cases through longer paths. In such cases,
walk-based measures are more appropriate. A particular walk-based measure that is used
commonly to measure the link-prediction strength is the Katz measure.

Definition 10.4.4 (Katz Measure) Let n
(t)
ij be the number of walks of length t between

nodes i and j. Then, for a user-defined parameter β < 1, the Katz measure between nodes
i and j is defined as follows:

Katz(i, j) =

∞∑

t=1

βt · n(t)
ij (10.13)

The value of β is a discount factor that de-emphasizes walks of longer length. For small
enough values of β, the infinite summation of Equation 10.13 will converge. If A is the sym-
metric adjacency matrix of an undirected network, then the n×n pairwise Katz coefficient

10.4. RECOMMENDING FRIENDS: LINK PREDICTION 329

matrix K can be computed as follows:

K =

∞∑

i=1

(βA)i = (I − βA)−1 − I (10.14)

The eigenvalues of Ak are the kth powers of the eigenvalues of A. The value of β should
always be selected to be smaller than the inverse of the largest eigenvalue of A to ensure
convergence of the infinite summation. A weighted version of the measure can be computed
by replacing A with the weight matrix of the graph. The Katz measure often provides
prediction results of excellent quality.

It is noteworthy that the sum of the Katz coefficients of a node i with respect to other
nodes is referred to as its Katz centrality. Other mechanisms for measuring centrality, such
as closeness and PageRank, are also used for link prediction in a modified form. The reason
for this connection between centrality and link-prediction measures is that highly central
nodes have the propensity to form links with many nodes.

10.4.3 Random Walk-Based Measures

Random walk-based measures are a different way of defining connectivity between pairs of
nodes. Two such measures are PageRank and SimRank. These methods are described in
detail in section 10.2 of this chapter.

The first way of computing the similarity between nodes i and j is with the use of the
personalized PageRank of node j, where the restart is performed at node i. The idea is that
if j is the structural proximity of i, it will have a very high personalized PageRank measure,
when the restart is performed at node i. This is indicative of higher link prediction strength
between nodes i and j. The personalized PageRank is an asymmetric measure between nodes
i and j. Because the discussion in this section is for the case of undirected graphs, one can use
the average of the values of PersonalizedPageRank(i, j) and PersonalizedPageRank(j, i).
Another possibility is the SimRank measure that is already a symmetric measure. This
measure computes an inverse function of the walk length required by two random surfers
moving backwards to meet at the same point. The corresponding value is reported as the
link prediction measure.

10.4.4 Link Prediction as a Classification Problem

The aforementioned measures are unsupervised heuristics. For a given network, one of these
measures might be more effective, whereas another might be more effective for a different
network. How can one resolve this dilemma and select the measures that are most effective
for a given network?

The link prediction problem can be viewed as a classification problem by treating the
presence or absence of a link between a pair of nodes as a binary class indicator. Thus, a
multidimensional data record can be extracted for each pair of nodes. The features of this
multidimensional record include all the different neighborhood-based, Katz-based, or walk-
based similarities between nodes. In addition, a number of other preferential-attachment
features, such as node-degrees of each node in the pair, are used. Thus, for each node pair, a
multidimensional data record is constructed. The result is a positive-unlabeled classification
problem, where node pairs with edges are the positive examples, and the remaining pairs
are unlabeled examples. The unlabeled examples can be approximately treated as negative
examples for training purposes. Because there are too many negative example pairs in

330 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

large and sparse networks, only a sample of the negative examples is used. Therefore, the
supervised link prediction algorithm works as follows:

1. Training phase: Generate a multidimensional data set containing one data record for
each pair of nodes with an edge between them, and a sample of data records from pairs
of nodes without edges between them. The features correspond to extracted similarity
and structural features between node pairs. The class label is the presence or absence
of an edge between the pair. Construct a training model on the data.

2. Testing phase: Convert each test node pair to a multidimensional record. Use any
conventional multidimensional classifier to make label predictions.

Logistic regression [22] is a common choice for the base classifier. Cost-sensitive versions of
various classifiers are commonly used because of the imbalanced nature of the underlying
classification problem.

One advantage of this approach is that content features can be used in a seamless way.
For example, the content similarity between a pair of nodes can be used. The classifier will
automatically learn the relevance of these features in the training process. Furthermore,
unlike many link prediction methods, the approach can also handle directed networks by
extracting features in an asymmetric way. For example, instead of using node degrees, one
might use in-degrees and out-degrees as features. Random walk features can also be defined
in an asymmetric way on directed networks, such as when computing the PageRank of node
j with restart at node i and vice versa. In general, the supervised model is more flexible
because of its ability to learn relationships between links and features of various types.

10.4.5 Matrix Factorization for Link Prediction

Like collaborative filtering, link prediction methods can be viewed as matrix completion
problems with implicit feedback matrices. Let A be the n × n adjacency matrix of the
underlying graph. We assume that the matrix A is binary, where the presence and absence
of edges is indicated by 1s and 0s, respectively. Note that the matrix A is asymmetric for
directed graphs and symmetric for undirected graphs. The matrix factorization methodology
can be used in two different ways depending on whether the graph is directed or undirected.
For directed graphs, the factorization is very similar to that in collaborative filtering:

A ≈ UV T (10.15)

Here, A is the adjacency matrix of the graph. Furthermore, U = [uis] and V = [vjs] are
both factor matrices of size n × k. After U and V have been learned, one can recommend
the edges with largest predicted weight in UV T .

The matrix A can be viewed in a similar way to an implicit feedback matrix, in which
we need a sample of both positive and negative entries (cf. section 3.6.6.2 of Chapter 3).
Note that we could use all the elements in the matrix A as observed elements but such
an approach would be computationally very expensive when the number of nodes n is
large. Furthermore, the sparsity of the adjacency matrix ensures that the factorization is

10.4. RECOMMENDING FRIENDS: LINK PREDICTION 331

dominated by the less important zero entries. Therefore, we work with only a sample of
“observed” elements from the matrix. We define the positive and negative entries SP and
SN as follows:

SP = {(i, j) : aij = 0}
SN = {Random sample of (i, j) : aij = 0}

All positive elements are included because they are rare and therefore too valuable to be
discarded. Then, we define the “observed” elements of A as S = SP∪SN for the optimization
process. Only the set S is used for training, and therefore the choice of SN has an impact
on the results obtained by the algorithm. The relative sizes of SP and SN will control the
relative importance of the two types of entries. Note that if SN were selected to be equal to
all the zero entries in the matrix, the factorization would be dominated by the zero entries,
and it may sometimes not be as effective in capturing the all-important edges. Differential
importance to the two types of entries is appropriate, as in all rare-class detection problems.
For example, the size of SN can be set to be equal to SP .

For any element (i, j) ∈ S, it can be predicted to the value âij as follows:

âij =
k∑

s=1

uisvjs (10.16)

The error of predicting an entry is given by eij = aij − âij . We want to minimize this error
over the observed entries. The regularized objective function is as follows:

Minimize J =
1

2

∑

(i,j)∈S

e2ij +
λ

2

n∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js

=
1

2

∑

(i,j)∈S

(

aij −
k∑

s=1

uis · vjs

)2

+
λ

2

n∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js

Here, λ is the regularization parameter. It is noteworthy that this objective function is
virtually identical to that discussed in section 3.6.4.2 of Chapter 3, except that the matrix
A is a square n×nmatrix. However, the solution methodology and gradient-descent updates
are exactly identical. One can use either vectorized gradient-descent in which the gradient
is computed with respect to the errors over all entries, or stochastic gradient descent in
which the derivative is stochastically approximated using the errors over randomly chosen
edges. In regular gradient-descent, the matrices U and V are randomly initialized, and the
following updates are executed repeatedly for each entry (i, q) of U and each entry (j, q) of
V :

uiq ⇐ uiq − α
∂J

∂uiq
= uiq + α

⎛

⎝
∑

j:(i,j)∈S

eij · vjq − λ · uiq

⎞

⎠

vjq ⇐ vjq − α
∂J

∂vjq
= vjq + α

⎛

⎝
∑

i:(i,j)∈S

eij · uiq − λ · vjq

⎞

⎠

Here, α > 0 is the learning rate. One can perform these updates within the framework of
Figure 3.8 of Chapter 3. The updates can also be performed using sparse matrix operations.

332 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

Algorithm LinkPrediction(Adjacency Matrix: A, Regularization: λ, Step Size: α)
begin

Randomly initialize matrices U and V ;
SP = {(i, j) : aij = 0};
SN = {Random sample of (i, j) : aij = 0};
S = SP ∪ SN ;
while not(convergence) do
begin

Randomly shuffle observed entries in S;
for each (i, j) ∈ S in shuffled order do
begin

eij ⇐ aij − k
s=1 uisvjs;

ui
(+) ⇐ ui + α eijvj − λui

OutDegree(i)
vj

(+) ⇐ vj + α eijui − λvj

InDegree(j)
ui = ui

(+); vj = vj
(+);

end
Check convergence condition;

end
end

Figure 10.10: Stochastic gradient descent for directed link prediction

The first step is to compute an error matrix E = [eij] in which the unobserved entries of E
(i.e., entries not in S) are set to 0. Note that E is a very sparse matrix, and it makes sense
to compute the value of eij for only the observed entries (i, j) ∈ S and store the matrix
using a sparse data structure. Subsequently, the updates can be computed as follows:

U ⇐ (1− α · λ)U + αEV

V ⇐ (1− α · λ)V + αETU

Next, we describe stochastic gradient descent. The basic idea is to approximate the
gradient stochastically with respect to the error component contributed by a single entry
(including a “zero” edge in SN). The edges in the set S are processed in randomly shuffled
order, and the latent factors are updated based on the error gradient with respect to that
edge. Starting with a random initialization of U and V , one can use the following updates
with respect to the randomly chosen entry (i, j) ∈ S:

uiq ⇐ uiq − α ·
[
∂J

∂uiq

]

Portion contributed by (i, j)
∀q ∈ {1 . . . k}

vjq ⇐ vjq − α ·
[
∂J

∂vjq

]

Portion contributed by (i, j)
∀q ∈ {1 . . . k}

One can expand the aforementioned expression and consolidate the updates over different
values of q ∈ {1 . . . k} into a single vectorized update of the corresponding row of U (or V).
Let ui be the ith row of matrix U and vj be the jth row of matrix V . Then, the stochastic
gradient descent updates may be written as follows:

10.4. RECOMMENDING FRIENDS: LINK PREDICTION 333

ui ⇐ ui + α

(

eijvj −
λui

OutDegree(i)

)

vj ⇐ vj + α

(

eijui −
λvj

InDegree(j)

)

Here, α > 0 is the learning rate. We continue to cycle over the various edges in S until
convergence is reached. The overall framework of the stochastic gradient descent method is
illustrated in Figure 10.10.

We have used a slightly more refined regularization term here than used in Chapter 3.
Here, OutDegree(i) and InDegree(j) denote the out-degree and in-degree of nodes i and j,
respectively. Note that the out-degree and in-degree of the nodes need to be computed with
respect to SP ∪ SN rather than only SP .

It is possible to further improve the accuracy of the method with an ensemble approach.
The matrix is factorized multiple times with different draws of the negative sample SN .
Each factorization might provide a slightly different prediction of an edge. The different
predictions of a particular entry in the matrix are then averaged to create the final result.
Instead of sampling, it is also possible to include all zero entries in SN , and then define
a weighted optimization problem in which the nonzero entries are given a larger weight
θ > 1 than zero entries. The actual value of the weight parameter θ is learned using cross-
validation. In such cases, stochastic gradient descent is no longer viable because of the large
number of (specified) entries of the matrix. However, since most of the entries are zeros, it
is possible to use some tricks [260] to leverage weighted ALS methods efficiently.

This approach is quite general because it can be applied to directed and/or signed
networks. In the case of unsigned networks, one can impose non-negativity constraints on
the latent factors to avoid overfitting. The only change to the update equations is that any
negative factor values after an iteration are set to 0. Undirected networks can be addressed
by replacing each undirected edge with two directed edges. Furthermore, the set SN in
undirected networks should be constructed by first sampling pairs of nodes (without an
edge between them) and then including edges in both directions in SN . In the next section,
we will propose a method that is specifically optimized to undirected networks by reducing
the number of learned parameters.

10.4.5.1 Symmetric Matrix Factorization

For undirected graphs, we do not need two separate factor matrices U and V because the
matrix A is symmetric. Using fewer optimization parameters has the advantage of reducing
overfitting. In such cases, we can use a single factor matrix U and represent the factorization8

as follows:
A ≈ UUT (10.17)

Here, U = [uis] is an n × k factor matrix. As in the previous case, the observed entries in
S = SP ∪ SN include the existing edges in SP and also some “zero” edges in SN . For each
edge (i, j) in the undirected graph, both (i, j) and (j, i) are included in SP . The zero-edges
are chosen from the pairs of nodes between which an edge does not exist, and both directions

8An implicit assumption here is that the matrix A is positive semi-definite. However, by setting the
(unobserved) diagonal entries of A to the node degrees, it can be shown that A is positive semi-definite.
These unobserved diagonal entries do not affect the final solution because they are not a part of the
optimization problem.

334 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

of the edge are included in SN . In other words, if (i, j) is included in SN , then (j, i) is also
included in it. Because of the nature of condition A ≈ UUT , each observed entry (i, j) ∈ S
can be predicted as follows:

âij =
k∑

s=1

uisujs (10.18)

The corresponding error of the prediction is given by eij = aij − âij . We want to minimize
this error over the observed entries. The regularized objective function is as follows:

Minimize J =
1

2

∑

(i,j)∈S

e2ij +
λ

2

n∑

i=1

k∑

s=1

u2
is

=
1

2

∑

(i,j)∈S

(

aij −
k∑

s=1

uis · ujs

)2

+
λ

2

n∑

i=1

k∑

s=1

u2
is

Upon taking the partial derivative of J with respect to each of the decision variables, one
obtains the following results:

∂J

∂uiq
=

∑

j:(i,j)∈S

(

aij + aji − 2

k∑

s=1

uis · ujs

)

(−ujq) + λuiq

∀i ∈ {1 . . . n}, q ∈ {1 . . . k}

=
∑

j:(i,j)∈S

(eij + eji)(−ujq) + λuiq ∀i ∈ {1 . . . n}, q ∈ {1 . . . k}

=
∑

j:(i,j)∈S

2(eij)(−ujq) + λuiq ∀i ∈ {1 . . . n}, q ∈ {1 . . . k}

∂J

∂ujq
=

∑

i:(i,j)∈S

2(eij)(−uiq) + λujq ∀j ∈ {1 . . . n}, q ∈ {1 . . . k}

Note that the value of eij + eji is replaced with 2eij because the original matrix A, the

predicted matrix Â, and the error matrix [eij] are all symmetric. The steps for performing the
gradient descent remain similar to those discussed in the previous case. Let E = [eij] be the

error matrix in which only the observed entries in S are set to the value of aij−
∑k

s=1 uisujs

and unobserved entries are set to 0. This matrix can be computed entry-by-entry for all
elements in S and stored in sparse form. Subsequently, the updates can be performed using
sparse matrix multiplication as follows:

U ⇐ U(1− λα) + 2αEU (10.19)

Here, α > 0 represents the step-size. Note that the constant factor 2 in 2αEU can be ignored
by adjusting the step-size and regularization parameters appropriately.

The stochastic-gradient descent method may be used for faster convergence, although the
quality of the resulting solution is typically lower. In the case of stochastic gradient-descent,
the derivative is decomposed into the error components over individual entries (edges), and

10.4. RECOMMENDING FRIENDS: LINK PREDICTION 335

the update is specific to the error in each entry (edge). In this case, the following 2 · k
updates may be executed for each observed entry (i, j) ∈ S:

uiq ⇐ uiq + α

(

2eij · ujq −
λ · uiq

Degree(i)

)

∀q ∈ {1 . . . k}

ujq ⇐ ujq + α

(

2eij · uiq −
λ · ujq

Degree(j)

)

∀q ∈ {1 . . . k}

Here Degree(i) represents the number of edges incident on i, including the “edges” in SN .
One can also write these updates in terms of the ith row ui and jth row uj of U :

ui ⇐ ui + α

(

2eijuj −
λui

Degree(i)

)

uj ⇐ uj + α

(

2eijui −
λuj

Degree(j)

)

The value of λ is typically selected with the use of cross-validation methods or by trying
various values of λ on a hold-out set. A nice characteristic of the matrix factorization
methodology is that it works seamlessly for signed and unsigned networks. Furthermore,
modest variants of the approach can be used for directed and undirected networks. This is
not true for many of the other link prediction methods, which are inherently designed for
undirected and unsigned networks.

It is also possible to incorporate bias variables within the matrix factorization process
as in the case of traditional collaborative filtering (cf. section 3.6.4.5 of Chapter 3). The
incorporation of bias variables within the matrix factorization framework for link prediction
is intuitively equivalent to using preferential attachment principles [22] in networks. In
cases where the graphs are unsigned, it is possible to use non-negative matrix factorization
methods. Some of these methods have dual use in collaborative filtering when the ratings
matrices can be represented as user-item graphs [235]. The following section will discuss
these connections in detail.

10.4.6 Connections Between Link Prediction
and Collaborative Filtering

Both link prediction and collaborative filtering attempt to estimate missing values. There-
fore, it is natural to explore the connection between them. Link prediction is very similar
to the implicit feedback setting of collaborative filtering in which the presence of a link is
similar to a unary rating. The notion of user-item graphs provides a natural connection
between link prediction and collaborative filtering. A detailed discussion of the process of
creating user-item graphs is provided in section 2.7 of Chapter 2. For unary ratings matri-
ces (or implicit feedback data sets), conventional link-prediction methods can be applied to
the user-item graph in order to predict the affinities (links) between users and items. Each
user corresponds to a user node in the user-item graph, and each item corresponds to an
item node. All the 1s in the matrix correspond to edges between user nodes and item nodes.
Examples of cases in which the ratings are unary are illustrated in Figures 10.11(a) and (b),
respectively. Note that the predicted strength of links between user nodes and item nodes
provides predictions of how much the corresponding users like the corresponding items.
Because of this connection, link-prediction methods can be used to perform collaborative
filtering. Furthermore, the converse is also true wherein collaborative filtering algorithms
can be adapted to link prediction.

336 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

AT
O

R

U
R

AT
H

ER

FE
LL

AS

G
LA

D
I

BE
N

H

G
O

D
F

G
O

O
D

U1 1 11

U2

11

1

1U 11

1

1U3

U4

1

1 1U6

U5

USERS

ITEMS

GLADIATOR

U1
1

1
1

BEN HUR

U4

U6 1
1

1

GODFATHERU2

U

1

1 1
1

GOODFELLAS
U3

U5
1

AT
O

R

U
R

AT
H

ER

FE
LL

AS

G
LA

D
I

BE
N

H

G
O

D
F

G
O

O
D

U1 1 11

U2

11

1

1U 11

1

1U3

U4

1

1 1U6

U5

USERS

ITEMS

GLADIATOR

U1
1

1
1

BEN HUR

U4

U6 1
1

1

GODFATHERU2

U

1

1 1
1

GOODFELLAS
U3

U5
1

(a) Unary ratings matrix (b) Unsigned link prediction

(c) Binary ratings matrix (d) Signed link prediction

Figure 10.11: Link prediction for collaborative filtering

10.4.6.1 Using Link Prediction Algorithms for Collaborative Filtering

By predicting the top-k user-item links that are likely to be formed at a user node in the
user-item graph, one can predict the top-k items for the user. Furthermore, by determining
the top-k user-item links that are likely to be formed at an item node, the merchant can
determine the top-k users to which she can promote a particular item. It is noteworthy
that this approach can be used even in cases when the social network structure of the users
is known. In such cases, the edges between users are included within the link prediction
process. The inclusion of such edges will result in the incorporation of the homophily effects
of social links within the recommendation process. These methods will be discussed in
greater detail in section 11.3.7 of Chapter 11.

The case of explicitly specified ratings is somewhat more challenging because ratings
might indicate either like or dislike of the item at hand. The conventional link-prediction
problem is inherently designed to handle the notion of positive relationships, rather than
that of negative relationships. However, a number of recent advances in link prediction can
handle these cases as well. For ease in discussion, consider the case where the ratings are

10.5. SOCIAL INFLUENCE ANALYSIS AND VIRAL MARKETING 337

drawn from {−1,+1}, corresponding to the user liking or disliking the item. In this case, the
edges are labeled with the sign of the rating. Examples of cases where the ratings are binary
are illustrated in Figures 10.11(c) and (d), respectively. The resulting network is a signed
network, and it is desired to predict the top-k positive links incident at a user in order to
determine the items that a user likes the most. By predicting the top-k negative links, one
can even discover the top-k items that a user might dislike the most. This problem is that of
positive or negative link prediction in signed networks. Although the signed link prediction
problem has not been discussed in this chapter, it has been shown in the literature [324–
326, 346, 591] how methods for unsigned link prediction can be extended to the case of
signed networks. The link prediction approach is most effective for unary or binary ratings
data, although arbitrary ratings can be used as well. In that case, the ratings need to be
mean-centered for each user, and then either a positive or negative weight is associated
with the links corresponding to the mean-centered value of the ratings. This process results
in a signed network in which links are weighted, and many of the methods for signed link
prediction can handle such settings. The work in [324, 325] also shows how to use signed
networks in the context of collaborative filtering applications, although the approach used
is different from the one discussed here.

10.4.6.2 Using Collaborative Filtering Algorithms for Link Prediction

Both collaborative filtering and link prediction are missing value estimation problems. The
only difference is that collaborative filtering is performed on user-item matrices whereas
link prediction is performed on node-node matrices. Although the difference in matrix di-
mensions can affect the performance of the algorithms, a relatively unappreciated fact is
that virtually all collaborative filtering methods can be used for link prediction. However,
some amount of adaptation of the collaborative filtering algorithms is required.

For example, one can use almost all neighborhood-based methods, sparse linear models,
and matrix factorization methods for link prediction. A user-based neighborhood method
maps to a row-wise method on the adjacency matrix, and an item-based neighborhood
method maps to a column-wise method on the adjacency matrix. However, because adja-
cency matrices of undirected networks are symmetric, one cannot distinguish between user-
based and item-based methods (see Exercises 8 and 9). An important observation is that
these methods can be used for both undirected and directed link prediction, whereas many
other link prediction methods are applicable only to undirected networks. In the context of
directed networks, user-based and item-based methods would map to outgoing edge-based
and incoming edge-based methods, respectively. Recently, this relationship between link pre-
diction and collaborative filtering has become increasingly appreciated; the work by [432]
is particularly instructive, as it adapts matrix factorization methods for link prediction.
Nevertheless, significant scope still exists in leveraging collaborative filtering methods for
link prediction. Most of the neighborhood methods and linear regression models have not
been explored significantly in the context of link prediction.

10.5 Social Influence Analysis and Viral Marketing

All social interactions result in varying levels of influence between individuals. In traditional
social interactions, this is sometimes referred to as “word-of-mouth” influence. This general
principle is also true for online social networks. For example, when an actor tweets a message
in Twitter, the followers of the actors are exposed to the message. The followers may often

338 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

retweet the message in the network. This results in the spread of information, ideas, and
opinions in the social network. Many companies view this kind of information spread as
a valuable advertising channel. By tweeting a popular message to the right participants,
millions of dollars worth of advertising can be generated, if the message spreads through the
social network as a cascade. This type of approach allows the rapid spread of information in a
network in much the same way as a virus would spread in a biological epidemic or computer
network. In fact, the models used in both cases share many similarities. Therefore, this
methodology of influencing market participants is also referred to as viral marketing.

Different actors have different abilities to influence their peers in the social network. The
two most common factors that regulate the influence of an actor are as follows:

1. The centrality of a actor within the social network structure is a crucial factor in her
influence level. For example, actors with high levels of centrality are more likely to
be influential. In directed networks, actors with high prestige are more likely to be
influential. Centrality and prestige measures are discussed in [22]. PageRank can also
be used as a measure of centrality and prestige.

2. The edges in the network are often associated with weights that are dependent on
the likelihood that the corresponding pair of actors can be influenced by each other.
Depending on the diffusion model used, these weights can sometimes be directly in-
terpreted as influence propagation probabilities. Several factors may determine these
probabilities. For example, a well-known individual may have higher influence than
lesser known individuals. Similarly, two individuals, who have been friends for a long
time, are more likely to influence one another. It is often assumed that the influence
propagation probabilities are already available for analytical purposes, although a few
recent methods show how to estimate these probabilities in a data-driven way.

An influence propagation model is used to quantify the precise impact of the aforemen-
tioned factors. These models are also known as diffusion models. The main goal of influence
propagation models is to determine a set of seed nodes that maximize influence with the
dissemination of information. In this sense, influence maximization models can be viewed as
recommenders of valuable social actors to merchants. Therefore, the influence maximization
problem is as follows:

Definition 10.5.1 (Influence Maximization) Given a social network G = (N,A), de-
termine a set of k seed nodes S, influencing which will maximize the overall spread of
influence in the network.

The value of k can be viewed as a budget on the number of seed nodes that one is allowed
to initially influence. This is consistent with real-life models in which advertisers are faced
with budgets on initial advertising capacity. The goal of social influence analysis is to extend
this initial advertising capacity with word-of-mouth methods.

Each model or heuristic can quantify the influence level of a node with the use of a
function of S that is denoted by f(·). This function maps subsets of nodes to real numbers
representing influence values. Therefore, after a model has been chosen for quantifying the
influence f(S) of a given set S, the optimization problem is that of determining the set S
that maximizes f(S). An interesting property of a very large number of influence analysis
models is that the optimized function f(S) is submodular.

What does submodularity mean? It is a mathematical way of representing the natural
law of diminishing returns, as applied to sets. In other words, if S ⊆ T , then the additional
influence obtained by adding an individual to set T cannot be larger than the additional

10.5. SOCIAL INFLUENCE ANALYSIS AND VIRAL MARKETING 339

influence of adding the same individual to set S. Thus, the incremental influence of the
same individual diminishes, as larger supersets of cohorts are available as seeds. The sub-
modularity of set S is formally defined as follows:

Definition 10.5.2 (Submodularity) A function f(·) is said to be submodular, if for any
pair of sets S, T satisfying S ⊆ T , and any set element e, the following is true:

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T) (10.20)

Virtually all natural models for quantifying influence turn out to be submodular. Submod-
ularity is algorithmically convenient because a very efficient greedy optimization algorithm
exists for maximizing submodular functions, as long as f(S) can be evaluated for a given
value of S. This algorithm starts by setting S = {} and incrementally adds nodes to S that
increase the value of f(S) as much as possible. This procedure is repeated until the set S
contains the required number of influencers k. The approximation level of this heuristic is
based on a well-known classical result on optimization of submodular functions.

Lemma 10.5.1 The greedy algorithm for maximizing submodular functions provides a so-
lution with an objective function value that is at least a fraction

(
e−1
e

)
of the optimal value.

Here, e is the base of the natural logarithm.

Thus, these results show that it is possible to optimize f(S) effectively, as long as an
appropriate submodular influence function f(S) can be defined for a given set of nodes S.

Two common approaches for defining the influence function f(S) of a set of nodes S
are the Linear Threshold Model and the Independent Cascade Model. Both these diffusion
models were proposed in one of the earliest works on social influence analysis. The general
operational assumption in these diffusion models is that nodes are either in an active or
inactive state. Intuitively, an active node is one which has already been influenced by the set
of desired behaviors. Once a node moves to an active state, it never deactivates. Depending
on the model, an active node may trigger activation of neighboring nodes either for a
single time, or over longer periods. Nodes are successively activated until no more nodes
are activated in a given iteration. The value of f(S) is evaluated as the total number of
activated nodes at termination.

10.5.1 Linear Threshold Model

In this model, the algorithm initially starts with an active set of seed nodes S and iteratively
increases the number of active nodes based on the influence of neighboring active nodes.
Active nodes are allowed to influence their neighbors over multiple iterations throughout
the execution of the algorithm until no more nodes can be activated. The influence of neigh-
boring nodes is quantified with the use of a linear function of the edge-specific weights bij .
For each node i in the network G = (N,A), the following is assumed to be true:

∑

j:(i,j)∈A

bij ≤ 1 (10.21)

Each node i is associated with a random threshold θi ∼ U [0, 1] that is fixed up front
and stays constant over the course of the algorithm. The total influence I(i) of the active
neighbors of node i on i, at a given time-instant, is computed as the sum of the weights bij
of all active neighbors of i.

I(i) =
∑

j:(i,j)∈A,j is active

bij (10.22)

340 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

The node i becomes active in a step when I(i) ≥ θi. This process is repeated until no
further nodes can be activated. The total influence f(S) may be measured as the number of
nodes activated by a given seed set S. The influence f(S) of a given seed set S is typically
computed with simulation methods.

10.5.2 Independent Cascade Model

In the aforementioned linear threshold model, once a node becomes active, it has multiple
chances to influence its neighbors. The random variable θi was associated with a node in
the form of a threshold. On the other hand, in the independent cascade model, after a node
becomes active, it obtains only a single chance to activate its neighbors, with propagation
probabilities associated with the edges. The propagation probability associated with an edge
is denoted by pij . In each iteration, only the newly active nodes are allowed to influence their
neighbors, that have not already been activated. For a given node j, each of the edges (i, j)
joining it to its newly active neighbors i flips a coin independently with success probability
pij . If the coin toss for edge (i, j) results in a success, then the node j is activated. If node
j is activated, it will get a single chance in the next iteration to influence its neighbors.
In the event that no nodes are newly activated in an iteration, the algorithm terminates.
The influence function value is equal to the number of active nodes at termination. Because
nodes are allowed to influence their neighbors only once over the course of the algorithm, a
coin is tossed for each edge at most once over the course of the algorithm.

10.5.3 Influence Function Evaluation

Both the linear threshold model and the independent cascade model are designed to compute
the influence function f(S) with the use of a model. The estimation of f(S) is typically
accomplished with simulation.

For example, consider the case of the linear threshold model. For a given seed node set
S, one can use a random number generator to set the thresholds at the nodes. After the
thresholds have been set, the active nodes can be labeled using any deterministic graph-
search algorithm starting from the seed nodes in S and progressively activating nodes when
the threshold condition is satisfied. The computation can be repeated over different sets
of randomly generated thresholds, and the results may be averaged to obtain more robust
estimates.

In the independent cascade model, a different simulation may be used. A coin with
probability pij may be flipped for each edge. The edge is designated as live if the coin toss
was a success. It can be shown that a node will eventually be activated by the independent
cascade model, when a path of live edges exists from at least one node in S to it. This
can be used to estimate the size of the (final) active set by simulation. The computation is
repeated over different runs, and the results are averaged.

The proof that the linear threshold model and the independent cascade model are sub-
modular optimization problems can be found in pointers included in the bibliographic notes.
However, this property is not specific to these models. Submodularity is a very natural conse-
quence of the laws of diminishing returns, as applied to the incremental impact of individual
influence in larger groups. As a result, most reasonable models for influence analysis will
satisfy submodularity.

10.5. SOCIAL INFLUENCE ANALYSIS AND VIRAL MARKETING 341

10.5.4 Targeted Influence Analysis Models in Social Streams

The aforementioned models for influence analysis are highly static and are completely ag-
nostic to the specific topic of interest. Consider a scenario in which a dealer in baseball
equipment wishes to influence interested customers using the Twitter stream. The most
influential actors on the network are typically topic-agnostic and may not be interested in
baseball at all. For example, if one uses the number of followers of an actor in Twitter as
a rough proxy for their influence, it is easy to see that such individuals are often famous
actors, politicians, or sportsmen. Targeting famous politicians with tweets or promotions
about baseball equipment is not necessarily the most efficient way for the dealer to increase
the reach of her product. However, it would certainly be useful for the dealer to influence fa-
mous sportsmen, specific to baseball. Clearly, the influence-mining approach in the previous
section will not achieve these goals. Furthermore, it is assumed in the previous section that
influence propagation probabilities of edges are available. The determination of such prob-
abilities also requires a separate model because such information is not directly available
from the Twitter stream. Therefore, the influence analysis models discussed in the previous
section are incomplete, because they assume more inputs than are truly available from the
base data. In fact, the only data available to the user is the Twitter stream, which contains
a large volume of tweets. In general, streams such as that of Twitter are referred to as social
streams. In such streams, the trends in the network may evolve over time, and the most
relevant influencers may also change over time.

In the context of social streams, it is important to make the influence analysis models
data-driven or content-centric. In the method discussed in [573], the approach is made
topically sensitive by selecting a set of relevant keywords, in terms of which the social
stream is expressed. The flow of these keywords can then be tracked in the network to
determine how the various actors influence one another, specific to the topic at hand. For
example, a baseball manufacturer would select a set of keywords, which are relevant to
the topic of baseball. The initial stage of feature selection is, therefore, a crucial one. For
example, in the context of a Twitter stream, it may be possible to use hashtags belonging
to specific topics for tracking purposes.

After these keywords have been selected, their propagation through the network struc-
ture is analyzed in terms of the underlying flow paths. A valid flow path is a sequence of
actors that tweet (or post) the same keyword in sequence, and the sequence of actors are
also connected by social network links. For example, consider the case where we have a
hashtag related to baseball games. The path of propagation of this hashtag through the
social network of actors provides very useful information about the topic-specific influence
related to the topic of baseball. For example, in the network shown in Figure 10.12, the
flow of the hash tags9 #baseball and #sammysosa along various paths is the result of
re-tweets (or copying behavior) in the social network. In this case, it is evident that Sayani
is an influential tweeter in the specific topic of baseball, and her tweets on this topic are
often considered authoritative enough to be picked up by other participants. However, if
the hashtags were related to other subjects, unrelated to baseball, then even with the same
pattern of propagation Sayani would not be considered influential in the specific context of
baseball.

Influential actors will frequently occur in the early portions of such paths. Therefore,
by determining frequently occurring paths, one can also determine important epicenters of
various cascades. The work in [573] uses a constrained sequential pattern-mining model [23]
in order to determine the most commonly occurring flow paths in the stream. The early

9Sammy Sosa is a retired Major League baseball player.

342 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

SAYANI ECILANEJMOT BOB

 LIN

 TIM MARY MARK

 HARRY DOUG SAM KRISTEN

 JACK AMY

#baseball

#sammysosa

#baseball
#baseball

#sammysosa

Figure 10.12: Examples of propagation paths of tweets related to baseball

points of these flow paths are declared as influential actors specific to the topic at hand.
Other recent methods explicitly use topic modeling techniques to discover such influential
actors. Refer to the bibliographic notes for more details of these methods.

10.6 Summary

Many recommendation problems in practical scenarios can be modeled as structural recom-
mendation problems in networks. For example, traditional collaborative filtering problems
can be modeled as user-item graphs. Various methods such as ranking techniques, collec-
tive classification methods, and link prediction techniques can be used on these user-item
graphs.

Ranking and search are problems that are closely related to recommendation analysis.
The main difference is that the results in the latter are personalized to specific users. In
recent years, the methods for search and recommendation have become increasingly inte-
grated, as search providers have started using user-specific information in order to person-
alize search results. Many variants of structural recommendation algorithms can be used in
conjunction with social network analysis or user-item graphs. For example, both collective
classification and link prediction can be used in conjunction with user-item graphs.

In collective classification, the goal is to infer labels at the remaining vertices from the
pre-existing labels at a subset of the vertices. Collective classification techniques are partic-
ularly useful in the context of content-centric recommendation analysis in social networks.

In the link-prediction problem, the goal is to predict the links from the currently available
structure in the network. The structural methods use local clustering measures such as
the Jaccard measure or personalized PageRank values for making predictions. Supervised
methods are able to discriminatively determine the most relevant features for link prediction.
Link prediction methods are used to predict friends in social networks.

Social networks are often used for influencing individuals using “word-of-mouth” tech-
niques. These methods can be viewed as techniques for recommending users to merchants
for viral marketing. Typically, centrally located actors are more influential in the network.
Diffusion models are used to characterize the flow of information in social networks. Two

10.7. BIBLIOGRAPHIC NOTES 343

examples of such models include the linear threshold model and the independent cascade
model. In recent years, such methods have been extended to use topic-specific techniques
in the context of social streams.

10.7 Bibliographic Notes

The PageRank algorithm is described in [104, 465]. The HITS algorithm is also used for
topic-sensitive search [302]. The topic-sensitive PageRank algorithm is described in [243],
and the SimRank algorithm is described in [278]. Methods for leveraging the personalized
PageRank algorithm in various forms of social recommender systems are discussed in [16, 81,
350, 602, 640, 663]. The work in [350] shows how to use random walks for grocery shopping
recommendations. Temporal recommendations with the use of random walks on graphs are
discussed in [639].

The iterative classification algorithm (ICA) has been presented in the context of many
different data domains, including document data [143] and relational data [453]. Several
base classifiers have been used within this framework, such as logistic regression [379] and a
weighted voting classifier [387]. The discussion in this chapter is based on [453]. Many dif-
ferent variations of random-walk methods [56, 674, 678] have also been proposed. Collective
classification of directed graphs is discussed in [675]. Detailed surveys on node classifica-
tion methods may be found in [77, 375]. A toolkit for collective classification may be found
in [388].

The link-prediction problem for social networks was proposed in [354]. The measures
discussed in this chapter are based on this work. The merits of supervised methods are
discussed in [355], and matrix factorization methods are discussed in [432]. Matrix factor-
ization for link prediction can be viewed as analogous to similar methods that are used for
collaborative filtering. A survey on link-prediction methods for social network analysis may
be found in [42]. Methods for signed link prediction are discussed in [157, 324–326, 346, 591].
Other signed network techniques for collaborative filtering are discussed in [324, 325]. The
work in [157] is notable because it shows the connections between the matrix factorization
methods for link prediction and for collaborative filtering. A large and growing area of re-
search is in the context of heterogeneous networks [36, 576, 577] in which links of multiple
types are predicted from one another. In other related work, links from multiple networks
are predicted from one another [488].

The problem of influence analysis has been studied both in the context of viral marketing
and social networks. This problem was first studied in the context of viral marketing in [176,
510]. Subsequently, the problem was also studied in the context of social networks [297].
The linear threshold and independent cascade models are presented in this work. A degree-
discount heuristic was proposed in [152]. A discussion of the submodularity property may
be found in [452]. Other recent models for influence analysis in social networks are discussed
in [153, 154, 369, 589]. One of the main problems in social influence models is a difficulty in
learning the influence propagation probabilities, though there has been some recent focus on
this issue [234]. Recent work has also shown how influence analysis can be performed directly
from the social stream [80, 233, 573]. The method in [573] also shows how this approach may
be made topic-sensitive. A survey on models and algorithms for social influence analysis is
provided in [575].

344 CHAPTER 10. STRUCTURAL RECOMMENDATIONS IN NETWORKS

10.8 Exercises

1. Apply the PageRank algorithm to the graph of Figure 10.1(b), using teleportation
probabilities of 0.1, 0.2, and 0.4, respectively. What is the impact on the dead-end
component (probabilities) of increasing the teleportation probabilities?

2. Repeat the previous exercise, except that the restart is performed from node 1. How
are steady-state probabilities affected by increasing the teleportation probability?

3. Show that the transition matrix of the graph of Figure 10.1(b) will have more than
one eigenvector with an eigenvalue of 1. Why is the eigenvector with unit eigenvalue
not unique in this case?

4. Implement the personalized PageRank approach for collaborative filtering on a implicit
feedback matrix. Your implementation should automatically construct the user-item
graph.

5. Implement the Jaccard and Adamic-Adar measures for link prediction.

6. Create a link prediction measure that can perform the degree normalizations per-
formed both by the Jaccard measure and the Adamic-Adar measure.

7. Implement the linear threshold and independent cascade model for influence analysis.

8. Describe the adaptation of user-based neighborhood models in collaborative filtering
for undirected link prediction. Does it make a difference whether one adapts user-
based methods or item-based methods in undirected networks? How about directed
networks?

9. Describe the adaptation of sparse linear models in Chapter 3 to directed link
prediction.

Chapter 11

Social and Trust-Centric Recommender
Systems

“Society is like a large piece of frozen water; and skating well is the great art of
social life.”– Letitia Elizabeth Landon

11.1 Introduction

With increasing access to social information about users, merchants can directly incorpo-
rate social context in collaborative filtering algorithms. Although some of these methods are
discussed in Chapter 10, the focus of this chapter is primarily on recommending nodes and
links in network settings. Social context is a much broader concept, not only including social
(network) links, but also various types of side information, such as tags or folksonomies. Fur-
thermore, the social context can also be understood in a network-agnostic way, as a special
case of context-sensitive recommender systems (cf. Chapter 8). The social setting results
in a number of human-centric factors, such as trust. When users are aware of the identity
of the actors who participate in the feedback process, the trust factor plays an important
role. Therefore, the material in this chapter is closely related to that in Chapter 10, but
nevertheless it is distinct enough a merit a separate chapter in its own right. In particular,
we will study the following aspects of social context in recommender systems:

1. Social context as a special case of context-aware recommender systems: Context-aware
recommender systems are discussed in Chapter 8. An important framework for contextual
recommendations is that of the multidimensional model [6]. One of the possible forms of
context is the social context in which the social information is used as side information
to improve the effectiveness of the recommendation process. For example, the choice
of movie that a user might watch depends on the companion with whom she chooses

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 11

345

346 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

to watch the movie. In other words, she would often choose a different film depending
on whether she was watching it with her friends, parents, or significant other. Such
recommendations can be handled directly with the multidimensional model, without the
need to use the structure of the social network in the recommendation process.

2. Social context from a network-centric and trust-centric perspective: In these cases, it
is assumed that the merchant is aware of the social structure of the user. Users are
often likely to ask their friends for suggestions about movies, restaurants, or other items.
Therefore, the social structure of a user can be viewed as a social trust network, which
is useful for the recommendation process. For example, if a user is friends with many
people who have watched a particular movie, then she is more likely to watch that movie.
Furthermore, if the user is densely connected with a community of users interested in the
movie, this provides further evidence of user interest. Therefore, the network structure
and interests in the vicinity of the user play a key role in the recommendation process.

In some networks, such as Epinions.com [705], trust networks are created between users,
which provide feedback on how much users can rely on each other’s opinions in the
recommendation process. The trust factor is particularly important because a user’s
personalized interests can be better predicted from the rating patterns of other users
whom she has trusted in the past. It has now been conclusively shown in the literature
that the incorporation of trust has a significant and positive effect on the recommenda-
tion process. Such methods are closely related to some of the network-centric methods
discussed in Chapter 10. Here, we discuss these methods in further detail, especially in
the context of trust-centric systems.

3. User interaction perspective: The user interactions with social networks create many
forms of feedback, such as comments or tags. These tags can be viewed as folksonomies,
which collaboratively annotate and classify content. Such folksonomies are very informa-
tive and can be used to improve the recommendation process. These methods are closely
related to content-centric recommendations except that a combination of a collaborative
and content-centric approach is used. This is particularly natural because sufficient data
is available in such cases to leverage both collaborative and content-centric factors.

It is noteworthy that these methods apply to completely different recommendation settings
and input data. Furthermore, the social information is used in a completely different way
in each of these settings. Therefore, social recommender systems can be understood from
many different perspectives, depending on whether social participants serve as the context,
as the peer recommenders or as the providers of interaction data.

In this chapter, we will discuss all the aforementioned scenarios for social network rec-
ommendations. We will discuss the key settings in which each of these methods apply, and
also the settings in which they work most effectively. We will also discuss how many of
these techniques relate to the methods discussed in earlier chapters. The use of multidimen-
sional context to address the social setting is closely related to the techniques introduced
in Chapter 8. On the other hand, the use of network-centric methods is closely related to
the techniques introduced in Chapter 10. The discussion in this chapter expands on these
themes as they relate to the social context.

This chapter is organized as follows. In section 11.2, we will discuss the use of social
context as a special case of social recommender systems. In other words, we will discuss the
use of the multidimensional model [6] to address social context. Network-centric methods
for social recommendations are discussed in section 11.3. The utilization of user interaction
in social recommendations is discussed in section 11.4. A summary is given in section 11.5.

11.2. MULTIDIMENSIONAL MODELS FOR SOCIAL CONTEXT 347

11.2 Multidimensional Models for Social Context

The multidimensional model of Chapter 8 is the simplest method for incorporating social
information within the recommendation process. This approach has the merit that we can
reuse traditional collaborative filtering models by using the reduction-based approach of
Chapter 8. The use of ratings associated with a social context is one instance where this
approach is applicable. Data about social context may either be directly collected or inferred
from other information sources. Some typical modes of collecting data about social context
are as follows:

1. Explicit feedback: While rating items, such as a movie, the system can be designed to
capture various types of information, such as details about who the movie was watched
with. Similarly, the destination of a tourist might depend on their travel companion.
For example, a tourist is far more likely to travel to Disneyland than to Las Vegas
when her children accompany her. The main challenge with this approach is that users
are generally not very willing to spend too much effort in specifying such contextual
details while providing ratings. Therefore, it becomes more difficult to collect sufficient
data. Nevertheless, when it is possible to collect such data through explicit feedback,
it is generally of high quality. Therefore, it should be considered the first choice where
possible.

2. Implicit feedback: The social context of a user can often be inferred from where, when,
and how the item was bought, or her other social activities. For example, if a tourist
uses the same credit card to book a set of tickets for herself and her travel com-
panions, this provides useful contextual information to the tour operator for future
recommendations. In some cases, the collection of contextual data might require the
use of machine learning techniques. With the increasing availability of mobile phones
and the ability to perform online user activity analysis, it has become increasingly
easy to collect such information in an automated way.

Let U be the set of users, I be the set of items, and C be the set of alternatives representing
the social context. The ratings can then be viewed as a mapping gR on a 3-dimensional rat-
ings cube R. The domain of the mapping is defined by U×I×C, and the range corresponds
to the values of the ratings. This mapping may be written as follows:

gR : U × I × C → rating

For example, consider a travel recommendation application in which the context is the travel
companion. Figure 11.1 illustrates an example of a 3-dimensional ratings matrix with social
context. Here, the items correspond to the tourist locations and the contexts correspond
to the travel companions. Each entry in the cube corresponds to the rating of a specific
travel location of a user in a particular context. It is noteworthy that this example is a
simple adaptation of Figure 8.3 in Chapter 8 to fit the social context. It is also possible to
have multiple social contexts. In such a case, the dimensionality of the underlying cube will
increase accordingly and one can work with a w-dimensional cube of ratings. It is evident

348 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

PERFORM TRADITIONAL
COLLABORATIVE FILTERING
ON SHADED SLICE TO FIND
RECOMMENDATIONS WITH

CHILDREN AS TRAVEL
COMPANIONS

DAVID

SAYANI

JOSE

MARK

TR
AV

EL
ER

S

ANN

JIM

T

RM
U
DA

H
AW

AI
I

S
VE

G
AS

LA
N
D
O

JIM

BE

H

LA
S

O
R

TRAVEL DESTINATIONS

Figure 11.1: Travel recommendations with varying social context (Adaptation of Figure 8.3
in Chapter 8)

that the multidimensional model in the case of social context is not very different from that
in the case of other types of context. Therefore, the algorithms discussed in Chapter 8 can
be generalized to this scenario in a relatively painless way.

Queries can be posed in a way that is similar to multidimensional context by partition-
ing the dimensions into “what” dimensions and “for whom” dimensions. A typical query is
of the following form:

Determine the top-k possibilities in the “what” dimensions for a particular set of speci-
fied values in the “for whom” dimensions.

In the aforementioned example, some possibilities for the various queries include:

1. Determine the top-k destinations for a particular user.

2. Determine the top-k destination-companion pairs for a particular user.

3. Determine the top-k destinations for a particular user-companion pair.

4. Determine the top-k companions for a particular user-destination pair.

The reduction approach of section 8.2 in Chapter 8 can be used to provide responses to
such queries. Let fR′ : U × I → rating be a conventional collaborative filtering algorithm
on a 2-dimensional ratings matrix R′. Then, each of the aforementioned queries can be
reduced to a standard collaborative filtering problem. For example, in order to determine
the best destinations to visit with children, one can extract the corresponding 2-dimensional
slice R′(children) from the original 3-dimensional ratings matrix R. This slice is shaded in

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 349

Figure 11.1. Then, a standard collaborative filtering algorithm can be applied to this 2-
dimensional matrix. In the event that there are multiple travel companions, this results in
context set V . The data cube slices for each of the contexts in V can be extracted and
the ratings can be averaged over the different contextual values for a particular user-item
combination. This process is similar to that of Equation 8.2 in Chapter 8:

gR(User, Item, V) = AVERAGE [y∈V] gR(User, Item, y) (11.1)

Therefore, the problem can again be reduced to the 2-dimensional case with the use of the
averaged slice over the social context set V . A similar approach can be used for the problem
of determining the top-k destinations of a particular user without any specific context in
mind. In such a case, the ratings can be averaged over all the different contexts rather than
a specific social context set V . This approach is referred to as prefiltering. However, other
methods, such as postfiltering, latent factor models, or other machine learning models, are
also discussed in Chapter 11. All these methods can be easily generalized for providing
recommendations in these settings.

11.3 Network-Centric and Trust-Centric Methods

The basic idea in network-centric methods is that the friendship structure of a user has a
profound influence on her tastes, choices, or consumption patterns. Users often ask their
friends for suggestions regarding movies, travel, or other items. Furthermore, social connec-
tions exhibit the well-known principle of homophily, in which connected users often have
similar interests and tastes. This similarity in tastes often leads a user to trust the recommen-
dations from their connected users more than others. Numerous methods can be designed
to incorporate such links into the recommendation process. Although such links may have
varying effectiveness depending on the application domain, they are usually particularly
helpful in cases of cold-start, when there is little information available about a particular
user’s ratings. In such cases, the knowledge embedded in the user’s social connections can
be particularly helpful in identifying her most relevant peers. In the following, a number of
key methods will be discussed for incorporating social knowledge into the recommendation
process. First, we will discuss the two important concepts of trust and homophily, which
are related but not quite the same.

11.3.1 Collecting Data for Building Trust Networks

Trust and homophily both play an important role in the social recommendation process.
These concepts are related but they are not quite the same. Homophily refers to the fact
that linked users in social networks are likely to be similar to one another in terms of their
tastes and interests. Trust refers to the fact that users are more likely to trust the tastes
and recommendations of their friends. In some cases, trust is the consequence of homophily.
As linked users tend to be similar to one another, they tend to trust each other’s tastes
and recommendations. The strong correlation between trust and homophily has been shown
in [224, 681].

Either homophily or trust or both may be relevant in a given network. In some social
networks, such as Facebook, both homophily and trust are relevant because links typically
represent friendship relationships. In fact, trust relationships can often be computationally
inferred from such Web-based social networks [226]. Many characteristics, such as feature

350 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

similarity and email exchanges can be used to infer the trust links. For example, one might
use the following user-to-user similarity [588] to determine the trust tij between user i and j.

tij =

{
Cosine(i, j) if i and j are connected

Undefined otherwise
(11.2)

The cosine similarity is calculated on the ratings of users i and j. It is noteworthy that when
i and j are not connected, the trust between them is undefined. As we will see later, this
undefined value can also be inferred with the use of trust propagation methods. Therefore,
such methods infer the trust values between connected users in a different way from how
they infer trust values between unconnected users.

The aforementioned methodology can be viewed as an implicit way of inferring the trust.
In some networks such as Epinions [705], the trust links are explicitly specified by the users.
Some examples of such networks are as follows:

1. In Golbeck’s Filmtrust system [225], users are asked to evaluate their trust in their
acquaintances’ ratings in addition to providing ratings. This data is then used to make
recommendations.

2. In the Epinions site [705], users are explicitly asked to specify the other users that
they trust or distrust.

3. In the Moleskiing site [461], the inter-user trust information is obtained via explicit
feedback. Users are allowed to rate how useful they found the comments by other
users. This can help in inferring trust links between users. When a user frequently
expresses a positive opinion about the comments of another user, a directed edge can
be added from the former to the latter. A modeling approach may be used to relate
this frequency to an explicit trust value. An example of such a modeling approach is
provided in [591], although this work is focused on distrust relations rather than trust
relations. The ability to leave feedback about reviews is also available on sites such as
Amazon.com.

4. Trust and distrust relationships are also available in the Slashdot network [706], which
is a technology blog. In this case, the relevant trust relationships are directly specified
by the users.

In all cases, whether the trust relationships are implicitly inferred or explicitly specified by
the users, a trust network can be created. This trust network is also referred to as the Web
of trust. For the purpose of this chapter, we will assume that trust is specified as an m×m
user-user matrix T = [tij], in which each value of tij is drawn from the range (0, 1). Large
values of tij indicate user i trusts user j to a greater degree. The case where tij ∈ (0, 1)
represents the probabilistic model of trust representation. This representation provides a
way of modeling trust but not distrust. In general, the value of tij may not be the same as
that of tji, although some implicit inference models may make this assumption.

In some cases, distrust relationships are also available. For example, Epinions provides
users the option to specify block lists corresponding to distrusted users. Ideally, distrust
relations should be negative values and one can extend the model to use values in [−1,+1].
However, it is often challenging to generalize inference algorithms to trust networks with
both trust and distrust relationships. Most of the work in the literature has focused only
on using the trust relationships while ignoring the distrust relations. Therefore, most of

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 351

the discussion in this section will be based on positive trust relations between nodes. The
bibliographic notes contain more details about methods that use distrust relations.

Trust-aware recommender systems are able to use the knowledge in the Web of trust in
order to make personalized and accurate recommendations. Such recommender systems are
also referred to as trust-enhanced recommender systems. Many of these methods use special-
ized operators, referred to as trust aggregation and trust propagation. These are mechanisms
to estimate the unknown trust level between two users with the use of transitivity in the
trust network. In other words, once it is known how much A trusts B and how much B
trusts C, it can also be estimated how much A trusts C. Trust metrics estimate how much
one user should trust another based on existing trust relationships in the network [682].

Trust networks are directed, especially when they are explicitly specified by users. This
is because trust relations are asymmetric. The level of trust of A for B may be different
from that of B for A. Most trust-based algorithms take the edge directions into account
during the computation. However, in some cases, the simplifying assumption of undirected
networks is made, especially when the trust relations are implicitly inferred from Web-based
social networks. For example, the trust relation of Equation 11.2 is symmetric.

11.3.2 Trust Propagation and Aggregation

Trust propagation and aggregation play an important role in the design of social recom-
mender systems. These operators are motivated by the fact that trust networks are sparsely
specified, in which all pairs of users do not necessarily have trust relationships between
them. Therefore, the transitivity in trust relations needs to be used to infer the missing
trust relations with the use of operators like propagation and aggregation.

What does transitivity mean? For example, if Alice trusts John and John trusts Bob,
then one can infer the fact that Alice might trust Bob. This fact is, in turn, useful for
Alice to make recommendations based on the items that Bob might have liked. In other
words, one needs to determine paths in the trust network in order to make such inferences.
The determination of the unknown value of the trust between two nodes at the end points
of a path is referred to as trust propagation. However, there are typically multiple paths
in a trust network between a pair of users. For example, in the simple trust network of
Figure 11.2, the trust values on the edges are assumed to be drawn from (0, 1). The value
on the directed edge from any user A to any other user B indicates how much A trusts B.
There are two paths between Alice and Bob, and the (propagated) trust values between
Alice and Bob need to be aggregated over these two paths. When quantifying Alice’s trust
in Bob, Alice is the source and Bob is the sink. The trust propagation and trust aggregation
operators are computed as follows:

1. Trust propagation along a single path: A multiplicative approach is commonly used for
trust propagation [241, 509]. In this case, the trust values on the edges are multiplied
in order to obtain the trust between the two endpoints. For example, consider the
path Alice → John → Bob in Figure 11.2. In this case, multiplying the trust values
on the path yields a propagated trust value of 0.7 × 0.6 = 0.42. Similarly, for the
path Alice → Mary → Tim → Bob, the multiplicatively propagated trust value
is 0.3 × 0.4 × 1 = 0.12. Many methods also use trust decay to deemphasize long
paths, or simply use shortest paths. For example, a user-defined decay factor β < 1 is
used to multiply the computed trust value with βq, where q is the path length of the
propagation. In Figure 11.2, the decay approach would multiply the propagated results
with β2 for the upper path and β3 for the lower path. The resulting computed values

352 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

JOHN

0.7 0.6

BOBECILA

0.3 1.0

0.4
MARY TIM

Figure 11.2: A simple trust network

are 0.42×β2 and 0.12×β3, respectively. More sophisticated methods for incorporating
decay include the Appleseed algorithm [682], in which a spreading activation model is
used.

These types of multiplicative propagation algorithms are only designed for non-
negative trust values in the range (0, 1). Distrust relations pose significant chal-
lenges because a sequence of two distrusts does not always imply a trust relation-
ship [241, 590, 591]. Therefore, a multiplicative approach cannot be directly used in
case of negative trust values. Refer to the bibliographic notes for pointers on propa-
gation methods that are designed for distrust relations.

2. Trust aggregation across multiple paths: In trust aggregation, the propagated values
over various paths are aggregated into a single value. Common aggregation operators
include the use of the minimum, maximum, average, weighted average, or weighted
sum. In weighted averages, some propagation paths are considered more important
than others. For example, shorter paths or recommendations from closer friends might
be considered more important. Such weighting can also be handled within the trust
propagation operator with the use of decay function.

Consider the example of Figure 11.2. The use of the average operator in the afore-
mentioned example leads to an estimated trust value between Alice and Bob of
(0.42 + 0.12)/2 = 0.27, whereas the summation operator leads to an estimated value
of (0.42 + 0.12) = 0.54. The bibliographic notes contain pointers related to various
trust aggregation methods.

Trust propagation and aggregation are unsupervised methods for performing recommenda-
tions in trust-centric systems because they use fixed heuristics, irrespective of the under-
lying data. Supervised methods use low rank representations, such as matrix factorization,
to learn these dependencies. In a later section, we will also discuss supervised methods, in
which the algorithms learns the importance of different paths. It is noteworthy that some of
the decay-based propagation algorithms with summation-based aggregation are very simi-
lar to the unsupervised Katz measure used in link prediction. The use of the Katz measure
for link prediction is discussed in Chapter 10. As we will see later in section 11.3.7, the
problem of trust-aware recommendations can be directly transformed to an instance of the
link prediction problem.

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 353

11.3.3 Simple Recommender with No Trust Propagation

Consider a scenario in which a trust network is available, but only directly observed trust
values (e.g., by user feedback in Epinions) are used. Furthermore, propagation and aggre-
gation are not used to infer trust values between indirectly connected users. In other words,
if user i has not directly provided feedback about user j, then no trust value between i and
j is available. We have an m × n ratings matrix R = [rij] for m users and n items, and
an m × m trust matrix T = [tij] representing the trust relationships. In other words, tij
represents the degree to which user i trusts user j.

A simple approach to predict the rating r̂ij of user i for item j is to define the peer group
of user i as all usersN(i, θ) who have rated the item j and are trusted by user i above a given
threshold θ. Then, we can use the formula that is commonly used in neighborhood-based
methods:

r̂ij =

∑
k∈N(i,θ) tikrkj
∑

k∈N(i,θ) tik
(11.3)

This approach can be viewed as a user-based version of neighborhood methods, in which
trust values are used instead of the Pearson correlation coefficient. The formula is also
referred to as the trust weighted mean. An alternative is to use the mean rating μk of each
user k for centering the ratings, as in traditional collaborative filtering:

r̂ij = μi +

∑
k∈N(i,θ) tik(rkj − μk)
∑

k∈N(i,θ) tik
(11.4)

This approach can lead to predictions that do not lie within the specified rating scale. In
such cases, one can adjust the rating to the nearest rating within the specified scale.

11.3.4 TidalTrust Algorithm

The TidalTrust algorithm is based on the observation that shorter paths are more reliable
for propagation. Therefore, one should use the shortest path between a source-sink pair for
the trust computation. For the purpose of further discussion, assume that the trust needs
to be computed from source i to sink j. The algorithm derives its name from the fact that it
first has a forward phase in which nodes are explored from source i to sink j in breadth-first
order in order to discover all the shortest paths from i to j and also set a trust threshold
β(i, j). Then, the algorithm uses a backward phase in which recursive trust computations
are made in reverse order from that in which nodes were explored in the forward phase
(i.e., from sink to source). Only edges lying on the shortest paths (discovered in the forward
phase) with trust at least equal to β(i, j) are used in the backward phase. Therefore, the
algorithm may be summarized as follows:

1. Forward phase: The goal of the forward phase is to determine a minimum threshold
β(i, j) on the trust values for them to be considered relevant in the trust computation
between source i and sink j. The approach for computing β(i, j) will be discussed
later. Furthermore, all shortest paths from source to sink are determined during this
phase with breadth-first search. Note that the subgraph G(i, j) of (all) shortest paths
from source i to sink j is always a directed acyclic graph with no cycles. The children
C(q) of each node q are defined as all nodes to which node q points in this directed
acyclic graph G(i, j) of shortest paths. Only the edges in this subgraph are relevant
for the backward phase. The forward phase will be described in more detail later.

354 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

2. Backward phase: In the backward phase, starting from the sink node j, nodes are
processed in reverse order of their distance to source node s using the edges of G(i, j).
In other words, nodes closest to the sink are processed first. Let the currently processed
node be denoted by q. If the edge (q, j) is already present in the trust network, then we
can trivially set the predicted trust value t̂qj to the observed trust value tqj . Otherwise,
if the edge (q, j) is not present in the trust network, then the predicted trust value t̂qj
between user node q and sink node j is recursively computed using only the edges in
G(i, j) with observed trust values of at least β(i, j):

t̂qj =

∑
k∈C(q),tqk≥β(i,j) tqk t̂kj
∑

k∈C(q),tqk≥β(i,j) tqk
(11.5)

It is noteworthy that computing the trust value t̂qj according to Equation 11.5 always
requires the computed values t̂kj for all children k ∈ C(q). The value of t̂kj is always
available at the time of computing the trust value t̂qj because k is a child of q, and
all computations are performed in the backward direction. Even though the approach
computes many intermediate values t̂kj , the computed source-sink value t̂ij is the only
relevant one for a particular source-sink pair (i, j) and the other intermediate values
are discarded. The approach, therefore, needs to be repeated over various source-sink
pairs.

It remains to describe the forward phase in more detail. In the forward phase, a modified
version of breadth-first search is used starting from node i in order to compute the directed
acyclic graph of shortest paths G(i, j). Standard breadth-first search only discovers the first
shortest path between i and j (depending on node exploration order), whereas we would like
to find all of them. The main difference from standard breadth-first search is that previously
visited neighbors of a node are also checked to see if they might be children of a given node.
The source i is labeled with a distance value d(i) of 0. All other distances are labeled as
∞. All outgoing neighbors of i are then labeled with a distance value of 1 and added to a
list L. In each iteration, the node q with the smallest distance label d(q) from L is selected.
The labels of each its neighbors k on outgoing edges are modified as follows:

d(k) = min{d(k), d(q) + 1} (11.6)

The node k is added to the children C(q) of q if and only if d(k) = d(q)+1 after the update.
The node q is deleted from the list L after updating the labels of all its neighbors (including
those that were visited earlier). The algorithm terminates when the node with the smallest
distance label in L is the sink j. At this point, all nodes in the graph with distance labels
greater than or equal to that of the sink node j are deleted from the network. Furthermore,
any edge (q, k) not satisfying the condition d(k) = d(q) + 1 is deleted. The remaining sub-
graph G(i, j) contains all the shortest paths from node i to node j. For example, the shortest
path subgraph G(i, j) for the trust network in Figure 11.3(a) is shown in Figure 11.3(b).
Note that node 6 is missing in Figure 11.3(b) because it is irrelevant to any of the paths
between the source node 1 and sink node 8. Several edges have also been dropped from
the original graph because they do not lie on any shortest path. For each source to sink
path in G(i, j), the minimum weight edge is determined. The value of β(i, j) is set to the
maximum of these various minima. A dynamic programming approach can also be used
to efficiently compute β(i, j) by keeping track of intermediate values of β(i, k) during the
forward phase. We initialize β(i, i) = ∞ and β(i, k) = 0 for each k = i. Whenever, the label

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 355

6

2 3 8

SINK

4 71SOURCE

5

2

3

841 KNISECRUOS

5

7

DISTANCE = 0 DISTANCE = 1 DISTANCE = 2 DISTANCE = 3

(a) A trust network

(b) Subgraph of shortest paths

Figure 11.3: The subgraph of shortest paths found by TidalTrust for a trust network

of node k strictly reduces because of incoming edge (q, k) (based on Equation 11.6), the
following update is also executed:

β(i, k) = max {β(i, k),min{tqk, β(i, q)}} (11.7)

As a result, the end of the forward phase also yields the value of β(i, j).

So far, we have only discussed user-to-user trust computation in TidalTrust. How can
this computation help in recommendation of items? The final rating of an item is computed
using the trust-weighted mean, in a manner similar to Equation 11.3. The main difference
is that predicted trust values t̂ik can also be used on the right-hand side of Equation 11.3,
rather than only the observed trust values of the neighbors of node i. Let Ii be the indices
of the items rated by users i. Therefore, Equation 11.3 is modified as follows:

r̂ij =

∑
k:k∈Ii t̂ik≥θ t̂ikrkj
∑

k:k∈Ii t̂ik≥θ t̂ik
(11.8)

356 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

As before, θ is a user-defined threshold on the inferred trust value, for it to be used in the
computation. These methods have a particularly beneficial effect on recommendations to
controversial users whose ratings on items differ significantly from other users [223].

11.3.5 MoleTrust Algorithm

The MoleTrust algorithm shares a number of conceptual similarities with the TidalTrust al-
gorithm, but is quite different in terms of how it is implemented. The TidalTrust algorithm
uses a forward phase followed by a backward phase for each source-sink pair, whereas the
MoleTrust algorithm uses two forward phases for each source node. Note that a single ap-
plication of the forward and backward phase in the TidalTrust algorithm is able to compute
the trust from a particular source to a particular sink, whereas the MoleTrust algorithm is
able to compute the trust from the source i to all other nodes within a maximum distance
threshold in two forward phases. As a sink is not specified in MoleTrust, a different criterion
(in terms of maximum path length δ) is used to terminate the shortest path computation.
Furthermore, a user-defined trust threshold α is used across all source-sink pairs, rather than
one that is computed for each source-sink pair. Therefore, the two phases are as follows:

1. Forward phase 1: Determine all shortest paths starting from source node i with length
at most δ. As in TidalTrust, the modified breadth-first approach is used, except that
the termination criterion is based on maximum path length rather than on reaching
the sink node. We determine the directed acyclic graph G(i, δ) in which all edges lie
on one of these shortest paths. The predecessors P (q) of each node are the nodes that
point to q in the graph G(i, δ). Note that the notion of predecessor in MoleTrust is
exactly the converse of the notion of children in TidalTrust.

2. Forward phase 2: The algorithm starts by setting t̂ik = tik for all nodes k such that
the edge (i, k) is present in the graph G(i, δ). These represent nodes at distance 1
from source node i. Then, the trust value between the source and the nodes at higher
distances are computed. For any node q at a distance 2 or more from the source node
i in G(i, δ), the trust t̂iq is computed as follows:

t̂iq =

∑
k∈P (q),tkq≥α t̂ik · tkq
∑

k∈P (q),tkq≥α tkq
(11.9)

Note the similarity with the TidalTrust computation. The main difference is that this
computation is in the forward direction and the threshold α is user-defined. and it is
invariant across all source-sink pairs. Unlike TidalTrust, in which a source-sink specific
threshold β(·, ·) (computed during the forward phase) is used, the threshold α of the
MoleTrust algorithm is invariant across all source-sink pairs.

The final approach for item recommendation is similar to that of TidalTrust. After all the
trust values have been computed, one can use Equation 11.8 to make ratings predictions.

The directed acyclic subgraph for a maximum horizon of length 2, for the graph of
Figure 11.3(a) is shown in Figure 11.4. As in the case of Figure 11.3, node 1 is used as the
source node. Note that unlike Figure 11.3(b), node 6 is present in Figure 11.4, but node 8 is
absent. In the TidalTrust algorithm, the trust values of nodes that are outside the distance
horizon of the source node cannot be the computed. Therefore, t̂18 cannot be computed by
MoleTrust. The assumption is that the trust computation t̂18 is too unreliable to be used in
the recommendation process. Therefore, such trust values are implicitly set to 0. MoleTrust
is more efficient than TidalTrust because it needs only be applied once for each source node,
rather than for each source-sink pair.

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 357

2

3

6

1 4SOURCE

5

7

DISTANCE = 0 DISTANCE = 1 DISTANCE = 2

Figure 11.4: The subgraph of shortest paths found by MoleTrust at a maximum horizon of
2 for the trust network in Figure 11.3(a)

11.3.6 TrustWalker Algorithm

The TrustWalker algorithm [269] is based on the observation that social network links
provide an independent source of information from ratings [172]. Therefore, a random-walk
approach is used to discover the similar users. However, a major dilemma is that if one goes
too far in the random walk, then irrelevant users might be used. An important observation
in this context is that the ratings of strongly trusted friends on similar items are better
predictors than the ratings of weakly trusted friends on the same item. Therefore, the
TrustWalker approach combines trust-based user similarity and item-based collaborative
filtering models in a unified random-walk framework.

The TrustWalker algorithm uses a random-walk approach on the social network of users.
The algorithm starts with the source user i in order to determine the rating r̂ij for item
j. At each step of the random walk, it checks whether the visited user k in the random
walk has rated item j. If this is indeed the case, then the observed rating rkj is returned.
Otherwise, the algorithm has two choices, which can be viewed as a modified version of the
restart method in random walks:

1. At step l of the random walk, the algorithm can terminate at node k with probability
φkjl. In such a case, the rating of the user k on a random item similar to j is returned.
Among all items rated by user k, this random item is chosen with a probability pro-
portional to its item-item similarity with target item j. Note that the returned rating
can be viewed as a randomized and trust-based version of item-based collaborative
filtering algorithms.

2. With probability (1− φkjl), the random walk is continued to the neighbors of k.

The random walk is repeated multiple times, and the ratings are averaged in a probabilistic
way over the various walks. This weighting is based on the probability of termination at
various random walks and the probability of selecting the specific item used for making the
prediction. Refer to [269] for details.

It is noteworthy that the restart probability φkjl is dependent on the currently visited
user k, item j, and number of steps l. The intuition for deciding this value is as follows. The
value of the termination probability φkjl increases with the number of steps l to avoid the
use of weakly trusted users that are far away from the source user. This is consistent with

358 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

all trust-based algorithms that avoid using longer paths for trust propagation. Furthermore,
the probability of termination should also be high, if we are confident that similar items
rated by k will provide a reliable prediction. This is achieved by increasing the probability
of termination when the similarity value of target item j to the closest item rated by k is
high. Let this maximum similarity value be Δkj ∈ (0, 1). Therefore, the overall probability
of termination is set as follows:

φkjl =
Δkj

1 + exp(−l/2)
(11.10)

The aforementioned computation requires the determination of item-item similarity. To
compute the similarities between two items, a discounted version of the Pearson correlation
coefficient is used. First, only items with positive correlation are considered. Second, the
discount factor is set in such a way that the similarity value is reduced when the number
of common users rating the items is small. Therefore, for two items j and s with Njs raters
in common, we have:

Sim(j, s) =
Pearson(j, s)

1 + exp(−Njs/2)
(11.11)

Therefore, the TrustWalker algorithm is able to combine the notions of user trust and
item-item similarity in a seamless way, within a single random-walk framework.

11.3.7 Link Prediction Methods

Most of the aforementioned methods are designed to work with trust propagation and
aggregation heuristics. The effectiveness of a particular heuristic might depend on the data
set at hand. This is because such methods are unsupervised, and they do not always adapt
well to the particular structure of the network at hand. A natural question arises whether
one can directly learn the relevance of different parts of the trust network in a data-driven
manner while performing the propagation and aggregation. Link prediction methods are
useful if only a ranked list of recommended items is required rather than the prediction of
exact values of the ratings. This caveat is primarily because most link prediction methods
are good at recommending ranked lists of edges, but do not work very well for predicting
weights on the edges exactly.

As discussed in section 10.4.6 of Chapter 10, traditional collaborative filtering problems
can be posed as link prediction problems on user-item graphs. Refer to sections 10.2.3.3
and 10.4.6 for a detailed discussion of how user-item graphs can be used for traditional
collaborative filtering. A detailed discussion of the process of user-item graph construction
is also provided in section 2.7 of Chapter 2. In this case, the user-item graphs need to be
augmented with social links corresponding to the links between various users. The aug-
mentation of user-item graphs with social links allows the use of social information in the
collaborative filtering process.

Consider an m × n ratings matrix with m users and n items. It is assumed that the
users are arranged in the form of a social network Gs = (Nu, Au). Here, Nu denotes the
set of nodes representing users, and Au denotes the set of social links between the users.
A one-to-one correspondence exists between users and nodes in Nu. Since the number of
users is m, we have |Nu| = m. An example of a toy social network between a set of users is
illustrated in Figure 11.5(a).

The user-item graph can be viewed as an augmentation of the social network graph with
item nodes. Let Ni be the set of nodes representing items. As in the case of user nodes, a

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 359

U4 U2

U6 U1 U5 U3

AT
O

R

U
R

AT
HE

R

FE
LL

AS

G
LA

DI

BE
N

H

G
O

DF

G
O

O
D

U1 1 1

U2

11

1

1U 11

1

13

U4

1

1 1U6

U5

USERS

ITEMS

GLADIATOR

U1
1

1
1

BEN HUR

U4

U6 1
1

GODFATHERU2

U

1

1 1
1

GOODFELLAS
U3

U5
1

USERS

ITEMS

GLADIATOR

U1
1

1
1

BEN HUR

U4

U6 1
1

GODFATHERU2

U

1

1 1
1

GOODFELLAS
U3

U5
1

AT
O

R

U
R

AT
HE

R

FE
LL

AS

G
LA

DI

BE
N

H

G
O

DF

G
O

O
D

U1 1 11

U2

11

1

1U 11

1

1U3

U4

1

1 1U6

U5

USERS

ITEMS

GLADIATOR

U1
1

1
1

BEN HUR

U4

U6 1
1

GODFATHERU2

U

1

1 1
1

GOODFELLAS
U3

U5
1

(a) A toy social network

(c) User-Item graph (no social links)

(e) Binary ratings matrix

(d) User-item graph (with social links)

(f) Signed user-item graph with social links

(b) Unary ratings matrix

Figure 11.5: A toy example showing the amalgamation of social links and user-item graphs

360 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

one-to-one correspondence exists between items and nodes in Ni. Since we have n items, we
have |Ni| = n. We construct the graph G = (Nu∪Ni, Au∪A). Here, A is a set of edges that
exist between user nodes in Nu and item nodes in Ni. Note that the nodes and edges of this
graph are supersets of those in the original social network Gs. The edges in A correspond to
the relationships in the user-item graph (cf. section 2.7 of Chapter 2). Specifically, an edge
exists between a user node in Nu and an item node in Ni, if the user has rated that item.
The weight on that edge is equal to the mean-centered rating of the user for that item. This
will often result in negative weights on the edges. In the case of implicit feedback data sets,
the feedback is not mean-centered but the corresponding weight (e.g., a 0-1 value or the
number of items bought) is used. The reason for mean-centering in the former case is that
ratings are supposed to indicate both likes and dislikes, whereas implicit feedback provides
a form of unary rating with no explicit mechanism to specify a dislike. In the case of implicit
feedback, the resulting network is a conventional network with only non-negative weights
on the links. In the case of explicit feedback, the resulting network is a signed network
with positive and negative edge weights. It is noteworthy that the resulting network can be
viewed as a union of the nodes and edges in the original social network, and the user-item
graphs discussed in section 2.7 of Chapter 2.

In order to illustrate this point, we show an example of a unary ratings matrix in
Figure 11.5(b). This matrix is the same as that shown in Figure 10.11(a) of Chapter 10. The
corresponding user-item graph (without social connections) is illustrated in Figure 11.5(c).
This graph is identical to that in Figure 10.11(b) of Chapter 10. The user-item graph with
social connections is illustrated in Figure 11.5(d). Note that the graph in Figure 11.5(d)
is a union of the graphs in Figures 11.5(a) and (c). Furthermore, social links can also
have weights depending on the strength of the social ties or the level of trust between the
corresponding social actors. As discussed in section 10.4.6, link prediction methods can
be used to determine user affinity for items. Most link prediction methods also return a
quantification of the strength of the predicted link. The strengths of predicted links of
users for items can be ranked in order to create a ranked item list for the user. Link
prediction methods are discussed in section 10.4 of Chapter 10. In the case of implicit
ratings, conventional link prediction methods may be used because all link weights are
non-negative. The only difference from the approach in section 10.4.6 is that the user-item
graphs are enhanced with social connections. One challenging issue with the use of this
approach is that the social links and the user-item links may not be equally important for
the particular application at hand. In order to address this issue, the weights of all the social
links are multiplied with the parameter λ. The value of λ regulates the relative importance
between social (trust) links and user-item links. The optimal value of λ is chosen using
cross-validation in order to maximize the prediction accuracy.

For explicit feedback, the ratings need to be mean-centered, which will result in edges
with signed weights. In the special case of binary ratings, the values of −1 and +1 are
used to retain simplicity. A value of +1 indicates a “like,” whereas a value of −1 indicates
a “dislike.” An example of a binary ratings matrix is shown in Figure 11.5(e), and its
socially augmented user-item graph is shown in Figure 11.5(f). For such problems, signed
link prediction methods [346, 591] can be used to predict both like and dislike ratings.
Furthermore, it is also possible to include distrust relationships in these predictions by
using negative social links.

One of the nice aspects of link prediction methods is that they do not require the explicit
use of trust propagation and aggregation heuristics because the transitivity of user trust and
corresponding preferences is already learned in a data-driven manner with the use of ma-
chine learning algorithms. In fact, one can even use link prediction methods to infer the trust

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 361

values between pairs of users in the social network, rather than directly inferring user-item
affinities. In other words, the machine learning techniques of link prediction can automat-
ically propagate and aggregate trust in a data-driven manner. It is particularly helpful to
use supervised methods (cf. section 10.4.4 of Chapter 10) for link prediction because such
methods can learn the importance of the trust network in a data-driven manner. In fact,
many of the trust propagation methods can be viewed as unsupervised heuristics, whereas
link prediction provides a route for incorporating supervision into the computation. Indeed,
unsupervised measures for link prediction, such as the Katz measure (cf. section 10.4.2
of Chapter 10), are very similar in principle to some of the decay-based trust propaga-
tion heuristics. It is well known [355] that supervised methods for link prediction generally
outperform unsupervised methods.

Many link prediction methods are designed for undirected networks. While we have
assumed an undirected trust network in the aforementioned example for simplicity, it could
very easily have been used in a directed manner. In the aforementioned user-item graph
model, the user-user links can be assumed to be asymmetric and directed according to
the specified trust relationships, whereas the user-item links are always directed from users
to items. Therefore, directed paths from users to items imply trust-based affinities from
users to items. Either supervised methods or matrix factorization methods [432] can be
used to perform directed link prediction. Therefore, link prediction methods provide a very
general framework that can be used in a variety of scenarios. The bibliographic notes contain
pointers to some recent methods that have use link prediction for recommendations.

11.3.8 Matrix Factorization Methods

Matrix factorization methods are closely related to link prediction [432]. Although one
can use matrix factorization methods within the link prediction framework of the previous
section by using the approach in [432] as the base algorithm, it is more fruitful to design
and optimize matrix factorization methods directly for trust networks.

Let R be an m × n ratings matrix with m users and n items. Let us assume that the
social trust matrix is given by an m × m matrix T = [tip]. Note that both R and T are
incomplete matrices that are highly sparse. Let SR and ST be the observed indices in these
matrices:

SR = {(i, j) : rij is observed}
ST = {(i, p) : tip is observed}

In cases where all observed values of tip are strictly positive, it is helpful to set a sample of
the unobserved values of tip to 0, and include the corresponding indices within ST . Such an
approach can help in avoiding overfitting because it compensates for the lack of negative
feedback (cf. section 3.6.6.2 of Chapter 3).

We start by introducing the SoRec algorithm. The SoRec algorithm [381] can be viewed
as an extension of the matrix factorization methods in Chapter 3 to include social informa-
tion. We emphasize that the presentation here is a simplified version of the SoRec algorithm,
which is originally presented as a probabilistic factorization algorithm. The simplified pre-
sentation helps in understanding the key ideas behind the algorithm, by abstracting out the
less important but complex details. Readers are referred to [381] for the exact description.

362 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

In Chapter 3, a matrix factorization model of rank-k is proposed to create an m × k
user-factor matrix U = [uij] and an n×k item-factor matrix V = [vij], so that the following
condition is satisfied as closely as possible over the observed entries:

R ≈ UV T (11.12)

In order to incorporate social information, we introduce a second m× k user factor matrix
Z = [zij], so that the following condition is satisfied as closely as possible over the observed
trust values:

T ≈ UZT (11.13)

Two user-factor matrices are employed here because matrix U is for the initiator and matrix
Z is for the receiver. Furthermore, as T might not be symmetric, U and Z need not be the
same. Intuitively, the initiator is the participant who decides whether or trust or not to trust
(i.e., source), and the receiver is the participant who is the recipient of this trust/distrust
(i.e., sink). Note that the user matrix U , which is the initiator, is shared in both factoriza-
tions. The initiator is shared rather than the receiver because the trust opinions of sources
for sinks are used to predict ratings in such systems. It is this sharing of U that results
in a factorization with the incorporation of the social trust information. Therefore, a joint
factorization objective function is set up in which the errors in factorizing each of R and T
are added. How much should the errors in each of the two factorizations be weighted? This
is achieved with the use of a balance parameter β. Then, the overall objective function may
be stated as follows:

Minimize J = ||R− UV T ||2
︸ ︷︷ ︸

Observed entries in R

+ β · ||T − UZT ||2
︸ ︷︷ ︸

Observed entries in T

+λ
(
||U ||2 + ||V ||2 + ||Z||2

)

︸ ︷︷ ︸
Regularizer

The parameter λ controls the level of regularization. Note that this objective function
is computed only over the observed entries and the unspecified entries are ignored in the
computation of the Frobenius norm. This is consistent with the approach used in Chapter 3.
The resulting objective function is, therefore, a straightforward extension of the matrix
factorization methods in Chapter 3 with an additive term for the social contribution. We
rewrite the objective function in terms of observed entries in SR and ST :

Min. J =
∑

(i,j)∈SR

(rij −
k∑

s=1

uisvjs)
2

︸ ︷︷ ︸
Observed entries in R

+β
∑

(i,p)∈ST

(tip −
k∑

s=1

uiszps)
2

︸ ︷︷ ︸
Observed entries in T

+λ
(||U ||2 + ||V ||2 + ||Z||2)

︸ ︷︷ ︸
Regularizer

A gradient-descent approach can be used to determine the factor matrices U , V , and Z. A
gradient vector of J with respect to all parameters in U , V , and Z is used to update the
current vector of parameters representing all entries in U , V , and Z. The gradient descent

steps depend on the errors e
(r)
ij and e

(t)
ip in the matrices between the observed and predicted

values in the two matrices:

e
(r)
ij = rij − r̂ij = rij −

k∑

s=1

uisvjs

e
(t)
ip = tip − t̂ip = tip −

k∑

s=1

uiszps

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 363

The error matrix on the ratings can be written as Er = [e
(r)
ij] in which unobserved entries

(i.e., entries not in SR) are set to 0. The error matrix on the trust entries can be written

as Et = [e
(t)
ij] in which unobserved entries (i.e., entries not in ST) are set to 0. Then, the

gradient-descent steps can be written in the form of matrix updates as follows:

U ⇐ U(1− α · λ) + αErV + α · βEtZ

V ⇐ V (1− α · λ) + αET
r U

Z ⇐ Z(1− α · λ) + α · βET
t U

Here, α > 0 represents the step-size. The details of the derivation of the gradient-descent
method are left as an exercise for the reader. Note that only the observed entries of Er and
Et need to be computed in each iteration, and it makes sense to use a sparse data structure
to represent these matrices because unobserved entries are set to 0. Although we have used
a single regularization parameter λ and update step-size α for all updates, it often makes
sense to use different regularization parameters and step-sizes for the different matrices U ,
V , and Z.

Next, we describe the stochastic gradient descent method in which the error is approxi-
mated in a randomized way with that over a single entry. This entry is selected in random
order and might belong to either the ratings matrix or the trust matrix. Then, the stochas-
tic gradient-descent approach first iterates through each observed entry (i, j) ∈ SR in the
ratings matrix in random order and makes the following updates:

uiq ⇐ uiq + α

(

e
(r)
ij · vjq −

λ · uiq

2 · nuser
i

)

∀q ∈ {1 . . . k}

vjq ⇐ vjq + α

(

e
(r)
ij · uiq −

λ · vjq
nitem
j

)

∀q ∈ {1 . . . k}

Here, α > 0 represents the step-size. Furthermore, nuser
i represents the number of observed

ratings for user i, and nitem
j represents the number of observed ratings for item j. Note that

this set of updates is identical to that used in matrix factorization for collaborative filtering
without the trust matrix (cf. section 3.6.4.2 of Chapter 3). One difference is that we have
respectively normalized1 the two regularization components with the number of observed
ratings for users and items.

Subsequently, the stochastic gradient-descent approach iterates through each observed
entry (i, p) ∈ ST in the trust matrix in random order and makes the following update steps:

uiq ⇐ uiq + α

(

β · e(t)ip · zpq −
λ · uiq

2 · nout
i

)

∀q ∈ {1 . . . k}

zpq ⇐ zpq + α

(

β · e(t)ip · uiq −
λ · zpq
nin
p

)

∀q ∈ {1 . . . k}

Here nout
i denotes the number of observed entries in ST , for which i is the origin of the

edge, and nin
p denotes the number of observed entries in ST for which p is the destination

of the edge. We alternately cycle through the observed entries in the ratings matrix and
the trust matrix with these updates, until convergence is reached. During a particular

1Strictly speaking, such a normalization should also be used in traditional matrix factorization, but it
is often omitted on a heuristic basis. In the particular case of trust-centric systems, normalization becomes
more important because of the varying sizes of the ratings matrix and trust matrix.

364 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

cycle, the entries are processed in random order, corresponding to the “stochastic” nature
of this gradient-descent approach. The parameters β and λ can be selected using cross-
validation or by simply trying various values of these parameters on a hold-out set. Different
regularization parameters can be used for different matrices for better results, although such
an approach increases the complexity of parameter tuning.

As in the case of all matrix factorization methods, the ratings matrix can be recon-
structed as R̂ = UV T . Note that one can also perform full reconstruction of the trust
matrix T as T̂ = UZT . In fact, the reconstruction of the trust matrix can be viewed as a
data-driven method for trust propagation and aggregation in which the rating information
is used in addition to the existing trust relations.

11.3.8.1 Enhancements with Logistic Function

The aforementioned description provides a simplified version of SoRec in order to align it
more closely with the discussion in Chapter 3. The actual SoRec algorithm uses a somewhat
more sophisticated objective function. Matrix factorization methods have the drawback of
predicting values that are outside the range of item ratings in R or trust values in T . One
way of forcing the factorization to produce range-bound ratings is to use a logistic function
g(x) = 1/(1 + exp(−x)) within the factorization. The logistic function always maps values
to the range (0, 1). Without loss of generality, the ratings in R and trust values in T can be
assumed2 to be drawn from the range (0, 1). In other words, the ratings R and trust matrix
T should be reconstructed as R ≈ g(UV T) and T ≈ g(UZT). The expression g(UV T)
denotes the fact that the function g(·) is applied to each matrix element of UV T . Then, the
aforementioned objective function also needs to be modified as follows:

Minimize J = ||R− g(UV T)||2
︸ ︷︷ ︸

Observed entries in R

+ β · ||T − g(UZT)||2
︸ ︷︷ ︸

Observed entries in T

+λ
(
||U ||2 + ||V ||2 + ||Z||2

)

︸ ︷︷ ︸
Regularizer

Note the use of the logistic function within the objective function. Correspondingly, the gra-
dient descent method will multiplicatively incorporate the derivative of the logistic function
in one of its terms. It is noteworthy that the logistic function-based enhancement is really
an optimization and can be used within the context of any matrix factorization method in
Chapter 3, not just in trust-based methods.

11.3.8.2 Variations in the Social Trust Component

Many variations of the aforementioned matrix factorization method exist, especially in terms
of how the social (trust) part of the objective function is formulated.

1. Instead of using an m × k social factor matrix Z to impose T ≈ UZT , one might
use a k × k matrix H to impose T ≈ UHUT . The corresponding social term in
the objective function will be modified to ||T − UHUT ||2. Intuitively, the matrix H
captures the pairwise correlations between the various latent components of the users.
The approach is referred to as LOCALBAL [594]. It is also possible to use a logistic
function within the objective function as in the case of SoRec, although the original
work does not use this approach.

Note that this approach has a similar form as SoRec, except that it parameterizes Z =
UHT . The matrix H has only k2 variables, whereas Z has m · k variables. Therefore,

2Ratings do not always lie in (0, 1). If needed, the ratings matrix can be scaled using its ranges to
(rij − rmin)/(rmax − rmin), so that all its entries lie in (0, 1).

11.3. NETWORK-CENTRIC AND TRUST-CENTRIC METHODS 365

LOCALBAL makes stronger assumptions about the social correlation structure of the
users, as compared to SoRec. Fewer variables reduce the likelihood of overfitting, at
the expense of incorporating some bias.

2. The SocialMF [270] algorithm imposes the constraint U ≈ TU . Note that TU is not
defined because some of the entries in T might be unspecified. Such entries are set to
0 for the purpose of computing TU . The corresponding social term in the objective
function is ||U − TU ||2. It is assumed that each row of T is normalized to sum to
1. The logistic function is used only within the term ||R − g(UV T)||2 involving the
ratings matrix. Note that the number of factor variables in this case is even fewer
because the matrix Z is missing. In fact, the number of factor variables is exactly the
same as in conventional matrix factorization. Reducing the number of factor variables
will help in avoiding overfitting, but comes at the expense of greater bias.

The approach sets the preference vector of each user to her trust-weighted average
preference vector over all her neighbors. This is a direct result of the normalization
of each row of T to sum to 1. The basic assumption is that the behavior of a user is
affected by the behavior of her direct neighbors due to social influence.

3. Social regularization: In this approach [382], the user factors are forced to be more
similar across links, and the difference in similarity is weighted with the trust values
in the objective function. In other words, if ui is the ith row of U , then the social part
of the objective function is

∑
(i,j):tij>0 tij ||ui − uj ||2. This approach can be viewed as

an indirect way of forcing homophily, and works best with implicitly inferred trust
values tij . An example of such an implicitly inferred trust value is provided in Equa-
tion 11.2. Many variations of this approach, such as average-based regularization,
are also discussed in the same work. The average-based regularization approach is
somewhat similar to the SocialMF algorithm.

The bibliographic notes also provide pointers related to several other variations of the basic
objective function.

11.3.9 Merits of Social Recommender Systems

Social recommender systems have a number of merits because they incorporate additional
trust information into the recommendation process. This is particularly useful for improving
the recommendation quality of items, addressing cold-start issues, and making the approach
attack-resistant.

11.3.9.1 Recommendations for Controversial Users and Items

The greatest advantages in incorporating trust lie in the improvement of the recommenda-
tion quality for controversial users and items. Controversial users are those that disagree
with the other users about the ratings of specific items [223]. Controversial items are those
that receive diverse or polarized reviews. In such cases, the use of trust metrics generally
enhances the user-specific or item-specific accuracy significantly [223, 406, 617] because the
opinions of users are highly personalized in such cases. For example, users who are more
similar and trust one another are more likely to provide similar ratings for controversial
items.

366 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

11.3.9.2 Usefulness for Cold-Start

Social links are particularly useful to handle the cold-start problem for new users. Consider
the case where a link prediction system is used for recommendation. A new user comes into
the system and therefore has no ratings associated with any of the items covered by the
recommender system; no user-item links are incident on that user. On the other hand, if
social links are incident on that user, the link prediction method can still be used in order to
predict the top matching items. This observation is true for other recommendation methods,
such as matrix factorization. The main assumption is that the social links for the users are
often available even before the user actively starts using the system. This is especially true
for implicitly inferred trust networks. In any case, social links do add more data, which is
helpful for alleviating the sparsity issue in the recommendations.

11.3.9.3 Attack Resistance

In general, there are significant commercial motivations for merchants to try to “cheat”
recommender systems hosted by third parties. For example, the manufacturer of an item
might try to post fake reviews for his item on Amazon.com. In many cases, such reviews are
posted with the use of fake profiles created by the manufacturer. Trust-based recommender
systems are more resistant to such attacks because these algorithms rely on the trustworthy
peers of a user for predicting ratings. For example, Equations 11.3 and 11.4 explicitly weight
the trust of a user for other users in the prediction process. A user is highly unlikely to specify
a trust relation with a fake profile. As a result, such an approach is less likely to use the
ratings posted from fake profiles in the prediction process. The topic of attack-resistant
recommendation systems will be discussed in more detail in the next chapter.

11.4 User Interaction in Social Recommenders

The next-generation Web, which is also referred to as Web 2.0, has supported the develop-
ment of a number of open systems in which users can actively participate and leave feedback.
In particular, the development of social tagging systems allows the user to create and share
meta-data about media objects. Such meta-data are also referred to as tags. Users may tag
any form of object supported by the social network, such as an image, a document, music,
or video. Virtually all social media sites allow some form of tagging. Some examples of such
tagging systems are as follows:

• Flickr [700] allows users to tag images with keywords. For example, a keyword might
describe the scenery or object in a specific image.

• The site last.fm [692] hosts music and allows users to tag music.

• Delicious [702] promotes the sharing of bookmarks and online links.

• The Bibsonomy [256, 708] system allows the sharing and tagging of publications.

• For a while, Amazon.com allowed its customers to tag products [709].

It is instructive to examine the nature of the tags created by a social tagging site such as
last.fm. For the well-known musical album Thriller by Michael Jackson, the top tags at
last.fm are as follows:

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 367

1001 albums you must hear before you die, 1980s, 1982, 1983, 80s pop, albums, albums
I own, albums I own on vinyl, beat it, classic, classic pop, classic rock, crates of vinyl,
dance-pop, disco, epic, thirller . . .

These tags are quite informal because they are created by users in an open and partici-
patory environment, rather than by specialists. Note that the tag “thirller” is a misspelling,
which is quite common in such settings. Furthermore, all songs that were tagged by various
users with a particular tag are indexed by it. For example, by clicking on the tag “classic
rock,” one can access various resources (artists, albums, or events) related to this tag be-
cause the corresponding albums and songs were tagged by various users. In other words,
the tag “classic rock” serves as a bookmark or index to other relevant resources.

This process, therefore, results in the organization of content and the creation of a
knowledge resource referred to as a folksonomy. The term “folksonomy” derives its roots
from “folk” and “taxonomy,” and it therefore intuitively refers to the classification of Web
objects by non-specialist, voluntary, participants on the World Wide Web (i.e., common
folk). This term was coined by Thomas Vander Wal, who defined it as follows [707]:

“Folksonomy is the result of personal free tagging of information and objects
(anything with a URL) for one’s own retrieval. The tagging is done in a social
environment (usually shared and open to others). Folksonomy is created from
the act of tagging by the person consuming the information.

The value in this external tagging is derived from people using their own
vocabulary and adding explicit meaning, which may come from inferred un-
derstanding of the information/object. People are not so much categorizing, as
providing a means to connect items (placing hooks) to provide their meaning in
their own understanding.”

Other terms used to describe social tagging include collaborative tagging, social classifica-
tion, and social indexing. Tags provide an understanding of the topic of the object, and they
often use vocabulary that are commonly used and understood by other participants. There-
fore, the non-specialist nature of the participants is actually an asset, and it contributes to
the collaborative power of such a system. Tags are also referred to as social indexes because
they serve the dual role of organizing items. For example, by clicking on a tag, a user might
be able to browse items related to that tag.

Folksonomies have numerous applications, including recommender systems [237]. In the
particular context of recommender systems, folksonomies are valuable because they con-
tribute to the available knowledge about the object at hand. At the very least, each tag can
be considered a feature describing an object, although the underlying description may some-
times be noisy and irrelevant. In spite of their noisy nature, it has been observed that such
social tagging methods can be used to improve the effectiveness of recommender systems
significantly by complementing the knowledge available in ratings and other sources.

11.4.1 Representing Folksonomies

In tagging systems, users annotate items (or resources) with tags. The nature of the re-
source depends on the underlying system at hand. For example, the resource might be an
image for Flickr, or a song for last.fm. Therefore, a 3-way relationship exists between users,
items, and tags. Correspondingly, it can be represented as a hypergraph, in which each
hyper-edge connects three objects. One can also represent it as a 3-dimensional cube (or
tensor) containing unary bits with information about whether a user has tagged a specific

368 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

resource (e.g., image) with a particular tag (e.g., “landscape”). The action of a user tagging
a resource sets the corresponding bit to 1, and it is unspecified otherwise. In many cases,
the unspecified values are approximated as 0 for analytical purposes. Figure 11.6 shows a
toy example of 6 users with 4 items (images) and 5 tags both in the hypergraph and in
the tensor representation. Figure 11.6(a) shows the hypergraph representation, whereas the
Figure 11.6(b) shows the hypergraph representation. For example, Ann has tagged item
2 with the tag “flower.” This results in a hyper-edge between these three entities in Fig-
ure 11.6(a), whereas the corresponding bit is set to 1 in Figure 11.6(b). Formally, we define
a folksonomy as follows:

Definition 11.4.1 (Folksonomy) A folksonomy is defined over m users, n items, and p
tags as a 3-dimensional array F = [fijk] of size m × n × p. The element fijk is a unary
value indicating whether user i has tagged item j with the kth tag. In other words, the value
of fijk is defined as follows:

fijk =

{
1 if user i has tagged the jth resource with the kth tag

unspecified otherwise
(11.14)

In practical settings, the unspecified values are set to 0 by default, as is common in
highly sparse implicit-feedback settings. Henceforth, we will refer to F as the tag-cube. It
is immediately evident from Figure 11.6 that folksonomies have much in common with the
multidimensional representation of context-sensitive recommender systems (see Chapter 8).
As we will see later, this similarity is very useful because many of the methods of Chapter 8
can be used to resolve some of the queries.

Although Figure 11.6 illustrates a small toy example, the number of users and items may
be on the order of hundreds of millions in a social platform like Flickr, and the number of
tags may be on the order of millions. Therefore, such systems face challenges of scalability
in a data-rich environment. This is both a challenge and an opportunity for research in the
field of social-tagging recommender systems.

11.4.2 Collaborative Filtering in Social Tagging Systems

The nature of the recommendation formulation depends on the type of the underlying appli-
cation. In some sites, such as Flickr, tagging information is available but rating information
is not. In such cases, one can still develop a social tagging recommender system in which
either tags or items are recommended based on the underlying patterns in the tag cube.
In other cases, a separate m × n ratings matrix R is available along with the m × n × p
tag cube F . The ratings matrix is defined over the same set of users and items as the tag
cube. For example, the MovieLens site contains both ratings and tagging information. The
resulting collaborative filtering system is said to be a tag-aware recommender system in
which the ratings matrix is the primary data, and the tagging information provides addi-
tional side information to improve the accuracy of rating prediction. Note that the ratings
matrix could be an implicit-feedback matrix, such as in the case of last.fm, where accesses
to resources are logged. In fact, implicit feedback is more common in social tagging sites.
From an algorithmic perspective, implicit-feedback matrices are easier to use because they
generally do not contain negative preferences, and missing entries can often be treated as
0 as an approximation. In the following, we will assume an explicit ratings matrix, unless
otherwise specified.

When the ratings matrix is available, richer varieties of collaborative filtering queries can
be formulated than in the case where only tagging information is available. In such cases,

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 369

SGATSRESU

SAYANIJIM MARK OBAMA
SKY

DAVID
ANN

LANDSCAPE

FLOWER

JOSE
WHITE HOUSE

4

32 3

ITEMS (IMAGES)

DAVID HAS TAGGED ITEM 1
WITH THE TAG “WHITE HOUSE”

SAYANI HAS TAGGED ITEM 2DAVID

SAYANI 1

WITH THE TAG “FLOWER”

MARK HAS TAGGED ITEM 4
WITH THE TAG “OBAMA”

JOSE

MARK

U
SE
RS

ANN

JIM

U

1

1

JIM

ITEMS (IMAGE ID)

2 3 4

ANN HAS TAGGED ITEM 3
WITH THE TAG “FLOWER”

(a) The hypergraph representation

(b) The multidimensional cube representation

Figure 11.6: Representations of a folksonomy

370 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

the tag-cube and the ratings matrix share the user and item dimensions in common, but the
ratings matrix does not contain the tag dimension. The information in these two sources of
information can then be integrated in order to provide recommendations. It is noteworthy
that this scenario can be viewed as a generalization of content-based collaborative filtering
applications. In content-based collaborative filtering, keywords are associated only with
items, whereas in the tag-cube keywords are associated with user-item combinations. One
can view content-based recommender systems as a special case of the tag-cube, in which
the 2-dimensional item-tag slice for each user is identical. Therefore, many of the methods
discussed in the following sections can also be used for content-based collaborative filtering
applications.

Because of this wide diversity in the underlying applications, the problem of collaborative
filtering can be posed in a variety of ways, not all of which have been fully explored in the
literature. In fact, much remains to be done to advance the field with respect to collaborative
filtering, as it is a relatively recent area of interest. Some examples of possible queries are
as follows:

1. (Tagging data only) Given an m× n× p tagging cube F , recommend

(a) a ranked list of tags to user i,

(b) a ranked list of other users with similar interests (tagging patterns) to user i,

(c) a ranked list of items to user i,

(d) a ranked list of tags to user i for item j, and

(e) a ranked list of items to user i for tag context k.

2. (Tagging data and ratings matrix) Given a ratings matrix R and an m× n× p
tagging cube F , recommend

(a) a ranked list of items to user i, and

(b) a ranked list of items to user i for tag context k.

The aforementioned queries can be partitioned into two categories. The first set of queries
does not use a ratings matrix. In such queries, the recommendation of tags and users is
generally more important than the recommendation of items, although one might also use
the approach for item recommendation. Because tags serve as bookmarks and indexes for
resources (items), finding relevant tags is a way of finding relevant items. The second set
of queries is more closely aligned with traditional recommender systems because they are
primarily based on the ratings matrix R. The only difference from traditional recommender
systems is that the tag-cube is used as side information, and it plays a secondary role because
of the amount of noise in it. Such methods are also referred to as tagommenders [535] or
tag-informed collaborative filtering [673]. The primary strength of these systems lies in
their ability to integrate the best of both worlds in user ratings and tag activity. There are
generally fewer methods of the second type, but an increasing number of methods are able
to integrate the knowledge in ratings matrices and the tag-cube. It is important to note
that the matrix R might be unary in cases where explicit ratings are not available, and
only implicit feedback (e.g., buying behavior) is available. It is, nevertheless, important to
understand that the matrix R is an independent source of information from the tag-cube
even when it is implicitly derived.

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 371

Table 11.1: A list of features [536] used to evaluate tag quality

Feature Specificity Criterion by which tags are ordered

num-item-apps per item-tag Number of times tag has been applied to a particular item
num-apps per tag Number of times tag has been applied across all items
num-users per tag Number of users who have applied the tag across all items

num-searches per tag Number of searches for the tag
num-search-users per tag Number of users who have searched for the tag

tag-share per item-tag Fraction of item tags for a particular tag value
avg-fraction- per tag Average across all users, the fraction of all the items
items-tagged tagged by the user that have the tag
apps-per-item per tag Average number of times they are applied to their items
num-tag-words per tag Number of words in the tag

tag-length per tag Number of letters in the tag

11.4.3 Selecting Valuable Tags

Tags are generally quite noisy because of the open way in which they are contributed and
used. In many cases, users might use non-standard vocabulary or misspellings to tag items.
This can result in a large fraction of noisy and irrelevant tags. If irrelevant tags are used,
then it can have a detrimental effect on many recommendation applications. Therefore, it
is helpful to preselect a smaller number of tags. The pre-selection of tags also helps reduce
the complexity of the mining process from a computational point of view. Therefore, tag-
selection algorithms generally order the tags based on simple criteria and then preselect the
top-ranked tags based on these criteria.

Many tagging sites use a simple methodology, referred to as num-item-apps, in which
the number of people who have added a particular tag to an item is used as an estimate of
how much other people would like to see that tag in the future. This can also be considered
a proxy for the value of the tag. There are other intuitive features that are commonly used
to estimate the quality of tags. For example, some tags may be globally valuable, whereas
the value of other tags may be specific to particular items. A number of such features have
been proposed in [536] for evaluating the quality of tags. A list of some of these features
is provided in Table 11.1. In each case, the specificity of the tag (global or local) is also
indicated. It is noteworthy that some of the features in [536] assume that users have rated the
tags themselves with thumbs-up or thumbs-down ratings. Such information may not always
be available in all systems, and therefore these features are not included in Table 11.1.
An experimental methodology for evaluating these features is discussed in [535, 536]. It
was found that features such as num-item-apps, tag-share, and avg-fraction-items-tagged,
provided good performance. On the other hand, some features, such as num-apps, num-
users, and tag-length did not provide the best performance. Furthermore, combining the
five best features into a single feature called all-implicit provided better performance than
any of the individual features. More details are provided in [535, 536] on the inference of
this particular feature.

Aside from these methods, it is also possible to use the feature selection methods in
section 4.3.4 of Chapter 4. The first step is to convert the tag-cube into a 2-dimensional
item-tag slice by aggregating all the item-tag frequencies of the various users. By treating
each tag as a “term,” this approach results in a term-document matrix. Any of the methods
discussed in section 4.3.4 may be used to select the most discriminative tags.

372 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

11.4.4 Social-Tagging Recommenders with No Ratings Matrix

This case can also be viewed as a special case of the multidimensional model in context-
sensitive recommender systems. The tag-cube can be viewed as a multidimensional cube,
in which the tags represent the context. Therefore, the context-sensitive model can be used
to resolve these queries. In fact, the tensor factorization models used for context-sensitive
ranking [495, 496] are not very different in principle from those used in tag recommenda-
tion [497, 498]. A detailed discussion of the multidimensional model for context-sensitive
systems is provided in section 8.2 in Chapter 8.

As discussed earlier, queries in social-tagging recommenders can be formulated in a
variety of ways, where one might recommend item, tags, or users. The tagging cube is 3-
dimensional, and one might recommend along any of the dimensions. Among these various
forms, the recommendation of tags is the most common. The reason for this is that the
recommendation of tags has a benefit both to the user and to the platform hosting the
tagging system:

1. Utility to hosting platform: As tags are non-standard, different users may describe
the same resource using different keywords. Recommending tags for a specific item
helps in consolidating the descriptions. Such a consolidation of the underlying descrip-
tion helps the system to collect better tags, and therefore improve the quality of the
recommendations.

2. Utility to user: Users may either be recommended a tag specific to an item, or they
may be recommended a tag specific to their own interests. The recommendation of
item-specific tags is motivated by the fact that users may find it burdensome to as-
sign tags to items. When relevant tags are recommended for a given item, it makes
their job easier and also makes it more likely that they will participate in the tag-
ging process. This is, in turn, beneficial in collecting more tagging data. User-specific
recommendation of tags is beneficial because tags often serve the goal of organizing
the items in a personalized way for various users. For example, Figure 11.6 might
represent an image-browsing environment such as Flickr. If Ann is recommended the
tag sky based on her other tags, then by clicking on this tag she might be able to
discover other items of interest to her. It is also possible to combine tagging data with
ratings matrices to make high-quality recommendations.

The following section reviews the variety of methods that have been proposed for recom-
mendations in social-tagging systems.

11.4.4.1 Multidimensional Methods for Context-Sensitive Systems

The multidimensional methods discussed in section 8.2 of Chapter 8 can be used to build
social-tagging recommenders. The basic idea is to project the data along a particular pair
of dimensions for queries along two dimensions and use prefiltering methods for contextual
queries along three dimensions.

For example, in order to recommend the best tags to a particular user, one can aggregate
the frequencies of the tags over various items. In other words, one determines the number
of times that a user used a particular tag over all items. This results in a 2-dimensional
user-tag matrix of non-negative frequencies. Any traditional collaborative filtering algorithm
can be used on this matrix in order to recommend tags to a user. Such an approach is best
for recommending tags to users, but they do not use the item context; nonetheless, this
approach is quite useful in real-life settings. Since tags serve the dual function of indexes

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 373

to resources, the tags can be used by users to discover resources they might be interested
in. Similarly, aggregating frequencies along the tag dimension leads to a user-item matrix.
This matrix can be used to recommend items to users.

One disadvantage of using these aggregation methods is that the information along one
of the dimensions is ignored. It is also possible to combine the information from all the
dimensions during recommendation. Suppose that we want to recommend the best tags or
the best items to a particular target user. One way of doing this would be to compute the
similarity of users to the target user based on the aggregated user-tag matrix. This compu-
tation can also be performed with the aggregated user-item matrix. A linear combination
of these two criteria is used to generate the most similar users to the target user. Then,
the standard prediction method (cf. Equation 2.4 of Chapter 2) for user-based prediction
can be leveraged to recommend either the most relevant items or the most relevant tags to
the target. A similar approach can be used for item-based collaborative filtering methods
by starting with a target item and finding the most similar items on the basis of either the
aggregated user-item matrix or the aggregated tag-item matrix.

Another useful query is the recommendation of items to a user for a particular tag con-
text. The prefiltering and postfiltering methodologies (cf. sections 8.3 and 8.4 of Chapter 8)
for context-sensitive systems can be used to achieve this goal. For example, if one wanted
to recommend movies related to the tag “animation,” then the slice of the tag-cube corre-
sponding to “animation” can be extracted. This process results in a 2-dimensional user-item
matrix that is specific to animation movies. Traditional collaborative filtering algorithms
can be applied to this matrix in order to make recommendations. One challenge with the
use of the approach is that the extracted user-item slice might be too sparse. In order to
address the sparsity issue, one can group related tags with the use of tag clustering. For
example, a tag cluster might contain “animation,” “children,” “for kids,” and so on. The
user-item tag frequencies over these related tags can be added together to create an ag-
gregated user-item matrix, which is less sparse. Recommendations can be performed over
this aggregated matrix. Tag-clustering methods are proposed in [70, 215, 542]. Although
the works in [70, 215, 542] explore the use of tag clustering for content-based methods, such
techniques can also be used to improve the effectiveness of collaborative filtering applica-
tions.

Finally, the class of tensor factorization methods have found increasing popularity in
social tagging. These methods are discussed in section 8.5.2 of Chapter 8, as a special
case of context-sensitive systems. A particularly popular method, which is discussed in that
section, is the Pairwise Interaction Tensor Factorization (PITF) method. In addition, these
methods have been generalized to the notion of factorization machines, which can be viewed
as generalizations of large classes of latent factor models. Refer to section 8.5.2.1.

11.4.4.2 Ranking-Based Methods

Ranking-based methods use the PageRank methodology in order to make recommenda-
tions in the presence of tags. A detailed description of ranking methods is provided in
section 10.2 of Chapter 10. The two notable methods in this regard are FolkRank [256],
and SocialRank [602]. The main difference between SocialRank and FolkRank is that So-
cialRank also uses content-centric similarity between the objects in the ranking process.
For example, links might be added between pairs of images based on their content-centric
similarities. Furthermore, SocialRank can be applied to arbitrary social media networks,
rather than the tagging hypergraph. Therefore, SocialRank makes significant changes to the
PageRank algorithm in order to balance the effects of the different modalities. The method

374 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

can, nevertheless, be applied to a folksonomy as well. FolkRank is specifically designed to
work with the tagging hypergraphs created in folksonomies. As SocialRank is already dis-
cussed in section 10.2.3.2 of Chapter 10, we will focus only on the FolkRank method in this
description.

FolkRank is a simple adaptation of personalized PageRank (cf. 10.2.2 of Chapter 10).
The first step in applying FolkRank is to extract a tripartite graph from the tag hypergraph.
The tripartite graph G = (N,A) is extracted from the tag hypergraph as follows:

1. Each tag, user, and item becomes a node in graph G. In other words, each i ∈ N is a
user, tag, or item. Therefore, for m users, n items, and p tags, the graph G contains
(m+ n+ p) nodes.

2. For each hyperedge between a tag, user, and item, undirected edges are added between
each pair of entities. Therefore, three edges are added for each hyperedge.

The personalized PageRank method is then applied directly to this network. The personal-
ization vector of section 10.2.2 is set in such a way that preferred items, users, or tags have
a higher probability of restart. By setting the restart probability in different ways, one can
query for specific users, tags, items, user-item pairs, user-tag pairs, or tag-item pairs. The
responses to the queries can also be obtained in all modalities.

As a result of the process, highly ranked tags, users, and items provide different views of
relevant nodes in the network. An important aspect of FolkRank is that it takes global pop-
ularity (reputation) into account in addition to the user-specific relevance. This is because
all ranking mechanisms tend to favor highly connected nodes. For example, a tag that is
used heavily will always be ranked highly even in personalized PageRank mechanisms. The
value of the restart probability regulates the trade-off between specificity and popularity.
Therefore, a differential version of FolkRank has also been developed, in which these effects
are canceled out. The basic idea of the differential version is to perform the following steps:

1. PageRank is performed on the extracted tripartite graph with no bias. In other words,
the restart probabilities of all nodes have the same value of 1/(m+n+p). Recall that
the tag-cube is of size m×n×p and the number of nodes in the network is (m+n+p).
Let the resulting probability vector be given by π1.

2. Personalized PageRank is performed by setting an increased bias value for the specific
user-item combination being queried. For example, consider the case where a partic-
ular user-item combination is queried. The restart probability for the queried user
node can be set to be proportional to (m+ 1)/(2m+ 2n+ p), the restart probability
for the queried item node can be set to be proportional to (n + 1)/(2m + 2n + p),
and the restart probability of the remaining nodes can be set to be proportional to
1/(2m+ 2n+ p). Let the resulting probability vector be given by π2.

3. The relevance of the various nodes in all modalities can be extracted from the vector
π2 − π1. The values may be either positive or negative, depending on the level of
similarity or dissimilarity.

The main advantage of such an approach is that it cancels out the global popularity effects
to a large extent.

11.4.4.3 Content-Based Methods

Content-based methods can be used in order to make the recommendations of both items
and tags to users. In order to recommend items to users, a user-specific training data set

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 375

can be created in which each item is described by its tag frequencies over the m users.
These frequencies can be represented in tf-idf format. For a given user, the training data
contains all the items that she has tagged, as well as a negative sample of items she has
not tagged. These are objects for which the tagging frequency needs to be learned. The
feature variables and the dependent variable (for the learning process) correspond to the
tf-idf representation of each item, and the number of tags the user has placed on each item.
Note that the dependent variable is 0 for negative samples. A regression-based model is
applied to this training data in order to make predictions.

A similar approach can be used to recommend tags to users instead of recommending
items to users. The main difference is that tags are represented as tf-idf vectors of items
instead of the other way around. The training data is now generated using tags as objects
that need to be classified. Therefore, tags have labels attached to them, based on the number
of times that the user has used them on different items. This training model is used to predict
the interest of the user in the tags for which the user interest is unknown. A comparison of
various content-based methods for tag recommendation is provided in [264].

An item recommendation algorithm, based on tag clustering, was presented in [542]. The
clusters are created using the tf-idf representation of the tags in terms of items. In other
words, each tag is treated as a vector of item frequencies; then these vectors are used to
create m clusters. The clustering process provides an intermediate representation in terms
of which the user interest and item relevance are measured and integrated.

Let the interest of the ith user in the sth cluster be denoted by ucW (i, s), and the
relevance of the jth item (resource) to the sth cluster be denoted by rcW (j, s). The value
ucW (i, s) is computed as the fraction of the tags of user i belonging to the sth cluster, and
the value of rcW (j, s) is computed as the fraction of the tags of item j belonging to the sth
cluster. Then, the overall interest I(i, j) of user i in item j is computed as follows:

I(i, j) =

m∑

s=1

ucW (i, s)× rcW (j, s) (11.15)

The computation of the interest with the use of clusters as an intermediate step is shown
in Figure 11.7. Note that this interest can be used to rank items for users. The basic idea
is that clusters provide a robust summary of the sparse user-item tagging behavior, which
can be used to make high-quality interest computation.

In addition, the work in [542] uses the approach to provide personalized item responses
to user tag queries. For example, if Mary searches for “animation,” she might not be rec-
ommended the same movies that Bob would be suggested for the same query. For a given
queried tag q, its similarity S(j, q) to item j is defined in terms of the relative frequency fjq
with which the item j is tagged with q, in comparison with the frequency of other tags on
item j:

S(j, q) =
fjq

√∑
s f

2
js

(11.16)

Although the value S(j, q) can directly be used to rank items in response to the search
of a particular user i, the results are personalized by using the user interest I(i, j) of the
searcher. The value of I(i, j) is computed using Equation 11.15. The query results are, there-
fore, ordered by S(j, q) × I(i, j) instead of ordering them by S(j, q). It is noteworthy that
recommending items for tag queries does not necessarily require the use of user-specific per-
sonalization, because one can simply use S(j, q) to rank items. Furthermore, recommending
tags for items does not require the use of personalization either. One can simply use the tag-
ging characteristics of the items in order to make recommendations of tags to users. In such

376 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

4

3

2

1

2

3

4

5

6

7

8

9

1

10

2

3

4

5

6

7

8

9

1

10

 USERS

SUMMARIZED TAG CLUSTERS
FOR ROBUST COMPUTATION

 ITEMS

I(5,6) = ucW(5,1) X rcW(6,1) + ucW(5,2) X rcW(6,2) +
+ ucW(5,3) X rcw(6,3) + ucW(5,4) X rcW(6,4)

 rcW(6,3)

Figure 11.7: Using clusters as a bridge to compute the interest of users for items. The
example illustrates the computation of the interest of user 5 for item 6. Such a computation
can be performed for any user-item pair.

.

cases, the recommended tag will not depend on the querying user, but rather will depend
on the queried item. In fact, the earliest works on tag recommendation use co-occurrence
statistics between tags and items to make recommendations. The results are, therefore, not
dependent on the user making the query.

Similarly, an approach proposed in [316] uses latent Dirichlet allocation (LDA) to
make recommendations based on content-centric topic modeling by treating each item as a
“document” containing tag (or “word”) frequencies. Similar to traditional topic modeling
on documents, the approach shows that the qth tag is related to item j by the following
relationship:

P (Tag = q|Item = j) =

K∑

s=1

P (Tag = q|Topic = s) · P (Topic = s|Item = j) (11.17)

Here, K represents the total number of topics, which is a user-defined parameter. Note that
the left-hand side of Equation 11.17. provides the recommendation probability for ranking
purposes, whereas the quantities on the right-hand side can be estimated from the parameter
learning process of LDA methods. It is not necessary to use LDA for topic modeling. For
example, the simpler Probabilistic Latent Semantic Analysis (PLSA) model may be used
in lieu of LDA. Note that it is also possible to personalize this recommendation by treating
the sets of tags of a user as “documents” and clustering these users into topics with the use
of topic modeling After these topics have been determined, we can compute the relevance
of the various tags to each user as follows:

P (Tag = q|User = i) =

K∑

s=1

P (Tag = q|Topic = s) · P (Topic = s|User = i) (11.18)

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 377

Note that Equation 11.18 uses a different set of topics than Equation 11.17; the former clus-
ters the users, whereas the latter clusters the items. A linear combination of Equations 11.17
and 11.18 can be used to determine the relevance of tag q to item j, given the personalized
context of user i. The weights of the linear combination will decide the trade-off between
user-specificity and item-specificity.

There are other ways of combining user-specificity and item-specificity by directly adapt-
ing some of the Bayesian ideas in topic modeling [315]. Specifically, we can directly com-
pute the personalized and item-specific recommendation probability P (Tag = q|User =
i, Item = j). This probability can be simplified with the use of the naive Bayes rule as
follows:

P (Tag = q|User = i, Item = j) =
P (User = i, Item = j|Tag = q) · P (Tag = q)

P (User = i, Item = j)
(11.19)

≈ P (User = i|Tag = q) · P (Item = j|Tag = q) · P (Tag = q)

P (User = i, Item = j)
(11.20)

∝ P (User = i|Tag = q) · P (Item = j|Tag = q) · P (Tag = q)
(11.21)

Note that we have ignored the term P (User = i, Item = j) in the denominator to a constant
of proportionality. This is because we wish to rank the different tags in order of their
recommendation probability for a specific user and item, which are already fixed. Therefore,
this constant term can be ignored for ranking purposes.

Now, the terms P (User = i|Tag = q) and P (Item = j|Tag = q) in the right-hand side of
the aforementioned equations can be expressed in terms of user recommendation and item
recommendation probabilities using Bayes rule:

P (User = i|Tag = q) =
P (User = i)P (Tag = q|User = i)

P (Tag = q)
(11.22)

P (Item = j|Tag = q) =
P (Item = j)P (Tag = q|Item = j)

P (Tag = q)
(11.23)

Therefore, on substituting these terms in Equation 11.21, we obtain the following:

P (Tag = q|User = i, Item = j) ∝ P (Tag = q|User = i) · P (Tag = q|Item = j)

P (Tag = q)
(11.24)

The terms on the right-hand side can be estimated easily in a data-driven manner, as in
any Bayes classifier. For example, the value of P (Tag = q) can be estimated as the fraction
of non-empty cells in the tag-cube for which the qth tag has been specified. The value of
P (Tag = q|User = i) can be estimated as the fraction of non-empty cells of the slice of the
tag-cube for user i that correspond to the qth tag. The value of P (Tag = q|Item = j) can
be estimated as the fraction of the non-empty cells of the slice of the tag-cube for item j
that correspond to the qth tag. Laplacian smoothing is often used to avoid overfitting.

The probabilities in Equation 11.24 are used to rank the tags for the specific user-
item combination. The work in [315] also discusses a simpler frequency-based model for
performing the recommendation.

11.4.5 Social-Tagging Recommenders with Ratings Matrix

Tags have significant potential in improving the quality of recommendations when they are
used in addition to item ratings. For example, consider a scenario where Mary has watched

378 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

many movies such as Shrek and Lion King, which are annotated with the tag “animated”
on a rating site such as IMDb. However, Mary might not have tagged any of these movies
in the tag-cube, and these preferences are derived from the ratings matrix.

Now consider the case where a movie such as Despicable Me is also tagged as “animated,”
although Mary has not watched this movie yet. In such a case, it is reasonable to assume
that Mary might also be interested in watching the movie Despicable Me. Although the
ratings matrix might also provide the same prediction, the chances of prediction error are
reduced when tag information is incorporated because it provides an independent source of
information. In particular, this is true when a movie is new and there are too few ratings or
tags to make reliable predictions about user preference. In such cases, the ratings and tags
can complement each other to make more robust decisions. In most cases, tagging systems
contain implicit ratings (e.g., whether or not a user has viewed an item) in the ratings
matrix. This is because sites such as last.fm automatically log data about the items that
a user might have consumed. Note that the implicit ratings are an independent source of
information because a user might view an item, even though they might not tag it. In this
section, we will study both the case of implicit and explicit ratings.

The most straightforward approach is to use hybrid recommender systems to combine
the predictions based on tags and ratings. For example, any of the methods discussed in
section 11.4.4 can be used to make item predictions based purely on tags. Furthermore,
any traditional collaborative filtering algorithm can be used to make predictions based on
ratings. A weighted average of the two ratings can be used to make the final prediction. The
weights can be learned using the method discussed in section 6.3 of Chapter 6 on hybrid
recommender systems. However, such an approach does not integrate the two sources of
prediction very tightly. Better results may be obtained with algorithms that tightly integrate
the various sources of data in the recommendation process.

11.4.5.1 Neighborhood-Based Approach

The method in [603] works with implicit feedback data sets in which the ratings matrices
are assumed to be unary. This is quite commonly the case in social-tagging systems. For
example, in a site such as last.fm, user accesses of items are available, but explicit ratings
are not available. The paper treats missing entries as 0 values. Therefore, the ratings matrix
R is treated as a binary matrix rather than as a unary matrix.

The approach of [603] augments the m×n ratings matrix R with data from the m×n×p
tag cube F , by creating additional pseudo-users or pseudo-items. For example, user-based
collaborative filtering can be performed on a ratings matrix with an extended set of items.
In order to create a ratings matrix R1 with the item dimension extended, each tag is treated
as a pseudo-item. Furthermore, the value of a user-tag combination is assumed to be 1, if
the user has used that tag at least once (possibly over multiple items). Otherwise, the value
is equal to 0. Note that there are m× p user-tag combinations. One can then append these
m×p combinations to the m×n ratings matrix R by treating the tags as new pseudo-items.
This results in an extended matrix R1 of size m × (n + p). The similarity between a user
i and other users is computed using this extended matrix. The similarity computation is
enriched because of the additional columns containing user-tag activity information. The
item ratings of the user i are computed using the number of 1 values in the peer group of
i. These predicted ratings r̂userij are normalized to sum to 1 over the different values of item
index j so that they represent probabilities of accessing (or buying) various items. Note
that ratings represent frequency of activity in these implicit feedback settings.

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 379

The item-based approach can be extended in a similar way. In this case, a p× n matrix
corresponding to tag-item combinations is created. A value in this matrix is 1 if the item
is tagged at least once. The tags are now treated as pseudo-users, and appended as rows to
the original ratings matrix R. This results in an extended matrix R2 of size (m + p) × n.
This extended matrix is used to perform similarity computations in item-based collaborative
filtering. The predicted ratings r̂itemij for a given user i are then normalized so that they
sum to 1 over all j. Therefore, the predicted ratings represent probabilities of accessing or
buying items in this case as well.

After performing user-based and item-based collaborative filtering, the ratings predic-
tions of the two cases are fused using a parameter λ ∈ (0, 1):

r̂ij = λ · r̂userij + (1 − λ) · r̂itemij (11.25)

The optimal value of λ can be chosen using cross-validation. The results in [603] showed
improvements over traditional collaborative filtering when tag information was also used.
The fusion of user-based and item-based methods was necessary to achieve the improvements
from the incorporation of tagging.

11.4.5.2 Linear Regression

The method in [535] uses linear regression to integrate the tags into the recommendation
process. As tags are generally less statistically precise in identifying user preference than
are ratings, it is important to select only valuable tags for the recommendation process.
To achieve this goal, the methodology described in section 11.4.3 may be used. The basic
approach in [535] fuses the information in the user ratings in order to enrich the information
about the tag preferences for various items. For example, if a user has rated Lion King
and Shrek highly, and both movies are tagged as “animation,” it can be inferred that the
user is likely to be interested in movies with this tag. The first step is to determine the
relevance weighting between an item and a tag. For example, any of the item-tag specific
quantifications in Table 11.1 may be used. Then, if qjk is the relevance of item j to tag k,
then the item-preference value is further transformed with the sigmoidal function:

vjk =
1

1 + exp(−qjk)

Then, the user preference uik of user i for tag k is computed by combining the tag-item
relevance with the user interest in the items. The user interest in the items may be inferred
using the ratings matrix R = [rij]. The preference uik of user i for tag k may be inferred as
follows:

uik =
rij · vjk∑n
s=1 ris · vsk

(11.26)

Items that are not rated by user i are ignored in the numerator and denominator. When
ratings are not available, the value of uik can also be indirectly inferred from the frequency of
the user’s visits, clicks, buys, or tags on items. For example, the value of rij in Equation 11.26
can be replaced with the number of times the user has tagged item j (not necessarily with
the tag k).

A simple approach to predict a preference score pij of an item j for user i is to determine
all the tags Tj of that item and average the value of uir over all tags r ∈ Tj:

pij =

∑
r∈Tj

uir · vjr
∑

r∈Tj
vjr

(11.27)

380 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

Note that the value pij might not lie in the range of ratings. Nevertheless, it can still be
used to rank items for a user.

A more effective approach to predict ratings is to use linear regression. The basic idea
in linear regression is to assume that the rating rij of user i for item j is based on a linear
relationship, which is true for fixed j and varying values of i:

rij =
∑

r∈Tj

uir · wjr ∀i : rij is observed (11.28)

The (unknown) coefficient wjr represents the importance of tag r for item j, and it can
be learned using regression over all the ratings that are observed for the item j. The main
difference from Equation 11.27 is that instead of using a heuristic value of vjr as the weight
of tag r (specific to item j), we are learning wjr using linear regression on the ratings matrix.
The resulting approach is generally superior because of the greater level of supervision. As
the regression training process includes all users that have rated item j, the approach does
use the collaborative power of the ratings in different users. Furthermore, this method also
provides superior results to conventional collaborative filtering algorithms because of its use
of side information available in the tags. Combining this methodology with a simple matrix
factorization method into a hybrid system provided even better results [535]. It was shown
that regression support vector machines provide the best results for the training process,
although least-squares regression provides a simpler alternative. Linear regression methods
are discussed in section 4.4.5 of Chapter 4.

11.4.5.3 Matrix Factorization

A matrix factorization approach, referred to as TagiCoFi [673], uses a variation of the
methods discussed in Chapter 3 to approximately factorize the ratings matrix R into two
matrices, an m × q matrix U and an n × q matrix V . This condition can be expressed as
follows:

R ≈ UV T ∀ observed entries of R (11.29)

This condition can be imposed by approximately minimizing the Frobenius norm
g(U, V,R) = ||R − UV T ||2 over the observed entries of R.

In addition, a similarity constraint is imposed over the user factor matrices U , so that
users with similar tagging behavior have similar factors. Let Sij be the similarity between
users i and j and let ui be the ith row of U . The computation of Sij from the tagging
behavior will be described later. Then, in order to ensure that users with similar tagging
behavior have similar factors, we would like to also minimize the following factor similarity
objective f(U):

f(U) =
m∑

i=1

m∑

j=1

Sij ||ui − uj ||2 (11.30)

As we have two different criteria, defined by the objective functions g(U, V,R) and f(U),
the balancing parameter β can be introduced to minimize g(U, V,R) + βf(U). In addition,
we have the standard regularization term in matrix factor factorization, which is given
by the sum of the Frobenius norms of the factor matrices. This regularization term is

11.4. USER INTERACTION IN SOCIAL RECOMMENDERS 381

λ
(
||U ||2 + ||V ||2

)
, where λ is the regularization parameter. Summing up these different

terms, we derive the following objective function:

Minimize J = ||R− UV T ||2
︸ ︷︷ ︸

Observed entries in R

+ β ·
m∑

i=1

m∑

j=1

Sij ||ui − uj||2

︸ ︷︷ ︸
Tagging similarity objective

+λ
(
||U ||2 + ||V ||2

)

︸ ︷︷ ︸
Regularizer

As in the case of all matrix factorization methods, a gradient descent method is used to
determine the factor matrices U and V . The values of β and λ can be computed using
cross-validation methods.

It is noteworthy that this approach is technically similar to a social regularization ap-
proach [382] discussed in section 11.3.8.2 on trustworthy recommender systems. In that
approach, a trust matrix T is used to add the similarity term

∑
i,j:tij>0 tij ||ui − uj ||2

to the objective function. Here, the tagging similarity matrix is used to add the term∑m
i=1

∑m
j=1 Sij ||ui − uj ||2. In other words, the trust/homophily tij between users i and

j is replaced with the tagging similarity Sij between users i and j. Thus, minor variations
of the same technical model can be used to address diverse social recommendation scenarios.
Furthermore, instead of forcing the user factors to be more similar, one can also force the
item-factors to be more similar based on tagging behavior (see Exercise 5).

Computing Tagging Similarity

The aforementioned approach requires the computation of the tagging similarity Sij between
the users i and j. First, the tf-idf matrix is generated from the tag-cube F in which the
number of times the user has used a particular tag is computed. In other words, the number
of 1s of a particular user-tag combination over all items are summed. Thus, a frequency
vector is generated for each of the m users. This frequency is then normalized with the
standard tf-idf normalization used in information retrieval. The work in [673] proposes two
different methods for computing the similarity:

1. Pearson similarity: The Pearson correlation coefficient ρij is computed over all tags
used by user i and user j. Tags not used by either user are ignored. The sigmoidal
function is used to transform the correlation coefficient into a non-negative similarity
value Sij in (0, 1):

Sij =
1

1 + exp(−ρij)
(11.31)

2. Cosine similarity: The standard cosine similarity between the frequency vectors is
used as the similarity value. Refer to Chapter 4 for a discussion of the similarity
function.

3. Euclidean similarity: The Euclidean distance dij is computed between the similarity
vectors, and then a Gaussian kernel is applied to the distance to transform it into a
similarity value in (0, 1):

Sij = exp

(

−
d2ij
2σ2

)

(11.32)

Here, σ is a user-controlled parameter, which can be chosen using cross-validation.

In the results reported in [673], the Pearson similarity provided the best performance,
whereas the Euclidean similarity provided the worst.

382 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

11.4.5.4 Content-Based Methods

Social tagging methods provide a straightforward way of using content-based methods. The
frequency vector of the tags on a movie can be viewed as its description. The movies that
the user has rated are treated as the training examples on the feature space defined by
the tags. The ratings are treated as the class labels. A training model, which is specific to
the user, is constructed using this training data. The model is used to predict the ratings
of the other movies. Either a classification or a regression model may be used depending
on whether the ratings are unary or interval-based. Such content-based models can also be
combined with any of the aforementioned collaborative systems.

A simple content-based model for recommendations on the IMDb data set was presented
in [584]. It uses the notion of tag clouds to represent the tag-based descriptions of movies.
The various keywords are weighted according to their relevance and then combined with
ratings to make a final prediction. One challenge with the use of content-based methods
is that the tags are very noisy with a significant amount of synonymy. Linguistic methods
were used in [178] for disambiguation, and then combined with a naive Bayes classifier. It
is also useful to leverage the feature selection methods discussed in Chapter 4 to improve
the representation quality.

11.5 Summary

Social information can be used in a wide variety of ways in recommender systems. The
standard multidimensional model can be used to incorporate social information in a limited
way. Trust-centric methods can be used to create robust recommender systems. Unsuper-
vised methods use trust propagation and aggregation methods to incorporate trust into the
recommender system. Supervised methods use link prediction and matrix factorization for
more effective performance. Supervised methods are generally considered the state-of-the-
art today. Incorporating trust knowledge can make the systems attack resistant and also
help in avoiding cold-start issues.

In recent years, social tagging systems have become an avenue for users to collaboratively
tag resources on the Web with free-form descriptions. These descriptions are also referred to
as folksonomies, which are represented as tag cubes. Such descriptions are useful in terms of
the rich content-centric knowledge they contain about user interests. Tag cubes can either
be used on a stand-alone basis, or they can be combined with ratings matrices to make
recommendations. The former class of methods shares similarities with the multidimensional
model for recommendations. The latter class of methods can be based on either collaborative
or content-based methods. A variety of techniques, such as neighborhood methods, linear
regression, and matrix factorization, have been developed for this scenario.

11.6 Bibliographic Notes

Overviews of trust-based recommender systems may be found in [221, 588, 616, 646]. The
doctoral dissertation of Jennifer Golbeck [222] provides several seminal algorithms on the
topic. The correlation between homophily in social networks and the notion of trust has
been shown in [224, 681]. In these cases, trust relationships can be computationally inferred
from Web-based social networks. The work in [187] showed how to infer trust relationships
directly from ratings data [187], although there is some debate on whether this notion of
trust is generally accepted as it is conventionally used in the literature. One of the earliest

11.6. BIBLIOGRAPHIC NOTES 383

works in applying trust-based methods to such networks was proposed in the context of
movie recommendations [223, 225]. The Filmtrust system [225] showed how to use trust
metrics for movie recommendations. The work in [592] studies the predictability of distrust
relationships from interaction data. Other sites that collect trust-based information include
Epinions [705], Moleskiing [461], and Slashdot [706].

Trust metrics play a key role in recommendations in trust networks [344, 680]. The work
of [680] provides a good overview of the relevant trust metrics. Although much of the work on
trust networks focuses on trust (positive) relationships only, some recent work also discusses
the use of both trust and distrust relationships [241, 287, 590, 593, 614, 680]. Furthermore,
most of these methods have only discussed methods for (positive) trust propagation, with
the exception of the work in [287], which has proposed methods for distrust aggregation
as well. The interaction between trust and distrust concepts is studied in [590, 591] in
the context of the recommendation and link prediction problems. Methods for trust prop-
agation with multiplicative methods are discussed in [241, 509]. A variety of other trust
propagation methods include the use of decay factors along paths [240], using only shortest
paths [222], distance from a fixed propagation horizon [403], spreading factors [682, 683],
rules [345, 597], and semantic distances [1]. It was shown in [227] through experiments that
transitively propagated trust values are more accurately inferred with the use of shortest
paths, rather than using all paths. This observation formed the basis of the TidalTrust
algorithm. Sophisticated methods for de-emphasizing shorter paths include the Appleseed
algorithm [682], in which a spreading activation model is used. Trust is modeled as energy,
which is injected from the source node. The energy is divided among subsequent nodes
based on the trust scores along edges. The amount of energy reaching the sink provides
the total amount of trust. Clearly, if the sink is connected to the source with many short
paths, then more energy will reach the sink. The EigenTrust algorithm [292] uses the prin-
cipal eigenvectors of the trust network to calculate trust values of the source node for all
other nodes. However, the approach provides a ranking of the trustworthiness rather than
actual trust values. The exploitation of homophily effects for trust propagation is discussed
in [594], in which a matrix factorization model is introduced.

A second important aspect of trust computation is that of aggregation. Aggregation
rules in social networks are discussed in [1, 221, 222, 287, 449, 615]. The work in [405]
discusses methods for weighting the different components of the aggregation based on path
length or based on closeness of friendships.

The combination of propagation and aggregation leads to the creation of trust met-
rics [221, 344]. The Advogato trust metric is discussed in [344], and it is one of the classical
metrics used in the literature for many applications beyond recommender systems. The
trust metrics discussed in this chapter are specialized to recommendation algorithms. The
best description of the TidalTrust algorithm together with a pseudocode may be found
in [222]. The MoleTrust algorithm is described in [406]. The effectiveness of MoleTrust in
the presence of cold-start is shown in [403, 404]. The TrustWalker approach is presented
in [269], and an axiomatic approach to trust-based recommendation is provided in [48].
The use of link prediction in signed and unsigned networks for recommendation is studied
in [157, 324, 325, 580, 581]. The work in [157] is notable because it shows the connections
between the matrix factorization methods for link prediction, and the matrix factoriza-
tion methods for collaborative filtering. The SoRec algorithm is proposed in [381], and the
LOCALBAL algorithm in [594]. The use of both trust and distrust relationships in matrix
factorization methods was explored in [383]. The SocialMF algorithm was discussed in [270],
whereas the similarity-based regularization approach was proposed in [382]. An ensemble
method using matrix factorization, known as social trust ensemble (STE), was presented
in [384].

384 CHAPTER 11. SOCIAL AND TRUST-CENTRIC RECOMMENDER SYSTEMS

The utility of recommender systems for controversial items and users has been studied
in several works [222, 406, 617]. It is generally accepted that trust-based methods are partic-
ularly useful in such cases. The effectiveness of such systems in the presence of cold-start is
shown in [403, 404]. The attack-resistant nature of trust-aware systems is discussed in [344].

A general survey on social-tagging techniques may be found in [237]. A survey of tagging
recommender systems is provided in [671], although most of the works discussed in this sur-
vey do not use a ratings matrix for the recommendation process. Finally, the recommender
systems handbook contains an overview of social-tagging recommender systems [401]. One
of the earliest works on tag recommendations was provided in [553], in which simple meth-
ods such as co-occurrence, voting, and summing are used to perform recommendations. A
hierarchical clustering method for content-based recommendation was proposed in [542].
Probabilistic latent factor models are presented in [316]. Some of the works [135, 179, 584]
focus primarily on content-based systems.

Tensor-based methods for tag recommendation are presented in [497, 498, 582, 583]. The
notion of factorization machines has found significant popularity in these cases [493, 496].
A particularly notable pairwise approach is the PITF method [496]. A method has been
proposed in [487] to leverage latent factor models for application to mining algorithms in the
presence of tags. Although this work is not specifically focused on recommender systems,
the underlying latent factor models can be used in virtually any application, including
recommender systems. Machine learning methods for tag recommendation algorithms are
discussed in [250, 555, 556]. Among these works, the techniques in [556] are designed to
perform the tag recommendation in real time. Tag clustering methods [70, 215, 542] are
often used to alleviate the sparsity problem in collaborative filtering applications. A weighted
hybrid method for social tagging methods is discussed in [216].

Various evaluations of tag recommendation methods are provided in [264, 277]. Methods
for evaluating tag quality are discussed in [536]. Only a small number of systems today
combine the power of ratings matrices with that of social tags [535, 603, 673]. Content-
based methods for combining ratings with tagging data are discussed in [179, 584]. For
specific data domains, such as music, valuable insights can sometimes be gleaned from the
music files for the recommendation process [191]. A solution to the cold-start problem with
social tags is discussed in [672].

11.7 Exercises

1. Implement the neighborhood-based method for recommending tags for an item to a
user with the use of a linear combination of results obtained on the user-tag matrix
and the item-tag matrix.

2. Discuss the relationship of the Katz measure for link prediction with trust propagation
and aggregation methods.

3. Implement the gradient descent method of section 11.3.8.

4. The method in section 11.4.5.3 forces the user factors to be more similar based on
user-tagging similarity.

(a) Design a method that forces item factors to be more similar based on item-tagging
similarity.

(b) Design a method that forces both user and item factors to be more similar based
on corresponding similarities in user and item tagging.

Chapter 12

Attack-Resistant Recommender Systems

“The truth is incontrovertible. Malice may attack it, ignorance
may deride it, but in the end, there it is.” – Winston Churchill

12.1 Introduction

The input to recommender systems is typically provided through open platforms. Almost
anyone can register and submit a review at sites such as Amazon.com and Epinions.com.
Like any other data-mining system, the effectiveness of a recommender system depends
almost exclusively on the quality of the data available to it. Unfortunately, there are sig-
nificant motivations for participants to submit incorrect feedback about items for personal
gain or for malicious reasons:

• The manufacturer of an item or the author of a book might submit fake (positive)
reviews on Amazon in order to maximize sales. Such attacks are also referred to as
product push attacks.

• The competitor of an item manufacturer might submit malicious reviews about the
item. Such attacks are also referred to as nuke attacks.

It is also possible for an attack to be designed purely to cause mischief and disrupt the
underlying system, although such attacks are rare relative to attacks motivated by personal
gain. This chapter studies only attacks that are motivated to achieve a particular outcome
in the recommendation process. The person making the attack on the recommender system
is also referred to as the adversary.

By creating a concerted set of fake feedbacks from many different users, it is possible to
change the predictions of the recommender system. Such users become shills in the attack
process. Therefore, such attacks are also referred to as shilling attacks. It is noteworthy that
the addition of a single fake user or rating is unlikely to achieve the desired outcome. In most

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 12

385

386 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

cases, an adversary would need to create a large number of fake users (or fake profiles) to
achieve the desired outcome. For the purpose of this chapter, a profile refers to a set of
ratings corresponding to a fake user created by the adversary. Of course, the number of
injected profiles may depend on the specific recommendation algorithm being attacked, and
the specific approach used to attack it. An attack that requires a smaller number of injected
profiles is referred to as an efficient attack because such attacks are often difficult to detect.
On the other hand, if an attack requires a large number of injected profiles, then such an
attack is inefficient because most systems should be able to detect a sudden injection of
a large number of ratings about a small number of items. Furthermore, the effectiveness
of the attacks may depend on the specific recommendation algorithm being used. Some
recommendation algorithms are more robust to attacks than others. Furthermore, different
attacks may work more or less efficiently with different algorithms.

Attacks can also be classified based on the amount of knowledge required to mount them
successfully. Some attacks require only limited knowledge about the ratings distribution.
Such attacks are referred to as low-knowledge attacks. On the other hand, attacks that
require a large amount of knowledge about the ratings distribution are referred to as high-
knowledge attacks. As a general rule, a trade-off exists between the amount of knowledge
required to make an attack and the efficiency of the attack. If adversaries have more knowl-
edge about the ratings distribution, then they can generally make more efficient attacks.

This chapter is organized as follows. In the next section, we will discuss the nature of
the trade-offs between the required knowledge and the efficiency of the attack. We will
also discuss the impact of using a specific recommendation algorithm on the effectiveness
of the attack. The various types of attacks are discussed in section 12.3. The problem of
attack detection in recommender systems is discussed in section 12.4. The design of robust
recommender systems is discussed in section 12.5. A summary is given in section 12.6.

12.2 Understanding the Trade-Offs in Attack Models

Attack models have a number of natural trade-offs between the efficiency of the attack
and the amount of knowledge required to mount a successful attack. Furthermore, the
effectiveness of a particular attack may depend on the specific recommendation algorithm
being used. In order to understand this point, we will use a specific example.

Consider the toy example illustrated in Table 12.1 where we have 5 items and 6 (real)
users. The ratings are all drawn from the range of 1 to 7, where 1 indicates extreme dislike
and 7 indicates extreme like. Furthermore, an attacker has injected 5 fake profiles, which are
denoted with the labels Fake-1, Fake-2, Fake-3, Fake-4, and Fake-5. The goal of this attacker
is to inflate the ratings of item 3. Therefore, this attacker has chosen a rather naive attack,
in which they have inserted fake profiles containing a single item corresponding to the item
3. However, such an attack is not particularly efficient. It is highly detectable because only a
single item is included in every injected profile with a very similar rating. Furthermore, such
ratings injections are unlikely to have a large impact on most recommendation algorithms.
For example, consider the non-personalized recommendation algorithm in which the highest
rated item is recommended. In such a case, the naive attack algorithm will increase the
predicted rating of item 3, and it will be more likely to be recommended. The attack might
also increase the predicted rating of item 3 in cases where item bias is explicitly used as
a part of the model construction. There is, however, little chance that such an attack will
significantly affect a neighborhood-based algorithm. Consider, for example, a user-based
neighborhood algorithm in which the profiles are used to make predictions for Mary. None
of the injected profiles will be close to the rating profile of Mary; therefore, Mary’s predicted

12.2. UNDERSTANDING THE TRADE-OFFS IN ATTACK MODELS 387

Table 12.1: A naive attack: injecting fake user profiles with a single pushed item

Item ⇒ 1 2 3 4 5
User ⇓
John 1 2 1 6 7
Sayani 2 1 2 7 6
Mary 1 1 ? 7 7
Alice 7 6 5 1 2
Bob ? 7 6 2 1
Carol 7 7 6 ? 3
Fake-1 ? ? 7 ? ?
Fake-2 ? ? 6 ? ?
Fake-3 ? ? 7 ? ?
Fake-4 ? ? 6 ? ?
Fake-5 ? ? 7 ? ?

Table 12.2: Slightly better than naive attack: injecting fake user profiles with a single pushed
item and random ratings on other items

Item ⇒ 1 2 3 4 5
User ⇓
John 1 2 1 6 7
Sayani 2 1 2 7 6
Mary 1 1 ? 7 7
Alice 7 6 5 1 2
Bob ? 7 6 2 1
Carol 7 7 6 ? 3
Fake-1 2 4 7 6 1
Fake-2 7 2 6 1 5
Fake-3 2 1 7 6 7
Fake-4 1 7 6 2 4
Fake-5 3 5 7 7 4

ratings of item 3 will not be affected by the injection of the fake profiles. This particular
injection of ratings is, therefore, not particularly efficient because it is hard to affect the
predicted ratings, even when a large number of fake users are injected. Furthermore, such a
profile injection can be detected in most cases because of the injection of ratings involving
a single item.

Consider a second example of an attack, shown in Table 12.2, in which the attacker is
trying to promote item 3, but he or she also adds random ratings to other items in order
to reduce the detectability. Note that the genuine ratings in this second example are the
same as the first, but the fake profiles are different. Such an attack is more effective than
the one shown in Table 12.1. Consider the case where a user-based neighborhood is used
to perform the recommendation. When only genuine profiles are used, John and Sayani are
among Mary’s neighbors and item 3 will have a low predicted rating for Mary. When fake
profiles are also injected before user-based recommendation, most of the fake profiles are not
close to Mary because the ratings are randomly chosen. However, the profile Fake-3 happens

388 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

Table 12.3: Highly knowledgeable attacker injects fake user profiles

Item ⇒ 1 2 3 4 5
User ⇓
John 1 2 1 6 7
Sayani 2 1 2 7 6
Mary 1 1 ? 7 7
Alice 7 6 5 1 2
Bob ? 7 6 2 1
Carol 7 7 6 ? 3
Fake-1 6 7 7 2 1
Fake-2 7 7 6 1 1
Fake-3 1 1 7 6 7
Fake-4 1 1 6 7 6
Fake-5 2 1 7 7 7

to be close to Mary by chance. As a result, the predicted rating of Mary for item 3 will
increase. Therefore, from the point of view of an adversary, this type of attack does a better
job than a completely naive attack with a single item. Nevertheless, this attack is quite
inefficient because a large number of injected profiles would be required to affect the results
of a neighborhood-based algorithm. In general, it is hard to ensure that randomly injected
ratings will be close enough to a particular target user to whom the recommendation is to
be made. After all, it is important for fake profiles to be close to target users in order to
significantly affect the recommendation in any way.

In order to understand the impact of greater knowledge on the attack process, consider
the example of an attacker who has a significant knowledge of the underlying ratings dis-
tributions. Therefore, we have illustrated an example in Table 12.3 in which the genuine
ratings are the same as those in Table 12.1. However, the injected ratings are designed to
reflect the underlying item correlations and also push the ratings for item 3 higher. For
example, the attacker is aware that the ratings of items 1 and 2 are positively correlated in
the ratings database, and the ratings of items 4 and 5 are also positively correlated. Fur-
thermore, these two groups of items are negatively correlated with one another. Therefore,
the attacker injects the ratings, while respecting these correlations. Correspondingly, it is
evident that these correlations are respected in the fake profiles of Table 12.3. In this case, it
is evident that the predicted ratings of Mary for item 3 are affected more significantly, than
in the earlier examples of Tables 12.1 and 12.2. This is because the three profiles Fake-3,
Fake-4, and Fake-5 are all very close to Mary, and they may be included among her peers in
a neighborhood-based algorithm. Therefore, this attack is very efficient because it requires
a small number of profiles in order to cause a significant shift in the underlying ratings. On
the other hand, such an attack requires a significant amount of knowledge, which may not
always be available in practical settings.

It is noteworthy that the efficiency of a particular attack also depends on the particular
algorithm being attacked. For example, user-based and item-based neighborhood algorithms
have very different levels of propensity of being attacked. If an item-based algorithm were
to be applied to the high-knowledge case of Table 12.3, then the predicted ratings of Mary
for item 3 would not be affected very significantly. This is because the item-based algorithm
uses the ratings of other users only in the item-item similarity computation. The fake

12.2. UNDERSTANDING THE TRADE-OFFS IN ATTACK MODELS 389

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

SIZE OF ATTACK (PERCENTAGE PROFILES ADDED)

A
T

T
A

C
K

 IM
P

A
C

T
 (

P
R

E
D

IC
T

IO
N

 S
H

IF
T

)

ALGORITHM B WITH EFFICIENT ATTACK 2
ALGORITHM A WITH EFFICIENT ATTACK 2
ALGORITHM B WITH NAIVE ATTACK 1
ALGORITHM A WITH NAIVE ATTACK 1

Figure 12.1: Typical examples of the effect of the combination of the specific push attack
algorithm and the specific recommendation algorithm

profiles affect the similarity computation used to discover the most similar items to item 3;
subsequently Mary’s own ratings on these items are used to make the prediction. In order
to change the most similar items to item 3, one must typically inject a large number of
ratings, which makes the attack more detectable. Furthermore, it is much harder to change
the predictions in a particular direction for the target item by changing its similar items;
after all, Mary’s own ratings on these items are used to make the prediction rather than
those in the fake profiles. Algorithms that are less prone to attacks are referred to as robust
algorithms. It is one of the goals of recommender systems to design algorithms that are
more robust to attacks.

The aforementioned examples lead us to the following observations:

1. Carefully designed attacks are able to affect the predictions with a small number of
fake profile insertions. On the other hand, a carelessly injected attack may have no
effect on the predicted ratings at all.

2. When more knowledge about the statistics of the ratings database is available, an
attacker is able to make more efficient attacks. However, it is often difficult to obtain
a significant amount of knowledge about the ratings database.

3. The effectiveness of an attack algorithm depends on the specific algorithm being
attacked.

In order to understand the nature of these trade-offs, consider a recommendation algorithm
A that is robust to attacks, and another algorithm B that is not robust. Similarly, consider a
naive attack (labeled 1), and an efficient attack (labeled 2), both of which are push attacks.
Therefore, there are four different combinations of algorithm and attack-type. In Figure 12.1,

390 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

we have shown some typical examples of how a specific recommender system might respond
to a particular attack type. The X-axis illustrates the fraction of fake profiles that are
inserted in the attack, and the Y -axis illustrates the amount of shift in the predicted ratings.
In each case, the shift in predicted ratings is positive because it is a push attack. Intuitively,
the shift is defined as the amount by which the predicted ratings have moved on the average
over all users. The shift may be computed over a particular (pushed) item, or it may
be computed over a subset of (pushed) items. More details of the methodology for shift
computation are provided in section 12.2.1.

The higher the curve is, the more efficient the attack will be. Efficient attacks are more
desirable for an adversary because they are more difficult to detect. It is evident that the
combination of recommendation algorithm B and attack type 2 leads to the highest curve,
both because of the weakness of the recommendation algorithm and the efficiency of the
attack. It is also possible to measure the impact of an attack in terms of other evaluation
metrics such as the hit-ratio rather than through the prediction shift. In all cases, the impact
of adding the fake profiles to a specific evaluation metric is quantified.

However, it is sometimes not possible to easily extrapolate the effectiveness of a particu-
lar attack into a concrete statement about the robustness of the recommendation algorithm
at hand. This is because adversaries might tailor the attack to a specific recommendation
algorithm, and therefore the robustness of the recommendation algorithm depends on the
type of attack. For example, an attack algorithm that works well for a user-based neigh-
borhood algorithm might not work well for an item-based neighborhood technique, and
vice versa. By tailoring the attack to the specific recommendation algorithm at hand, more
efficient attacks can be constructed. Fortunately, it is often difficult for an adversary to
achieve this goal, unless she is aware of the specific recommendation algorithm being used.

An adversarial relationship perpetually exists between recommender systems and at-
tackers. Attackers try to design increasingly clever algorithms to influence the recommender
systems, whereas the designers of recommender systems try to propose more robust algo-
rithms. Although the goal of this chapter is to learn how to design robust algorithms, it is
important to understand attack strategies in order to be able to design robust algorithms.
Therefore, we will first introduce the various types of attacks before discussing the design
of robust algorithms.

12.2.1 Quantifying Attack Impact

In order to analyze the impact of various types of attacks, it is important to be able to quan-
tify their impact. For example, the respective impacts of the attacks shown in Figures 12.1,
12.2, and 12.3 are quantified with a measure abstractly referred to as the “prediction shift.”
This measure is shown on the Y -axis in Figure 12.1. It is useful to examine in greater detail
how the prediction shift is actually computed.

Consider a ratings matrix R with user set U and item set I. The first step is to select
a subset UT ⊆ U of test users. Furthermore, let IT ⊆ I be the set of test items pushed in
the testing process. Then, the attack is performed one at a time for each item j ∈ IT , and
the effect on predicted rating of users in UT on item j is measured. The average prediction
shift over all users and items is measured. Therefore, the attack needs to be performed |IT |
times in order to measure the prediction shit over all test items.

Let r̂ij be the predicted rating of user i ∈ UT for item j ∈ TT before the attack, and
r̂′ij be the corresponding predicted rating after the attack on item j. Then, the prediction
shift of user i for item j is given by δij = r̂′ij − r̂ij . Note that δij can be either positive or
negative. A positive value indicates that the push attack has been successful, and therefore

12.2. UNDERSTANDING THE TRADE-OFFS IN ATTACK MODELS 391

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

SIZE OF ATTACK (PERCENTAGE PROFILES ADDED)

A
T

T
A

C
K

 IM
P

A
C

T
 (

P
R

E
D

IC
T

IO
N

 S
H

IF
T

)

ALGORITHM B WITH EFFICIENT ATTACK 2
ALGORITHM A WITH EFFICIENT ATTACK 2
ALGORITHM B WITH NAIVE ATTACK 1
ALGORITHM A WITH NAIVE ATTACK 1

Figure 12.2: Typical examples of prediction shifts in case of nuke attack (Compare with
push attacks of Figure 12.1)

the item j is more positively rated. If the attack is a nuke attack, then negative values of
the prediction shift are indicative of success. Then, the average shift Δj(UT) for test-user
set UT and item j is computed as follows:

Δj(UT) =

∑
i∈UT

δij

|UT |
(12.1)

Then, the overall prediction shift Δall(UT , IT) over all items in IT is equal to the average
value of the per-item shift over all test items:

Δall(UT , IT) =

∑
j∈IT

Δj(UT)

|IT |
(12.2)

The prediction shift is a way of quantifying how well a pushed (or nuked) item has been
shifted in a direction favoring its goal. Note that δij can be either positive or negative;
therefore, shifts in a direction opposite to the desired outcome are penalized by this measure.
Furthermore, the prediction shift curves will be upward sloping in the case of a push attack,
whereas they will be downward sloping in the case of a nuke attack. For example, typical
curves for prediction shifts in the case of nuke attacks are illustrated in Figure 12.2. It is
evident that these plots have trends opposite to those shown in Figure 12.1.

Although the prediction shift is a good way of quantifying the changes in the ratings, it
may often not measure the true impact from the perspective of the end user. The end user
only cares about whether her pushed item made it to the top-k list (or was removed from
the top-k list). In many cases, a large prediction shift may not be sufficient to move an item
into the top-k list. Therefore, a more appropriate measure is the Hit-Ratio hj(UT), which
is defined for item j and test user set UT . The hit-ratio hj(UT) is defined as the fraction of

392 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

SIZE OF RECOMMENDATION LIST

H
IT

 R
A

T
IO

ATTACK ALGORITHM X WITH 4% ATTACK SIZE
NO ATTACK (BASELINE)

Figure 12.3: Effect of push attack on hit-ratio

users in UT for which item j appears among the top-k recommendations. Then, the overall
hit-ratio hall(UT , II) over all test users and items is averaged over all the test items in IT :

hall(UT , IT) =

∑
j∈IT

hj(UT)

|IT |
(12.3)

It is noteworthy that the hit-ratio is not a differential measure, as it does not compute the
shift in the ratings. Therefore, unlike the prediction shift, one needs to plot the hit ratio
both before and after the attack. In this type of plot, the X-axis depicts the size of the
recommendation list, and the Y -axis depicts the hit-ratio; the size of the attack (i.e., the
number of injected profiles) is fixed. An example of such a plot is illustrated in Figure 12.3
in which the hit-ratio of both the original algorithm and attacked algorithm is shown. The
distance between these two curves provides an idea of the level of success of an adversary
in making the pushed items appear on the recommendation list. It is also possible to fix
the size of the recommendation list and plot the hit-ratio with the size of the attack. Such
a plot would be somewhat similar to Figure 12.1 because it provides an idea of how the
hit-ratios are affected with increasing attack size.

12.3 Types of Attacks

Although the rating of a particular item may be targeted in an attack, it is important to
inject ratings of other items in order to make the attack effective. If fake profiles of only
a single (pushed or nuked) item are inserted, they generally do not significantly affect the
outcome of many recommendation algorithms. Furthermore, such attacks are generally easy
to detect using automated methods. Therefore, the ratings of additional items are included
in the injected profile. Such items are referred to as filler items. The importance of including

12.3. TYPES OF ATTACKS 393

filler items is particularly emphasized by the example of Table 12.1, where the addition of
only a single item containing a rating is not sufficient to create an effective attack.

The ratings of most of the items will not be specified in the fake user profiles, just as in
the case of genuine user profiles. Such unspecified items are also referred to as null items. It
is also evident from the example of Table 12.3 that the attacks are most effective when the
filler items are correlated with the target item in terms of the underlying rating patterns.
For example, if a target movie, such as Gladiator, is rated frequently with another movie,
such as Nero, then it is generally beneficial to add filler ratings of Nero when trying either to
use either a push attack or a nuke attack on Gladiator. It would not be quite as beneficial to
add filler ratings for a completely unrelated item like Shrek. However, such attacks require
a greater knowledge of the ratings distribution because correlated sets of items need to
be identified. Therefore, there is a natural trade-off between the efficiency and knowledge
requirements of different types of attacks.

Some attacks are specifically designed to be push attacks or to be nuke attacks. Although
many attacks can be used in both capacities, each attack is generally more effective in one
of the two settings. There are also subtle differences in the evaluation of these two types
of attacks. The two types of attacks often show very different behavior in terms of the
prediction shift and the hit-ratio. For example, it is much easier to nuke an item with a few
bad ratings, given that only a few top items are recommended in any given setting. In other
words, the effects on the hit-ratio can be more drastic than the effects on the prediction
shift in the case of a nuke attack. Therefore, it is important to use multiple measures while
evaluating push attacks and nuke attacks.

In the following, we will discuss the various types of attacks that are commonly used,
and also discuss their common use case as either push attacks or as nuke attacks. These
attacks require various levels of knowledge from the adversary. We will study these different
attacks, starting with the ones that require the least knowledge.

12.3.1 Random Attack

In the random attack, the filler items are assigned their ratings from a probability distribu-
tion that is distributed around the global mean of all ratings across all items. Because the
global mean is used, the ratings of the various filler items are drawn from the same prob-
ability distribution. The filler items are chosen randomly from the database, and therefore
the selection of items to rate is also not dependent on the target item. However, in some
cases, the same set of filler items may be used for each profile. There is no advantage in
choosing the same set of filler items for each profile because it does not reduce the required
level of knowledge to mount the attack, but it only makes the attack more conspicuous.

The target item is either set to the maximum possible rating value rmax or the minimum
possible rating value rmin, depending on whether it is a push attack or a nuke attack. The
main knowledge required to mount this attack is the mean values of all ratings. It is not
very difficult to determine the global mean of the ratings in most settings. The limited
knowledge required for a random attack comes at a disadvantage for the attacker, because
such attacks are often not very efficient.

12.3.2 Average Attack

The average attack is similar to the random attack in terms of how the filler items are
selected for rating. The same set of filler items are selected for each profile. However, the
average attack differs from the random attack in terms of how the ratings are assigned to

394 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

the selected items. In the average attack, the ratings that are assigned to the filler items
have values that are specified at or approximately at the average of the specific item. The
target item is assigned either the maximum rating or the minimum rating depending on
whether the attack is a push attack or a nuke attack. Note that the average attack requires
a greater amount of knowledge than the random attack, because knowing the global mean is
not sufficient. One also needs to know the mean of each filler item. Furthermore, the attack
is somewhat conspicuous because the same set of filler items is used for each fake profile.

In order to reduce the possibility of detection, one can also use randomly selected filler
items for each injected user profile. The drawback of doing this is that a greater amount
of knowledge will be required for making the attack. For example, the global mean of each
of the injected filler items will be required. However, this can sometimes be reasonable in
settings where the ratings are public. For example, the ratings on Amazon.com are public,
and the average values can be computed easily. In other systems, such as IMDb, the average
rating of each item is often directly advertised. Alternatively, one can randomly select items
out of a small set of candidate items in order to determine the fillers for each fake profile.
Such a strategy requires much less knowledge. Furthermore, it has been shown [123] that it
does not lose a significant amount of knowledge.

12.3.3 Bandwagon Attack

The main problem with many of the aforementioned attacks is the inherent sparsity of the
ratings matrix, which prevents the injected profiles from being sufficiently similar to the
existing profiles. When too many items are selected as filler items, the attack becomes con-
spicuous. On the other hand, when a small number of filler items are selected randomly for
a fake profile, then it might not have an inadequate number of observed ratings in common
with other users. In user-based collaborative filtering, a fake profile has no impact when it
does not have any rated items in common with the target user to whom the recommendation
is being made. The efficiency of the attack reduces as a result.

The basic idea of the bandwagon attack is to leverage the fact that a small number
of items are very popular in terms of the number of ratings they receive. For example, a
blockbuster movie or a widely used textbook might receive many ratings. Therefore, if these
items are always rated in the fake user profile, it increases the chance of a fake user profile
being similar to the target user. In such cases, the predicted ratings of the target user are
more likely to be affected by the attack. Therefore, the knowledge about the popularity of
the items is used to improve the efficiency of the attack. In addition to the popular items,
a set of random items is used as additional filler items.

In the bandwagon attack, the ratings of popular items are set to their maximum possible
rating value rmax. The other filler items are rated randomly. The reason for assigning the
maximum rating value to the most popular items is to the increase the chances that more
users will be found within the fake profiles, which are close to any particular target user
to whom the recommendation is being made. This is because the popular items are more
likely to be assigned positive ratings in real settings. The target item is set to the maximum
possible rating rmax or the minimum possible rating rmin, depending on whether it is a
push attack or a nuke attack.

It is noteworthy that the notion of “popular” items in this particular case does not
necessarily refer to the most frequently rated items, but rather refers to widely liked items.
Such items are likely to be frequently rated in a positive way in the ratings database. One
does not need to use the ratings matrix in order to determine the most popular items. It is
usually easy to determine the most popular products of any type from sources independent

12.3. TYPES OF ATTACKS 395

of the ratings matrix. This is the main reason that the bandwagon attack requires much less
knowledge as compared to the average attack. Bandwagon attacks can often perform almost
as well as the average attack, in spite of their smaller knowledge requirements. In general,
bandwagon attacks can influence user-based collaborative filtering algorithms significantly,
but they have greater difficulty in influencing item-based algorithms.

12.3.4 Popular Attack

The popular attack shares a number of similarities with the bandwagon attack in that it also
uses popular items in order to create the filler items. However, the popular items might be
either widely liked or widely disliked items, but they must have many ratings. The popular
attack also assumes more knowledge about the ratings database to set the ratings of these
popular items. Furthermore, it does not assume the existence of an additional set of filler
items. Therefore, more popular items have to be used in this attack than in the case of the
bandwagon attack.

In order to set the ratings on the popular items in an intelligent way, more knowledge
needs to be assumed about the underlying rating database. In particular, it is assumed that
average values of the ratings of the popular items are known. In order to achieve a push
attack, the ratings of the various filler items in a fake user profile are set as follows:

1. If the average rating of a filler item in the ratings matrix is less than the global rating
average over all items, then the rating of that item is set to its minimum possible
value rmin.

2. If the rating of a filler item is greater than the overall average rating of all items, then
the rating of the item is set to rmin + 1.

3. The rating of the target item is always set to rmax in the fake user profile.

The reason for setting the ratings in this unusual way is (a) to increase the likelihood
of finding a profile similar to that of the target user within the fake profiles by choosing
differential ratings of rmin and rmin + 1 for filler items; and (b) to increase the ratings gap
between the target item and the filler items to push the item more effectively. This attack
can also be used for the case of a nuke attack with minor modifications. In a nuke attack,
the ratings of filler items are set to rmax − 1 for low-rated popular items, rmax for highly
rated popular items, and rmin for the target item.

As in the case of the bandwagon attack, one does not need to assume that the popular
items need to be inferred from the ratings database. Such information can be easily inferred
from other data sources. However, one does need to know the average values of the ratings,
albeit only for the popular items. It is also possible to use external sources to estimate
the popular items with lower or higher ratings. For example, one might use the text of
the reviews to determine the items with positive or negative sentiment. Nevertheless, the
knowledge requirements of a popular attack are always greater than those of a bandwagon
attack.

12.3.5 Love/Hate Attack

The love/hate attack is specifically designed to be a nuke attack, and its main advantage
is that it requires very little knowledge to mount this attack. In the love/hate attack,
the nuked item is set to the minimum rating value rmin, whereas the other items are set
to the maximum rating value rmax. In spite of the minimal knowledge requirements, this

396 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

attack is very effective. As discussed earlier, nuke attacks are generally easier to mount
than push attacks. Therefore, such low-knowledge attacks often have a better chance of
being successful in the case of nuke attacks as compared to push attacks. For example, a
symmetrically designed attack in which the ratings of the filler items are set to rmin and
the rating of the target item is set to rmax, is not quite as successful for pushing items. The
love/hate attack is highly specific to user-based collaborative filtering algorithms, and it is
almost completely ineffective with item-based collaborative filtering algorithms.

12.3.6 Reverse Bandwagon Attack

This attack is specifically designed to nuke items. The reverse bandwagon attack is a vari-
ation of the bandwagon attack, in which widely disliked items are used as filler items to
mount the attack. The fact that such items are “widely disliked” means that they have
received many ratings. For example, if a movie is highly promoted before its release but
then turns out to be a box-office failure, then it will receive many low ratings. These items
are selected as filler items. Such filler items are assigned low ratings together with the nuked
item. As in the case of the bandwagon attack, it is often not very difficult to discover such
items from other channels. This attack works very well as a nuke attack when an item-based
collaborative filtering algorithm is used for recommendation. Although it can also be used in
the case of user-based collaborative filtering algorithms, many other attack methods, such
as the average attack, are generally more effective.

12.3.7 Probe Attack

An important aspect of many of the aforementioned methods is that the ratings are often
artificially set to values, such as rmin and rmin+1, in an identical way across many profiles.
The use of such ratings tends to make the attack rather conspicuous, and therefore easily
detectable. The probe attack tries to obtain more realistic ratings for items directly from a
user-based recommender system in order to use these values in the attack. In other words,
the operation of a recommender system is probed to mount the attack.

In the probe attack, a seed profile is created by the attacker, and the predictions gen-
erated by the recommender system are used to learn related items and their ratings. Since
these recommendations have been generated by user-neighbors of this seed profile, they
are highly likely to be correlated with the seed profile. One can also use this approach to
learn the ratings of items within a specific genre. For example, in a movie recommendation
scenario, consider the case where the target item to be pushed or nuked corresponds to
action movies. The seed profile might contain the ratings of a set of popular action movies.
The seed profile can then be extended further by observing the operation of a user-based
collaborative filtering algorithm when the seed profile is used as the target user. The rec-
ommended items and their predicted ratings can be used to augment the seed profile in a
realistic way. The rating of the target item is set to rmax or rmin, depending on whether it
is pushed or nuked, respectively. The ratings of other filler items learned from the probing
approach are set to the average values predicted by the recommender system.

12.3.8 Segment Attack

Almost all the aforementioned attack methods work effectively with user-based collaborative
filtering algorithms, but they do not work quite as effectively with item-based algorithms.
The only exception is the reverse bandwagon attack, which is designed only to nuke items,

12.3. TYPES OF ATTACKS 397

but not to push items. It is generally harder to attack item-based collaborative filtering
algorithms. One of the reasons for this phenomenon is that an item-based algorithm lever-
ages the target user’s own ratings in order to make attacks. The target user is always an
authentic user. Obviously, one cannot use fake profile injection to manipulate a genuine
user’s specified ratings.

However, it is possible to change the peer items with the use of fake profiles. Changing
the peer items has an effect on the quality of the predicted ratings. In the segment attack,
the attacker uses their domain knowledge to identify a targeted set of users (i.e., users with
specific interests) to which they push the item. For example, the attacker might decide to
push a historical movie, such as Gladiator, to users who have liked historical movies in the
past. Note that the relevant genre for a particular movie is often common knowledge, and
it does not require any specific information from the ratings matrix. Therefore, the first
step for the attacker is to determine which segment (i.e., category or genre) of items are the
closest to a given item. Such items are assigned the maximum possible rating together with
the pushed item. An additional set of sampled filler items are assigned the minimum rating.
This maximizes the variations in the item similarities towards items of the same genre. The
basic idea is for the attacker to make sure that only very similar items are used in the
item-based recommendation process. It is generally assumed that increasing the likelihood
of using items of a similar genre in the prediction process for the target item will give it an
additional advantage over other items in the recommendation process. After all, users tend
to rate similar items in a similar way. Therefore, for users who have liked movies of this
genre in the past, the predicted ratings of the targeted item will be pushed up more than
other items of the same genre because of greater relevance. Therefore, it is more likely that
such users will be recommended the targeted item. Although one might also use a variation
of the segment attack for nuke attacks, it is mostly effective for push attacks. Furthermore,
the segment attack may also be used effectively in the context of user-based collaborative
filtering algorithms.

The segment attack is a generalization of the notion of the favorite item attack [123]. The
favorite item attack is designed only with a specific user in mind. Filler items are selected
to be a set of items, such that their ratings are greater than the average user rating. In
such a case, the ratings of these items and the pushed item are set to their maximum value,
and the ratings of filler items are set to the minimum value. Although the favorite item
attack works well for both user-based and item-based collaborative filtering algorithms, the
attack is restricted to a specific user. Furthermore, the attack requires a significant amount
of knowledge of the values of the ratings. These characteristics tend to make this attack
rather impractical. Its main utility is in establishing an upper bound on the effectiveness of
other attacks.

12.3.9 Effect of Base Recommendation Algorithm

As discussed earlier, the choice of attack is highly specific to the particular recommendation
algorithm at hand. In general, user-based recommendation algorithms are more suscepti-
ble to attacks as compared to item-based algorithms. Only a few attacks, such as the
reverse bandwagon attack and the segment attack are specifically designed for item-based
algorithms. Most of the other attack methods are effective for user-based algorithms, but
are able to affect the item-based algorithms only to a limited degree. Some attack methods
such as the love/hate attack are completely ineffective against item-based algorithms.

398 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

Interestingly, much of the work on attack algorithms is largely focussed on neighborhood-
based methods and there are only a few studies on the effectiveness with respect to
model-based algorithms. Some recent work [446, 522] has analyzed the vulnerability of
model-based algorithms against attacks. Examples of the analyzed algorithms included
clustering-based algorithms, PCA-based methods, LSA-based methods, and association rule
methods. The experiments showed that model-based algorithms are generally more robust
to attacks as compared to user-based collaborative filtering algorithms, although there were
some variations among different algorithms. Hybridizing the algorithm tends to make the
approach more robust, especially when external domain knowledge is used. This is because
domain knowledge cannot be influenced by profile injection mechanisms. A summary of the
effects of various attacks on various model-based collaborative filtering algorithms may be
found in [523].

Although this chapter is primarily focussed on explicit ratings, a few attack methods
have also been designed for implicit feedback data sets [79]. Just as explicit data sets require
the injection of fake profiles, implicit feedback data sets require the injection of fake actions.
The basic idea is to correlate the fake actions with other popular actions so as to give the
impression that the fake actions are similar to these popular actions. Consider a Web site
that wants to increase the likelihood of recommendation a particular page by injecting fake
actions in the click-stream. The mechanism for injecting a fake action is to use an automated
crawler that simulates Web browsing sessions. The crawler visits carefully selected Web
pages in combination, so that the target item is pushed effectively. An example of such an
attack is the popular page attack [79] in which the target page is crawled together with
other popular pages. Such an attack can be viewed as an implicit version of the bandwagon
attack.

12.4 Detecting Attacks on Recommender Systems

An adversarial relationship exists between attackers and the designers of recommender
systems. From the point of view of maintaining a robust recommender system, the best
way to thwart attacks is to detect them. Detection allows corrective measures (such as the
removal of fake user profiles) to be taken. Accordingly, the detection of fake user profiles
is a pivotal element in the design of a robust recommender system. However, the removal
of fake profiles is a mistake-prone process, in which genuine profiles might be removed.
It is important not to make too many mistakes, because the removal of authentic profiles
can be counter-productive. On the other hand, the inability to remove fake profiles is also
undesirable. This results in a natural trade-off between the precision and recall of fake profile
removal. Correspondingly, attack detection algorithms are often measured in terms of this
precision and recall. In fact, one can also use1 the receiver operating characteristic (ROC)
curve (see Chapter 7), which plots the trade-off between the true positive rate (TPR) and
the false positive rate (FPR). An alternative way of evaluating the effectiveness of attack

1The ROC curve is used in a different context here than in Chapter 7. In Chapter 7, the ROC curve
measures the effectiveness of ranking items for recommendations. Here, we measure the effectiveness of
ranking user profiles based on their likelihood of being fake. However, the general principle of using the
ROC curve is similar in both cases, because a ranking is compared with the binary ground-truth in both
cases.

12.4. DETECTING ATTACKS ON RECOMMENDER SYSTEMS 399

removal is by measuring the impact of profile removal on recommender system accuracy.
For example, one can measure the mean absolute error both before and after the filtering
of the profiles. The various detection algorithms can be compared in terms of this measure.

Almost all attacks use multiple profiles in order to undermine the recommender system.
Therefore, the profiles may be removed either individually or as a group. Different attack
algorithms have been designed for each case. Furthermore, attack detection algorithms may
be either supervised or unsupervised. The difference between these two types of detection
algorithms is as follows:

1. Unsupervised attack detection algorithms: In this case, ad hoc rules are used to detect
fake profiles. For example, if a profile (or significant portion of it) is identical to
many other profiles, then it is likely that all these profiles have been injected for the
purpose of creating an attack. The basic idea in this class of algorithms is to identify
the key characteristics of attack profiles that are not similar to genuine profiles. Such
characteristics can be used to design unsupervised heuristics for fake profile detection.

2. Supervised attack detection algorithms: Supervised attack detection algorithms use
classification models to detect attacks. Individual user profiles or groups of user profiles
are characterized as multidimensional feature vectors. In many cases, these multidi-
mensional feature vectors are derived using the same characteristics that are leveraged
for the unsupervised case. For example, the number of profiles to which a given user
profile is identical can be used as a feature for that user profile. Multiple features can
be extracted corresponding to various characteristics of different types of attacks. A
binary classifier can then be trained in which known attack profiles are labeled as +1,
and the remaining profiles are labeled as −1. The trained classifier is used to predict
the likelihood that a given profile is genuine.

Supervised attack detection algorithms are generally more effective than unsupervised meth-
ods because of their ability to learn from the underlying data. On the other hand, it is often
difficult to obtain examples of attack profiles.

Attack detection methods are either individual profile detection methods or group profile
detection methods. When detecting individual attack profiles, each user profile is assessed
independently to determine whether or not it might be an attack. In the case of group
detection, a set of profiles is assessed as a group. Note that both the unsupervised and
supervised methods can be applied to either individual or group profile detection. In the
following, we will discuss various methods for detecting attack profiles as individuals, and
for detecting attack profiles as groups.

12.4.1 Individual Attack Profile Detection

Individual attack-profile detection is also referred to as single attack-profile detection. An
unsupervised method for individual attack-profile detection is discussed in [158]. In this
technique, a set of features is extracted from each user profile. The features are such that
unusually high or unusually low values are indicative of an attack, depending on the feature
at hand. In many cases, these features measure the consistency of a particular profile with
other profiles in the system. Therefore, the fraction of features that take on abnormal values
can be used as a measure to detect attacks. Other heuristic functions can also be used in
conjunction with these features, which can enumerated as follows:

1. Number of prediction differences (NPD): For a given user, the NPD is defined as the
number of prediction changes after removing that user from the system. Generally,

400 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

attack profiles tend to have larger prediction differences than usual, because the attack
profiles are designed to manipulate the system predictions in the first place.

2. Degree of disagreement with other users (DD): For the ratings matrix R = [rij]m×n,
let νj be the mean rating of item j. Then, the degree to which the user i differs from
other users on item j is given by |rij − νj |. This value is then averaged over all the
|Ii| ratings observed for user i to obtain the degree of disagreement DD(i) of user i:

DD(i) =

∑
j∈Ii

|rij − νj |
|Ii|

(12.4)

Users with a larger degree of disagreement with other users are more likely to be attack
profiles. This is because attack profiles tend to be different from the distribution of
the other ratings.

3. Rating deviation from mean agreement (RDMA): The rating deviation from mean
agreement is defined as the average absolute difference in the ratings from the mean
rating of an item. The mean rating is biased with the inverse frequency ifj of each
item j while computing the mean. The inverse frequency ifj is defined as the inverse
of the number of users that have rated item j. Let the biased mean rating of an item
j be νbj . Let Ii be the set of items rated by user i. Then, the value RDMA(i) for user
i is defined as follows:

RDMA(i) =

∑
j∈Ii

|rij − νbj | · ifj
|Ii|

(12.5)

Note the presence of the inverse frequency ifj in the aforementioned equation, so that
rare items are given greater importance. It is instructive to compare this equation with
Equation 12.4, which does not use such weightings at any stage of the computation.
Larger values of this metric indicate the possibility that the user profile might represent
an attack.

4. Standard deviation in user ratings: This is the standard deviation in the ratings of a
particular user. If μi is the average rating of user i, and Ii is the set of items rated by
that user, then the standard deviation σi is computed as follows:

σi =

∑
j∈Ii

(rij − μi)
2

|Ii| − 1
(12.6)

Even though the ratings of fake profiles differ significantly from other users, they are
often quite self-similar because many filler items are set to the same rating value. As
a result, the standard deviation σi tends to be small for fake profiles.

5. Degree of similarity with top-k neighbors (SN): In many cases, attack profiles are
inserted in a coordination fashion, with the result being that the similarity of a user
with her closest neighbors is increased. Therefore, if wij is the similarity between the
users i and j, and N(i) is the set of neighbors of user i, then the degree of similarity
SN(i) is defined as follows:

SN(i) =

∑
j∈N(i) wij

|N(i)| (12.7)

The value of wij can be computed with any standard user-user similarity metric, such
as the Pearson correlation coefficient.

12.4. DETECTING ATTACKS ON RECOMMENDER SYSTEMS 401

It is noteworthy that most of these metrics, with the exception of RDMA, have also been
proposed [43] in the context of finding influential users in a recommender system. This
coincidence is because fake profiles are designed by attackers to manipulate the predicted
ratings as unusually influential entities in the recommender system. Furthermore, all these
metrics, with the exception of the standard deviation, take on larger values in the case of
an attack profile. The algorithm in [158] declares a profile to be an attack when all these
metrics take on abnormal values in the direction indicative of an attack. Many variations
of these basic principles are also possible for designing attack detection methods. Other
features may be extracted as well. For example, the presence of an unusually large number
of ratings in a profile may be considered suspicious [630].

The aforementioned features are useful not only for unsupervised attack detection al-
gorithms, but also for supervised methods. The main difference between supervised and
unsupervised methods is that examples of previous attacks are available. In such cases,
these features are used to create a multidimensional representation and a classification
model is constructed. For a given user profile for which the attack behavior is unknown,
these features can be extracted. The classification model, which is built on the training data
of example attacks, can be used on these features to assess the likelihood that it is indeed
an attack.

An example of such a supervised attack detection algorithm is discussed in [124]. The
metrics discussed above are used as features for the attack detection algorithm. In addition
to these features, a number of generic and model-specific features were introduced. Model-
specific features are designed to detect a specific type of attack, such as an average attack
or segment attack. The generic features introduced in [124] are as follows:

1. Weighted deviation from mean agreement (WDMA): The WDMA metric is similar
to the RDMA metric, but it places greater weight on the ratings of rare items. There-
fore, the square of the inverse frequency is used instead of the inverse frequency in
the WDMA computation. Therefore, using the same notations as Equation 12.5, the
WDMA feature is computed as follows:

WDMA(i) =

∑
j∈Ii

|rij − νj | · if2
j

|Ii|
(12.8)

2. Weighted degree of agreement (WDA): The second variation of the RDMA metric
uses only the numerator of the RDMA metric, defined by the right-hand side of Equa-
tion 12.5:

WDA(i) =
∑

j∈Ii

|rij − νj | · ifj (12.9)

3. Modified degree of similarity: The modified degree of similarity is computed in a similar
way to the degree of similarity defined by Equation 12.7. The main difference is that
the similarity value wij in Equation 12.7 is proportionally discounted by the number
of users who rate both items i and j. This discounting is based on the intuition that
the computed similarity is less reliable when the number of items in common between
users i and j is small.

In addition, a number of model-specific features have been used in [124]. Readers are re-
ferred to [124] for details of these features. Three different algorithms corresponding to the
k-nearest neighbor classifier, the C4.5 decision tree, and the support vector machine were

402 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

tested. It was found that these different classifiers had different trade-offs between precision
and recall of fake profile detection, with the support vector machine providing the best
overall performance.

12.4.2 Group Attack Profile Detection

In these cases, the attack profiles are detected as groups rather than as individuals. The basic
principle here is that the attacks are often based on groups of related profiles, which are very
similar. Therefore, many of these methods use clustering strategies to detect attacks. Some
of these methods perform the detection at recommendation time [397], whereas others use
more conventional preprocessing strategies [427] in which detection is performed a priori,
with the fake profiles are removed up front.

12.4.2.1 Preprocessing Methods

The most common approach is to use clustering to remove fake profiles. Because of the way
in which attack profiles are designed, authentic profiles and fake profiles create separate
clusters. This is because many of the ratings in fake profiles are identical, and are therefore
more likely to create tight clusters. In fact, the relative tightness of the clusters containing
the fake profiles is one way of detecting them. The method proposed in [427] uses PLSA to
perform the clustering of the user profiles. Note that PLSA already creates a soft clustering,
in which each user profile has a particular probability of belonging to an aspect. This soft
clustering is converted to a hard clustering by assigning each user profile to the cluster with
which it has the largest probability of membership. Although the PLSA approach is used
for clustering in this case, virtually any clustering algorithm can be used in principle. After
the hard clusters have been identified, the average Mahalanobis radius of each cluster is
computed. The cluster with the smallest Mahalanobis radius is assumed to contain fake
users. This approach is based on the assumption of the relative tightness of the clusters
containing fake profiles. Such an approach works well for relatively overt attacks, but not
necessarily for subtle attacks.

A simpler approach uses only principal component analysis (PCA) [425]. The basic idea
is that the covariance between fake users is large. On the other hand, fake users often exhibit
very low covariances with other users, when the users are treated as dimensions. How can one
identify such highly inter-correlated dimensions with PCA, which are not correlated with
the normal users? This problem is related to that of variable selection in PCA [285]. Let
us examine the transpose of the ratings matrix in which users are treated as dimensions.
According to the theory of variable selection in principal component analysis [427], this
problem amounts to that of finding the dimensions (users in the transposed ratings matrix)
with small coefficients in the small eigenvectors. Such dimensions (users) are likely to be
fake profiles.

The ratings matrix is first normalized to zero mean and unit standard deviation and
then the covariance matrix of its transpose is computed. The smallest eigenvector of this
matrix is computed. Those dimensions (users) with small contributions (coefficients) in the
eigenvector are selected. A slightly more enhanced approach is discussed in [427]. In this
case, the top (smallest) 3 to 5 eigenvectors are identified instead of using only the smallest
eigenvector. The sum of the contributions over these 3 to 5 eigenvectors is used in order to
determine the spam users.

Another algorithm to detect the group profiles is the UnRAP algorithm [110]. In the
UnRAP algorithm, a measure called the Hv-score is used. This measure is adapted from

12.5. STRATEGIES FOR ROBUST RECOMMENDER DESIGN 403

the bioinformatics area, where it is used in the context of biclustering of gene clusters. Let
μi be the mean rating of user i, νj be the mean rating of item j, γ be the mean over all
ratings, and Ii be the set of items rated by user i. Then, the Hv-score of user i is defined
as follows:

Hv(i) =

∑
j∈Ii

(rij − μi − νj + γ)2

(rij − μi)2
(12.10)

Larger values of the Hv-score are more indicative of an attack profile. The basic idea is
that fake profiles tend to be self-similar in rating values, but they tend to be different from
other users. This is captured by the Hv-score because of the way in which the numerator
and denominator are constructed. When the ratings are random, the Hv-score will be close
to 1. The algorithm first determines the top-10 users with the largest Hv-scores. This set
of users is then used to identify the target item that deviates the most from the mean user
rating.

The identification of the target item then sets the stage for the next phase of the algo-
rithm. The criterion for considering users to be candidates for being fake is then relaxed,
and more than 10 user profiles are considered as candidates for being fake. However, such
candidates will contain many false positives. The UnRAP algorithm also discusses methods
to remove those users that have not rated the target item, or who have rated the target
item in the “wrong” direction. Refer to [110] for details of how the larger candidate set is
computed with the use of a sliding-window method.

12.4.2.2 Online Methods

In these methods, the fake profiles are detected during recommendation time. Consider a
scenario in which a user-based neighborhood algorithm is used during recommendation time.
The basic idea is to create two clusters from the neighborhood of the active user [397]. Note
that the main goal of the attacker is to either push or nuke a particular item. Therefore,
if a sufficiently large difference exists in the average ratings of the active items in the two
clusters, it is assumed that an attack has taken place. The cluster in which the active
item has the smaller variance of ratings is assumed to be the attack cluster. All profiles
in this attack cluster are removed. This detection method has the merit of being able to
be directly integrated into attack-resistant recommendation algorithms during the process
of neighborhood formation. Therefore, this approach is not just a method to remove fake
profiles, but also an online method for providing more robust recommendations. If desired,
the fake profiles can be removed incrementally during the operation of the system.

12.5 Strategies for Robust Recommender Design

A variety of strategies are available for building recommenders in a more robust way. These
strategies range from the use of better recommender-system design to better algorithmic
design. In the following sections, we will discuss the use of some of these strategies.

12.5.1 Preventing Automated Attacks with CAPTCHAs

It is noteworthy that it requires a significant number of fake profiles in order to result in a
significant shift in the predicted ratings. It is not uncommon for the adversary to require
between 3% to 5% of the number of authentic profiles to be fake profiles to initiate an
attack. For example, consider a ratings matrix containing over a million authentic users.

404 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

Figure 12.4: An example of a CAPTCHA from the official CAPTCHA site (http://www.
captcha.net)

In such a case, as many as 50, 000 fake profiles may be required. It is hard to insert so many
fake profiles manually. Therefore, attackers often resort to automated systems to interact
with the Web interface of the rating system, and insert the fake profiles.

How can one detect such automated attacks? CAPTCHAs are designed [619] to tell the
difference between humans and machines in the context of Web interaction. The acronym
CAPTCHA stands for “Completely Automated Public Turing test to tell Computers and
Humans Apart.” The basic idea is to present a human with distorted text, which is hard
for a machine to decipher but can still be read by a human. This distorted text serves as
a “challenge” text or word that needs to be entered into the Web interface in order to
allow further interaction. An example of a CAPTCHA is illustrated in Figure 12.4. The
recommender system can prompt for CAPTCHAs to allow the entry of ratings, especially
when a large number of them are entered from the same IP address.

12.5.2 Using Social Trust

The previous chapter reviewed methods for using social trust in the context of a recom-
mender system. In these methods, the social trust between participants is used to influence
the ratings. For example, users may specify trust relationships based on their experience
with the ratings of other users. These trust relationships are then used to make more robust
recommendations. Such methods are able to reduce the effectiveness of attacks, because
users are unlikely to specify trust relationships towards fake profiles, which are rather con-
trived. Detailed discussions of how social trust is used for more effective recommendations
are provided in Chapter 11.

The work in [502, 503] proposes an algorithm, referred to as the influence limiter, to
build trustworthy recommender systems. A global measure of the reputation of each user is
used in the recommendation process. Each user is weighted with her reputation score while
making the recommendation. The reputation is itself learned on the basis of the accuracy
of a user predicting the rating of her neighbors. A theoretical bound on the impact of a
negative attack was also shown by this work.

12.5.3 Designing Robust Recommendation Algorithms

It is evident from the discussion in this chapter that different algorithms have different levels
of susceptibility to attacks. For example, user-based algorithms are generally much easier to
attack than item-based algorithms. Therefore, a number of algorithms have specifically been
designed with attack resistance in mind. This section will discuss some of these algorithms.

http://www.captcha.net
http://www.captcha.net

12.5. STRATEGIES FOR ROBUST RECOMMENDER DESIGN 405

12.5.3.1 Incorporating Clustering in Neighborhood Methods

It has been shown in [446], how clustering can be used in the context of neighborhood-
based methods. This work clusters the user profiles with the use of PLSA and k-means
techniques. An aggregate profile is created from each cluster. The aggregate profile is based
on the average rating of each item in the segment. Then, a similar approach to user-based
collaborative filtering is used, except that the aggregate (clustered) profiles are used instead
of the individual profiles. For each prediction, the closest aggregated profiles to the target
users are used to make recommendations. It was shown in [446] that the clustering-based
approach provides significantly more robust results than a vanilla nearest-neighbor method.
The main reason for the robustness of this approach is that the clustering process generally
maps all the profiles to a single cluster, and therefore limits its influence on the prediction
when alternative clusters are available.

12.5.3.2 Fake Profile Detection during Recommendation Time

The attack detection algorithms discussed in the earlier sections can also be used to make
robust recommendations, particularly when the detection is done during recommendation
time. Such a method is discussed in section 12.4.2.2. In this approach, the neighborhood of
the active user is partitioned into two users. An attack is suspected when the active item
has very different average values in the two clusters. The cluster that is the most self-similar
(i.e., smaller radius) is considered the attack-cluster. The profiles from this cluster are then
removed. The recommendations are then performed using the profiles from the remaining
cluster. This approach has the dual purpose of being both an attack-detection method and
a robust recommendation algorithm.

12.5.3.3 Association-Based Algorithms

Rule-based collaborative filtering algorithms are discussed in section 3.3 of Chapter 3. It was
shown in [522] that such algorithms are robust to the average attack when the maximum
attack size is less than 15%. The reason for this phenomenon is that there is generally not
sufficient support for the attack profiles in order to mount a successful attack. However,
such an algorithm is not immune to the segment attack.

12.5.3.4 Robust Matrix Factorization

Matrix factorization methods are generally more robust to attacks because of their natural
ability to treat the attack profiles as noise. It has been shown in [424, 427], how PLSA
methods can be used to detect and remove attacks. Note that many matrix factorization
recommenders are themselves based on PLSA. Therefore, if the attack profiles are removed
in the intermediate step and the probabilistic parameters are renormalized, they can directly
be used for recommendation.

Another approach [428] is to modify the optimization function used for matrix factor-
ization to make it more robust to attacks. In matrix factorization, the m×n ratings matrix
R is factorized into user factors and item factors as follows:

R ≈ UV T (12.11)

406 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

Here U = [uis] and V = [vjs] are m× k and n× k matrices. The predicted value r̂ij of an
entry is as follows:

r̂ij =
k∑

s=1

uisvjs (12.12)

Therefore, the error of predicting an observed entry is given by eij = rij − r̂ij . As discussed
in Chapter 3, the matrix entries of U and V are determined by minimizing the sum of
squares of eij over all the observed entries in the matrix R, along with some regularization
terms.

How can one change the objective function to de-emphasize the contribution of attack-
ing profiles? The main insight here is attacking profiles often cause outlier entries with
large absolute values |eij | in the residual matrix (R − UV T). Therefore, if one simply used
the Frobenius norm of the observed portion of (R − UV T), the presence of fake profiles
would significantly change the user factors and item factors. The natural solution is to de-
emphasize the contribution of entries in the residual matrix with large absolute values. Let
S be the set of observed entries in the ratings matrix R. In other words, we have:

S = {(i, j) : rij is observed} (12.13)

As discussed in Chapter 3, the objective function of matrix factorization is defined as follows:

Minimize J =
1

2

∑

(i,j)∈S

e2ij +
λ

2

m∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js

In order to de-emphasize the impact of very large absolute values of eij , a new set of error
terms is defined:

εij =

{
eij if |eij | ≤ Δ

f(|eij |) if |eij | > Δ
(12.14)

Here Δ is a user-defined threshold, which defines the case when an entry becomes large.
f(|eij |) is a damped (i.e., sublinear) function of |eij | satisfying f(Δ) = Δ. This condition
ensures that εij is a continuous function of eij at eij = ±Δ. The damping ensures that large
values of the error are not given undue importance. An example of such a damped function
is as follows:

f(|eij |) =
√
Δ(2|eij | −Δ) (12.15)

This type of damped function has been used in [428]. The objective function for robust
matrix factorization then replaces the error values eij with the adjusted values εij as follows:

Minimize Jrobust =
1

2

∑

(i,j)∈S

ε2ij +
λ

2

m∑

i=1

k∑

s=1

u2
is +

λ

2

n∑

j=1

k∑

s=1

v2js

An iterative re-weighted least-squares algorithm, which is described in [426], is used for the
optimization process. Here, we describe a simplified algorithm. The first step is to compute
the gradient of the objective function Jrobust with respect to each of the decision variables:

∂Jrobust

∂uiq
=

1

2

∑

j:(i,j)∈S

∂ε2ij
∂uiq

+ λuiq, ∀i ∈ {1 . . .m}, ∀q ∈ {1 . . . k}

∂Jrobust

∂vjq
=

1

2

∑

i:(i,j)∈S

∂ε2ij
∂vjq

+ λvjq ∀j ∈ {1 . . . n}, ∀q ∈ {1 . . . k}

12.5. STRATEGIES FOR ROBUST RECOMMENDER DESIGN 407

Note that the aforementioned gradients contain a number of partial derivatives with respect

to the decision variables. The value of
∂ε2ij
∂uiq

can be computed as follows:

∂ε2ij
∂uiq

=

{
2 · eij(−vjq) if |eij | ≤ Δ

2 ·Δ · sign(eij)(−vjq) if |eij | > Δ

Here, the sign function takes on the value of +1 for positive quantities and −1 for negative
quantities. The case-wise description of derivative can be consolidated to simplified form as
follows:

∂ε2ij
∂uiq

= 2 ·min{|eij|,Δ} · sign(eij) · (−vjq)

It is noteworthy that the gradient is damped when the error is larger than Δ. This damping
of the gradient directly makes the approach more robust to a few large errors in the ratings
matrix. Similarly, we can compute the partial derivative with respect to vjq as follows:

∂ε2ij
∂vjq

=

{
2 · eij(−uiq) if |eij | ≤ Δ

2 ·Δ · sign(eij)(−uiq) if |eij | > Δ

As before, it is possible to consolidate this derivative as follows:

∂ε2ij
∂vjq

= 2 ·min{|eij|,Δ} · sign(eij) · (−uiq)

One can now derive the update steps as follows, which need to be executed for each user i
and each item j:

uiq ⇐ uiq + α

⎛

⎝
∑

j:(i,j)∈S

min{|eij |,Δ} · sign(eij) · vjq − λ · uiq

⎞

⎠ ∀i, ∀q ∈ {1 . . . k}

vjq ⇐ vjq + α

⎛

⎝
∑

i:(i,j)∈S

min{|eij|,Δ} · sign(eij) · uiq − λ · vjq

⎞

⎠ ∀j, ∀q ∈ {1 . . . k}

These updates are performed to convergence. The aforementioned steps correspond to global
updates. These updates can be executed within the algorithmic framework of gradient
descent (cf. Figure 3.8 of Chapter 3).

One can also isolate the gradients with respect to the errors in individual entries and
process them in random order. Such an approach corresponds to stochastic gradient descent.
For each observed entry (i, j) ∈ S, the following update steps are executed:

uiq ⇐ uiq + α

(

min{|eij|,Δ} · sign(eij) · vjq −
λ · uiq

nuser
i

)

∀q ∈ {1 . . . k}

vjq ⇐ vjq + α

(

min{|eij |,Δ} · sign(eij) · uiq −
λ · vjq
nitem
j

)

∀q ∈ {1 . . . k}

Here nuser
i denotes the number of observed ratings for user i and nitem

j denotes the number
of observed ratings for item j. One cycles through the observed entries in the matrix in

408 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

random order and performs the aforementioned update steps until convergence is reached.
This is based on the framework of Figure 3.9 (cf. Chapter 3) with the modified set of update
steps discussed above. These update steps are different from traditional matrix factorization
only in terms of capping the absolute values of the gradient components, when the error
is larger than Δ. This is consistent with the stated goals of a robust matrix factorization
approach, where large errors might be the result of anomalies in the ratings matrix structure.
These anomalies might be indicative of attacks.

It is important to note that this approach will work only when the number of attack
profiles is small compared to the correct entries in the ratings matrix. On the other hand,
if the number of attack profiles is very large, it will significant affect the factor matrices,
and the damping approach will not work. Robust matrix factorization and PCA has a rich
history in the context of the recovery of the structure of corrupted matrices. Refer to the
bibliographic notes for pointers to work in this area.

Intuitively, the notion of robust matrix factorization is not very different from that of
robust regression, which is used commonly to reduce the impact of outliers in regression
modeling [512]. In this case, the least-squares optimization function is modified in a similar
way to robust matrix factorization. Indeed, robust regression modeling can be used to
make many of the collaborative filtering methods in section 2.6 of Chapter 2 more robust.
Although there are no existing experimental results on such methods, it is reasonable to
assume that robust regression modeling methods are likely to be attack-resistant. This
would be an interesting direction of future research in the field.

12.6 Summary

Shilling attacks can significantly reduce the effectiveness of recommender systems because
of the presence of fake profiles, which distort the recommendations provided to real users. A
variety of push attack methods have been designed in an attempt to influence recommender
systems. Some of these include the random attack, the average attack, the bandwagon
attack, and the segment attack. Another set of tactics exist, such as the reverse bandwagon
attack and the love-hate attack, that are designed to “nuke” items (lower their ratings in
the system). Nuke attacks are generally easier to carry out than are push attacks. Attack
detection methods use a variety of common characteristics of attacks. These characteristics
include the self-similarity of injected profiles, and the differences of these profiles from those
of other users. Attack detection methods can be used to design robust recommendation
systems. Many robust recommendation systems directly incorporate the fake-profile removal
process deep into the recommender system. Other techniques use trustworthy recommender
systems or increase fake-profile injection costs. The design of robust recommender systems
is a perpetual game between attackers and recommender designers, in which increasingly
clever measures and countermeasures are developed by both parties over time.

12.7 Bibliographic Notes

Surveys on shilling attacks and attack-resistant recommender systems may be found in [119,
236]. Attack-resistant methods for collaborative filtering are surveyed in [424]. The idea of
using fake user profiles for attacking recommendation algorithms was used in [394]. Some
of the earliest methods, such as the average attack and random attack, were proposed and
evaluated in [122, 329]. The differential behavior of various recommendation algorithms was

12.7. BIBLIOGRAPHIC NOTES 409

discussed in [329]. For example, it was shown that item-item recommendation algorithms
are more robust to attack than user-user recommendation algorithms. A related problem
is that of asking users to re-rate items to reduce the effect of noise [44] in recommender
systems. However, noisy ratings are not necessarily the same as fake profiles, which are
created intentionally to mislead the recommender system. The approach in [44], therefore,
addresses a different scenario from attack-resistant models.

The bandwagon attack works effectively for user-user collaborative filtering algorithms,
but it is not quite as effective for item-based algorithms [246, 329, 445]. The main advantage
of the bandwagon attack is that it is nearly as effective as the average attack method,
but it requires much less knowledge [329]. A discussion of the popular item attack, along
with explanations of the prediction shift, is provided in [395]. The effectiveness of this
attack is also studied in [396]. The segment attack was proposed in [445], and it was shown
to be effective for item-item collaborative filtering algorithms. The segment attack is a
generalization of the favorite item attack [123]. The two nuke attack models, namely the
reverse bandwagon attack and the love/hate attack, were proposed in [444]. In group-shilling
attacks [572], several human agents cooperate together to either push or nuke an item.

Most of the aforementioned attack systems are designed for the case of explicit ratings.
Attack systems for implicit ratings require injection of fake actions rather than fake profiles.
Such systems can be implemented with an automated crawler that simulates Web browsing
sessions. The crawler visits carefully selected Web pages in combination, so that the target
item is pushed effectively. An example of such an attack is the popular page attack in
which the target page is crawled together with other popular pages. Such an attack can
be viewed as an implicit version of the bandwagon attack. Refer to [79] for a discussion of
these strategies.

An unsupervised algorithm for individual/single profile attack detection is discussed
in [158]. This algorithm is based on the fact that users with undue influence on the ratings are
suspicious. The approach uses a number of metrics discussed earlier for detecting influential
users [43]. The presence of an unusually large number of ratings for a user profile may also
be considered suspicious [630]. These methods were combined with the RDMA metric for
unsupervised attack detection. These features were further combined with other features
for supervised attack detection [124]. An attack-detection algorithm, which monitors the
changes in the ratings over time, is proposed in [668]. The basic idea of this approach is that
sudden fake profile injections often lead to anomalous temporal changes in the ratings over
time, and they can therefore be detected with time-series monitoring. A related method [78]
uses anomaly detection to detect attacks. A method for detection of group shilling attacks
is discussed in [572]. In this approach, clusters of users are detected who have co-rated
many items and provided atypical ratings compared to other ratings in the database; these
clusters are generally fake profiles.

A number of methods for group-based attack detection have also been proposed [110,
425, 427]. The use of principal component analysis (PCA) for spam detection is discussed
in [425]. The work in [427] discusses the use of PLSA-based clustering for group-attack
detection. Enhancements of the PCA approach, originally discussed in [425], are presented
in [427]. The UnRAP algorithm is discussed in [110].

A variety of methods can be designed to build attack-resistant recommender sys-
tems. CAPTCHAs have been designed [619] to tell humans and computers apart. Such
CAPTCHAs can be used to increase the costs of injecting fake profiles into the system. The
notion of social trust can also be used to reduce the effectiveness of attacks. Such systems
are discussed in detail in Chapter 11. The notion of an influence limiter in order to build
attack-resistant recommendation algorithms was proposed in [502, 503]. The integration of

410 CHAPTER 12. ATTACK-RESISTANT RECOMMENDER SYSTEMS

attack detection into attack-resistant recommendation algorithms is discussed in [397]. The
use of association methods for building robust algorithms is discussed in [522]. A variety
of robust matrix factorization methods for designing attack-resistant recommender systems
are discussed in [424, 426–428, 609]. Methods for robust PCA and matrix factorization have
also been proposed in the traditional machine-learning literature in other settings, where
the low rank structure of corrupted data needs to be recovered [132]. A possible avenue for
future research in this area is robust regression in order to reduce the impact of outliers on
the recommendation process [512].

One of the challenges with attack-resistant recommender systems is that attackers con-
tinue to devise ever more sophisticated methods for attacking the recommender system. For
example, attackers might use knowledge of the criteria for detecting attack profiles [397],
use obfuscated methods to mount attacks [631], or design attack methods targeting specific
collaborative filtering models [522]. Therefore, it is important for research to keep up with
the advances in attack algorithms in a perpetual game between the attacker and recom-
mendation system designer.

12.8 Exercises

1. For each of the attack methods discussed in this chapter, write a computer program
to implement it.

2. Suppose that you are aware that an average attack has been mounted on your recom-
mender system. Discuss a method to remove the fake profiles.

3. Suppose you had perfect knowledge available about the ratings in the recommender
system. In other words, all the ratings in the recommender system are available to
you. Show how to design an attack that would be hard to detect. [The answer to this
question is not unique.]

4. Implement the online neighborhood method for attack detection (see section 12.4.2.2).
Refer to the original publication [397] if needed.

Chapter 13

Advanced Topics in Recommender
Systems

“In the last fifty years, science has advanced more than in the two thousand
previous years and given mankind greater powers over the forces of nature than
the ancients ascribed to their gods.”– John Boyd Orr

13.1 Introduction

Recommender systems are often used in a number of specialized settings that are not covered
in previous chapters of this book. In many cases, the recommendations are performed in
settings where there might be multiple users or multiple evaluation criteria. For example,
consider a scenario where a group of tourists wish to take a vacation together. Therefore,
they may want to obtain recommendations that match the overall interests of the various
members in the group. In other scenarios, users may use multiple criteria to provide ratings
to items. These variations in the problem formulation can sometimes make the prediction
problem more challenging. In particular, we will study the following advanced variations of
recommender systems in this chapter:

1. Learning to rank: Most of the models discussed in the previous chapters treat the
recommendation problem as a rating prediction problem in which the squared error
of prediction is minimized. However, in real-life settings, users are presented only with
the top-k recommendations, and the other predictions are ignored. Therefore, it makes
sense to explore whether one can directly optimize ranking-based evaluation criteria,
such as the mean reciprocal rank or the area under curve of the receiver operating
characteristic curve.

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3 13

411

412 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

2. Online learning with multi-armed bandits: In many recommendation domains, such as
that of recommending news articles, the cold-start problem is pervasive. New articles
and stories appear all the time, and the effectiveness of various algorithms may also
vary with time. In such cases, it is crucial for the approach to continuously explore
the space of various choices as new data are received. At the same time, the learned
data are exploited in order to optimize the payoff in terms of the conversion rate. This
type of trade-off between exploration and exploitation is managed with the help of
multi-armed bandit algorithms.

3. Group recommender systems: In many settings, the recommendations may not be
made to individuals, but to groups of users. Such recommendations are typically
associated with activities undertaken by groups of users. Examples include a visit
to the movies by a group, travel services bought by a group, the choice of music or
television programs played or watched by a group, and so forth. In these cases, users
may have varying tastes and interests that are reflected in their different choices.
Group recommender systems are designed to work with these various trade-offs in
order to make meaningful recommendations.

4. Multi-criteria recommender systems: In multi-criteria systems, ratings might be spec-
ified on the basis of different criteria by a single user. For example, a user might rate
movies based on the plot, music, special effects, and so on. Such techniques often pro-
vide recommendations by modeling the user’s utility for an item as a vector of ratings
corresponding to various criteria. In fact, it has been shown [271, 410] that some of the
methods for group recommender systems can also be adapted to multi-criteria recom-
mender systems. However, the two topics are generally considered different because
they emphasize different aspects of the recommendation process.

5. Active learning in recommender systems: Active learning is a well-known technique
that is used in classification to acquire labels of training examples so as to maximize
classification accuracy. The acquisition of labels is generally expensive; therefore, one
must choose the training examples judiciously in order to maximize the accuracy of
the classifier for a given cost budget. As the problem of recommendation can be viewed
as a generalization of classification, the available methods for active learning can also
be generalized to recommendations. Active learning provides methods of acquiring
ratings within a given budget in order to maximize prediction accuracy.

6. Privacy preservation in recommender systems: Recommender systems are deeply de-
pendent on the ability of users to voluntarily provide information about their interests.
Such information is quite sensitive because it may reveal information about political
opinions, sexual orientation, and so on. Therefore, it is crucial to develop privacy-
preserving methods for the recommendation process. When there is a risk of public
disclosure, owners of ratings data become less likely to release it. An example is the
case of the Netflix Prize, in which a sequel to the contest was not pursued because of
privacy concerns [714].

In addition to the aforementioned topics, this chapter will also study the application of
recommender systems technology to a variety of application domains, such as news rec-
ommendations, computational advertising, and reciprocal recommender systems. The idea
of studying these topics is to provide an understanding of how the methods discussed in
various chapters are applied to these different domains. In some cases, the techniques dis-
cussed in these chapters cannot be applied directly, and therefore new techniques must be
developed. Therefore, one of our goals is to provide an understanding of the limitations of
the various methods used in current settings.

13.2. LEARNING TO RANK 413

This chapter is organized as follows. The next section will introduce the problem of
learning to rank. Multi-armed bandit algorithms are introduced in section 13.3. Various
techniques for designing group recommender systems will be discussed in section 13.4. Multi-
criteria recommender systems are discussed in section 13.5. Active learning methods are
introduced in section 13.6. Methods for privacy in collaborative filtering are discussed in
section 13.7. A number of interesting application domains are discussed in section 13.8.
A summary is given in section 13.9.

13.2 Learning to Rank

Most of the models discussed in previous chapters treat the recommendation problem as a
prediction problem in which the squared error of rating prediction is optimized. However,
in practice, recommender systems rarely present all the ratings to the user. In practice,
only the top-k items are presented to the user as a ranked list. Furthermore, the user is
more likely to pay attention to the items at the top of the list than the lower-ranked items.
The predicted values for the items not included in the list are irrelevant from the user
perspective. In many cases, optimizing predicted values of the ratings may not provide the
best recommendation lists to the end user. For example, if all the low-ranked ratings are
predicted very accurately, but significant errors are made on the higher-ranked ratings,
the resulting solution will not provide a high-quality recommendation list to the end-user.
On the other hand, a prediction-based objective function may report it as a high-quality
solution because the lower-ranked items are given equal importance. This problem arises
because the objective functions of prediction-based methods are not fully aligned with the
end-user experience.

The classical objective function used in optimization models for recommender systems
(such as matrix factorization) is the aggregate squared error. This type of objective function
is optimized to the RMSE measure used for evaluating recommender systems. It is also par-
ticularly easy to optimize from an algorithmic standpoint. This is one of the reasons that
such prediction-based objective functions dominate the recommendation modeling land-
scape. However, as discussed in Chapter 7 on evaluating recommender systems, there are
many rank-centric measures used for evaluating recommender systems. Such rank-centric
measures can also be directly optimized in the context of collaborative filtering (or even
content-based) models. As discussed in the chapter on evaluating recommender systems
(cf. Chapter 7), there are two primary types of ranking measures:

1. Global ranking measures: Such measures evaluate the entire ranked lists of all the
items. Examples, include the Kendall coefficient, Spearman coefficient, and the area
under curve (AUC) of the receiver operating characteristic (ROC).

2. Top-heavy ranking measures: These are typically utility-based measures in which the
top-ranked items are given much more importance. Examples of such measures include
the normalized cumulative discounted gain (NDCG) and mean reciprocal rank (MRR).
Such measures are often the most realistic from the perspective of the end-user because
they ignore the lower-ranked items. Such items are not visible to the end-user in the
recommended list.

Many of the ranking-based measures are used for evaluating implicit data settings. Corre-
spondingly, many of the ranking-based learning methods are also designed in the context
of implicit data settings.

414 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

GLADIATOR PREDICTIONNERO PREDICTION

R
M

S
E

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

GLADIATOR PREDICTIONNERO PREDICTION

H
IT

 R
A

T
E

(a) Smooth RMSE objective (b) Non-smooth hit rate

Figure 13.1: Ranking objective is not a smooth function of predicted ratings (and underlying
model parameters)

For example, consider the problem of factorizing the ratings matrix R into user- and
item-factors, U and V , respectively. One would like to determine U and V such that a
specific ranking objective is optimized. Then, one might pose the optimization problem as
follows:

Optimize J = [Objective function quantifying ranking evaluation between R and UV T]

subject to:

Constraints on U and V

As in traditional matrix factorization, it is possible to add a regularizer to improve the
generalization power of the objective function. The constraints on U and V might depend
on the specific application setting. For example, in an implicit feedback setting, one might
impose nonnegativity constraints on U and V . The optimization objective function might be
derived from ranking-based measures such as the NDCG, MRR, AUC, and so on. A specific
example of such a matrix factorization method, which optimizes the AUC, is discussed
in [432]. In this work, the link recommendation problem is solved with the use of the AUC-
based objective.

The main challenge in ranking-based methods is that the underlying objective functions
are often non-smooth [490], which can be hard to optimize with off-the-shelf gradient-descent
techniques. Tiny changes in the predicted ratings can change the item rankings and the cor-
responding objective functions suddenly. For example, consider a setting where there are
two movies Nero and Gladiator, with true ratings 0 and 1, respectively. The predicted rat-
ings can be converted to ranks, and the top-1 recommended movie can be reported. The
(smooth) RMSE for various combinations of predicted ratings is shown in Figure 13.1(a),
whereas the (non-smooth) hit-rate of the top-1 predicted rating is shown in Figure 13.1(b).
Note the sudden jump in objective function in the case of Figure 13.1(b) at particular
values of the predicted ratings. In the case of ranking-based objective functions, such non-
smooth jumps or drops can occur with small changes in not just the predicted values but
also the underlying model parameters. For example, in matrix factorization methods, tiny
changes in the parameters of the user and item factors can cause sudden jumps or drops
in ranking-based objectives. Such non-smooth changes are not observed with conventional

13.2. LEARNING TO RANK 415

measures such as the squared error, which are much easier to optimize. For example, a
gradient-descent method would have difficulty in determining the correct descent direction
with a non-smooth objective function because important changes in the objective function
might occur at non-differentiable points in the parameter space. To get around this problem,
smooth approximations of the underlying objective functions are often used. For each indi-
vidual ranking-based objective, a specific lower-bound or approximation is used to design
a smooth variation of the underlying objective function. Since these smooth variations are
only approximations, the quality of the algorithm will often depend on that of the underly-
ing approximation. In the following, we provide a brief discussion of some of the common
ranking-based methods.

The traditional approach to ranking is to first predict the ratings with a loss function and
then rank the items using the predicted ratings. One can view this approach as a pointwise
methodology. Many of these methods are not specifically optimized to ranking because they
focus on predicting the values of the ratings. A particularly notable work in this category is
OrdRec [314], which treats ratings as ordinal values rather than as numerical values. There
are two other primary types of methods that are specifically optimized to rank-centric
learning, and they are referred to as pairwise or listwise rank-learning methods [128]. In the
following, we will discuss these different types of rank learning methods.

13.2.1 Pairwise Rank Learning

In pairwise rank learning, pairs of items for which the users have provided preferences are
used as the training data. Each pair contains only information about whether the first item
of the pair is preferred to the second one or not, with a +1 or a −1, respectively. For
example, consider a scenario where John has provided ratings for Terminator, Alien, and
Gladiator, as 4, 3, and 5, respectively. Then, one can create the following pairs of training
points:

John, Terminator, Alien, +1
John, Terminator, Gladiator, −1
John, Alien, Gladiator, −1

One can generate similar pairs for Peter, Bob, Alice, and so on, to create the training
data across all users. For implicit feedback data sets, one can treat unobserved values as 0s.
With this training data, one can now try to learn the relative item preferences such as the
following:

Alice, Terminator, Gladiator, ?
Bob, Terminator, Gladiator, ?
John, Nero, Cleopatra, ?

Note that this transformation essentially creates a binary classification problem, and the
learning method implicitly tries the minimize the number of pairwise inversions in the
training data. This objective is intimately related to the Kendall rank correlation coeffi-
cient. It is also possible to optimize other measures such as the AUC in this setting. One
can use any off-the-shelf ranking classifier (such as ranking SVMs) to learn an appropriate
ranking objective. The main challenge in doing so is that the underlying representation
is very sparse, since each training example contains only three nonzero elements of the
form 〈User, Item1, Item2〉. Note that the base dimensionality might contain hundreds of

416 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

thousands of users and items. Such a setting is particularly well-suited to factorization
machines (cf. section 8.5.2.1 of Chapter 8). With m users and n items, one can create a
p = (m+2 ·n)-dimensional binary representation x1 . . . xp, such that exactly three elements
of the representation are set to 1. The remaining elements are set to 0. The m elements in
the representation correspond to users and the 2 · n elements correspond to pairs of items.
The predicted value y(x) is either +1 or −1 depending on whether or not the rating of the
first item is larger than the second one. Then, the prediction function of Equation 8.9 is
modified to a form used in logistic regression:

P (y(x) = 1) =
1

1 + exp(−[g +
∑p

i=1 bixi +
∑p

i=1

∑p
j=i+1(vi · vj)xixj])

(13.1)

The model parameters g, bi, and vi are defined in the same way as in section 8.5.2.1 of
Chapter 8. A log-likelihood criterion can be optimized to learn the underlying model pa-
rameters with a gradient-descent approach. Factorization machines also provide the flex-
ibility to do the feature engineering in other ways [493]. For example, one can use the
(m + n)-dimensional binary representation x1 . . . xm+n, in which two entries are nonzero
(corresponding to user-item combination) and assume that the prediction y(x) is equal to
the value of the rating. Then, one can directly optimize a ranking objective function over
pairs of predictions (y(xi), y(xj)), depending on which one is larger in the observed data.
The main difference between this approach and the previous one is that the current ap-
proach optimizes pairwise ranking over all pairs (y(xi), y(xj)) (irrespective of whether xi

and xj correspond to the same user), whereas the previous one does not allow the ratings
of a particular pair to belong to different users.

Other well-known models used to learn these predictions include the Bayesian personal-
ized ranking model (BPR) [499], EigenRank model [367], pLPA [368], and CR [59]. Many of
these methods use ranking-based measures in the underlying objective function for learning.

13.2.2 Listwise Rank Learning

In listwise rank learning, the quality of the entire list is evaluated by using a ranking-based
objective function. Examples of such objective functions include the normalized cumulative
discounted gain (NDCG), mean reciprocal rank (MRR), and so on. One can view an ordered
list as a permutation of items with a specific objective function value, depending on the
ranking measure. Therefore, the key is to devise an optimization model that can determine
this permutation directly. These methods generally tend to be more focussed on implicit
feedback matrices because of the natural importance of ranking-based methods in these
methods. Some examples of listwise methods are as follows:

1. CoFiRank: This approach [624, 625] is optimized for maximizing the NDCG measure
with the use of structured estimation methods. A structured estimation method is
designed to work for complex output domains such as sequences. One can view the
output of a listwise method to belong to a structured output domain because a list is
also an ordered sequence. The idea is to define a structured loss function that works
on lists rather than individual points, and whose optimization results in the best
possible ranking. The basic idea is that the dot product of a permutation of the pre-
dicted ratings of all items with the sorted vector c = (1

4
√
2
, 1

4
√
3
, . . . 1

4
√
n+1

) is maximized

when the predicted ratings are in decreasing order (based on the Polya-Littlewood-
Hardy inequality). In other words, the dot product c · ruπ of c with the corresponding
permutation ru

π of the estimated ratings ru is maximized when the ratings in ru
π

13.2. LEARNING TO RANK 417

are in decreasing order. The overall loss function is defined by maximizing a sum of
1−NDCG(π) and c · (ruπ − ru) over all possible values of π. An upper bound on the
loss function can be shown because of the Poly-Littlewood-Hardy inequality. The loss
function is summed over all users, and a maximum margin optimization problem is
defined in order to determine the optimal value of the predicted ratings.

2. CLiMF: This approach [545, 546] optimizes the mean-reciprocal rank (MRR), which
has the tendency to obtain at least a few interesting items at the top of the list.
The basic idea is to determine a smoothed version of the MRR for optimization
and determine a lower bound on this smoothed version. Note that this approach is
designed for implicit feedback data sets because of its use of the MRR. A related
method, referred to as xCLiMF, is designed for explicit ratings.

Numerous other methods have been proposed for incorporating context into such meth-
ods [549].

One can further improve the quality of ranking methods with ensemble learning. Multiple
techniques are used to learn the rankings, and the different sets of ranks are aggregated into
a single ranked list. This problem is that of rank aggregation [190]. For example, one might
use the average or median rank across different ensemble learners to re-rank the items.
However, other sophisticated methods are possible, such as the use of the best rank across
different learners or combining the two methods in some way. The median rank is known
to have several desirable theoretical properties in terms of the quality of the aggregation.
This area remains relatively unexplored, and is a good candidate for future research.

13.2.3 Comparison with Rank-Learning Methods
in Other Domains

An excellent tutorial on ranking methods for recommendations may be found in [323].
It is noteworthy that the dichotomy between prediction-based and ranking-based models
also exists in classification and regression modeling. For example, ranking support vector
machines were introduced in [284] in the context of an internet search engine. Gradient-
descent methods for ranking were discussed in [115] with a neural network model. Neural
networks have the advantage that they are universal function approximators, and therefore
multi-layer neural networks can often be quite effective with ranking-based cost functions.
An elaborate tutorial on the ranking problem in the context of machine learning may be
found in [15]. The typical application discussed in this class of works is that of internet
search, which can also be viewed as a kind of recommendation. Since the recommendation
problem can be viewed as a generalization of classification and regression modeling, it is
natural to also design ranking variations of recommendation algorithms. In fact, ranking
variations are much more important in the context of recommender design because most
users are presented only with restricted sets of ranked lists rather than predicted values.
Such methods have also been explored extensively in the context of ranking methods in
the information retrieval domain. A tutorial on such methods may be found in [370], and
the methods strongly overlap with those used in the machine learning literature for internet
search [15, 115, 284]. The methods from information retrieval can be used to directly improve
the effectiveness of content-based methods in the recommendation domain.

418 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

13.3 Multi-Armed Bandit Algorithms

An important challenge in many recommendation settings is that new users and items con-
stantly appear in the system and it is important for the recommender system to constantly
adapt to the changing patterns in the data. Therefore, unlike offline recommendation al-
gorithms, the approach needs to simultaneously explore and exploit the search space of
recommendations. Each time an opportunity arises to show a recommendation to a user,
the recommender system has to choose between a number of strategies, objects, or algo-
rithms that decide what is shown to the user. These choices may be different, depending on
the application domain at hand. Some examples are as follows:

1. The system might use a number of different recommendation algorithms, which might
be more or less effective with different users. For example, a user who prefers a high level
of customization might be better served with a knowledge-based recommender system,
whereas a “lazy” user might be better served with a collaborative recommender that
does most of the work for her. Therefore, the approach may constantly need to learn the
best choice of strategy for each user.

2. A special (and important) case of the aforementioned setting is one where each strategy
corresponds to recommending a specific item. For example, a news portal might show
articles from various topics to a particular user over a period of time, and then bias
the article presentation depending on the previous history of interest (i.e., clicks) on the
various articles. In the context-free case, the recommendation is independent of the user.
However, in practice, a feature vector is associated with each user, which characterizes
the interest of the user in a specific topic. This provides the means to incorporate per-
sonalization in multi-armed bandit algorithms. If a user is more interested in sports and
entertainment, then the recommender system needs to learn this fact during the oper-
ation of the system, and frequently show recommendations belonging to these topics to
that individual.

The main challenge in these systems is that new users and new articles constantly enter the
system; therefore, one must simultaneously learn the user interests and exploit these interests
during the operation of the system. This is different from the offline setting discussed in this
book. This problem is related to that of reinforcement learning, in which exploration and
exploitation of the search space are performed simultaneously. One such important class of
reinforcement learning algorithms is that of the multi-armed bandit algorithms.

This class of algorithms derives its name from the fact that one can view the recom-
mender system in a manner similar to a gambler in a casino, who is faced with a choice
of a number of slot machines (recommendation algorithms or strategies). This scenario is
illustrated in Figure 13.2. By pulling the arms of each of these machines, the gambler will
receive a payoff with a specific probability distribution. The gambler suspects that one of
these slot machines might have higher (expected) payoff than the others, although it is im-
possible for the gambler to identify this machine without playing all the machines. Playing
these machines for learning purposes can be viewed as an exploration of the search space of
strategies. Of course, this learning phase is likely to waste trials because it is not optimized
to the best paying machine. However, once the gambler learns that one of these machines
has a better payoff, he or she can play that machine to achieve a better payoff. Like all
reinforcement learning algorithms, multi-armed bandit algorithms are faced with a natural
trade-off between exploration and exploitation of the search space.

Let us explain this scenario in the context of Web page recommender systems. Whenever
a recommender system has to decide on the recommendation of a Web page to a user, it is
faced with a number of different choices of strategies. For example, the recommender system

13.3. MULTI-ARMED BANDIT ALGORITHMS 419

Figure 13.2: The multi-armed bandit analogy

may have to decide on the choice of Web pages to recommend. These choices correspond to
the arms of various slot machines. When a user clicks on the link of a recommended page,
the recommender system receives a payoff in terms of the success of the recommendation.
In the simplest case, the click-through problem is modeled with binary payoffs, where a
click amounts to a payoff of 1 unit. This payoff can be viewed in an analogous way to
that received by a gambler from the slot machine. In most practical settings, additional
contextual information may be available to the recommender system about the user or
the context of the recommendation. Some examples of such contextual information are as
follows:

1. A set of features describing the profile of the user or the item-context may be available.
Examples of item context might include the content of the Web page on which a rec-
ommendation is displayed. For example, a recommendation on a Web page describing
the movie Terminatormight be very different from that on a page describing the movie
Nero. This type of context is particularly common in settings such as computational
advertising.

2. The users may be clustered into groups, and the cluster identifier of the group may be
used as semantic knowledge about the user. This is because similar users might have
similar payoffs, and therefore the analysis can be segmented in group-wise fashion.

In cases where contextual information is available about the users, it is often assumed
that user identification mechanisms are available. In order to explain the use of multi-
armed bandit algorithms, we will first discuss the traditional setting where no contextual
information is available. We will then provide a basic understanding of how contextual
information may be incorporated within multi-armed bandit algorithms.

There are a number of strategies that the gambler can use to regulate the trade-off
between exploration and exploitation of the search space. In the following, we will briefly
describe some of the common strategies used in multi-armed bandit systems.

13.3.1 Naive Algorithm

In this approach, the gambler plays each machine for a fixed number of trials in the ex-
ploration phase. Subsequently, the machine with the highest payoff is used forever in the

420 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

exploitation phase. This strategy shares a number of similarities with A/B-testing used for
online evaluation of recommender systems. The difference is that A/B-testing uses only the
exploration phase for evaluation purposes, whereas the bandit algorithm has an additional
exploitation phase.

Although this approach might seem reasonable at first sight, it has a number of draw-
backs. The first problem is that it is hard to determine the number of trials at which one can
confidently predict whether a particular machine is better than the other. The process of
estimation of payoffs might take a long time, especially in cases where the payoff events and
non-payoff events are very unevenly distributed. For example, in a Web recommendation
algorithm, the percentage of click-throughs might be low, as a result of which many trials
will be required before one can confidently state whether one recommendation algorithm
is better than the other. Using many exploratory trials will waste a significant amount of
effort on suboptimal strategies. Furthermore, if the wrong strategy is selected in the end,
the gambler will use the wrong slot machine forever. In practice, the payoffs of various
machines (recommendation algorithms) might evolve over time. This is particularly true of
the type of dynamic recommendation settings addressed by multi-armed bandit methods.
Therefore, the approach of fixing a particular strategy forever is unrealistic in real-world
problems.

13.3.2 ε-Greedy Algorithm

The ε-greedy algorithm is designed to use the best strategy as soon as possible, without
wasting a significant number of trials. The basic idea is to choose a random slot machine
for a fraction ε of the trials. These exploratory trials are also chosen at random (with
probability ε) from all trials, and are therefore fully interleaved with the exploitation trials.
In the remaining (1− ε) fraction of the trials, the slot machine with the best average payoff
so far is used. An important advantage of this approach is that one is guaranteed not be
trapped in the wrong strategy forever. Furthermore, since the exploitation stage starts early,
one is often likely to use the best strategy a large fraction of the time.

The value of ε is an algorithm parameter. For example, in practical settings, one might
set ε = 0.1, although the best choice of ε will vary with the application at hand. It is often
difficult to know the best value of ε to use in a particular setting. Nevertheless, the value of
ε needs to be reasonably small in order to gain significant advantages from the exploitation
portion of the approach. Selecting a small value of ε, however, poses a significant challenge
in settings where new slot machines (items) constantly enter the system. In such cases, one
would explore this new slot machine only occasionally and miss an opportunity to obtain a
better payoff.

To provide a specific example of the challenge posed by this situation, consider a setting
in which the slot machines correspond to the different items, and the users are clustered
into similar groups based on their specified profiles. The ε-greedy strategy is executed in-
dependently for each group of similar users. Whenever an opportunity arises to serve a
recommendation to a user, the accumulated statistics of that user’s group are used to
choose the item with the use of the ε-greedy algorithm. At some point, a new item enters
the system, which would be of great interest to John’s group. However, at small values of
ε, this item will be shown to John’s group very occasionally, especially when the number of
other items is very large. In a system with 10, 000 items and ε = 0.1, the new item would be
shown to John’s group approximately once every 100, 000 trials of that group. This means
that a large number of trials would be wasted before the relevance of this item to John’s
group is learned.

13.3. MULTI-ARMED BANDIT ALGORITHMS 421

13.3.3 Upper Bounding Methods

Even though the ε-greedy strategy is better than the naive strategy in dynamic settings, it
is still quite inefficient at learning the payoffs of new slot machines. In a dynamic recommen-
dation setting, this problem is pervasive because new items enter the system all the time.
In upper bounding strategies, the gambler does not use the mean payoff of a slot machine.
Rather, the gambler takes a more optimistic view of slot machines that have not been tried
sufficiently, and therefore uses a slot machine with the best statistical upper bound on the
payoff. Note that rarely tested slot machines will tend to have larger upper bounds (because
of larger confidence intervals) and will therefore be tried more frequently. Furthermore, one
no longer needs to explicitly use a parameter ε to divide the trials into two categories; the
process of selecting the slot machine with the largest upper bound has the dual effect of
encoding both the exploration and exploitation aspects within each trial.

An important problem here is that of determining a statistical upper bound on the payoff
of each machine. This can often be achieved with the help of the central limit theorem, which
states that the sum of a large number of i.i.d. random variables (payoffs) converges to the
normal distribution. One can estimate the mean and standard deviation of the normal
distribution over various trials, and then set the upper bound of each slot machine at the
required level of statistical confidence. Note that new slot machines will have large confidence
intervals, and therefore the upper bounds will also be correspondingly large. Increasing the
number of trials reduces the width of the confidence interval and therefore the upper bounds
will tend to reduce over time. When a new slot machine enters the system, it will often be
tried repeatedly, until its upper bound falls below that of one of the existing slot machines.
One can regulate the trade-off between exploration and exploitation by using a specific level
of statistical confidence. For example, an algorithm at 99% level of statistical confidence
will perform a larger proportion of exploration as compared to an algorithm at 95% level
of statistical confidence.

Such upper bounding strategies have been used recently for designing recommendation
algorithms [348]. Many of these algorithms use the contextual features of the users and
recommendation setting to design the various multi-arm bandit strategies for exploration
and exploitation of the search space. The basic idea is that the gambler is shown a feature
vector relevant to that trial (e.g., user or item profile in recommender system), and the
gambler makes decisions on the slot machine (choice of recommendation strategy or choice
of item) based on the knowledge of the feature vector. Such algorithms are also referred to
as contextual bandit algorithms. The main goal of the gambler is to learn how the contextual
features and the rewards on the arms relate to one another based on previous experience.
The contextual feature vectors can be extracted from side-information such as user-profiles
or the Web page on which the recommendation is shown. Therefore, contextual features
provide a useful tool to incorporate various types of personalization in multi-armed bandit
algorithms.

Consider a setting where the arms of the slot machines correspond to recommending
different items. The basic idea of these algorithms is to use the following steps repeatedly:

1. (Incremental) training: Train a classification or regression learning model based
on past history of feature-payoff pairs to learn the expected payoff of each arm. In
most cases, this phase is executed incrementally, as new feature-payoff pairs enter
the system over the time. Whenever a particular arm is selected by the recommender
system, its feature attributes and payoff value is added to a training data set that
is specific to the corresponding arm. Therefore, there are as many training data sets
(and incrementally updated models) as the number of arms. The number of training

422 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

examples for each arm is equal to the number of times that the arm was played
in the past. A separate model is constructed for each arm using its training data.
It is desired to use a probabilistic or statistical learning algorithm that outputs the
expected payoff and an estimated standard deviation (or maximum deviation) measure
of the payoff of each arm (item) for a particular feature vector (context). Note that
arms corresponding to newly added items will have smaller training data sets. Smaller
training data sets will lead to larger estimated deviation of prediction. In general, there
are two criteria to keep in mind while selecting the base model for payoff prediction:

• The base model should be incrementally updatable because new feature-payoff
pairs are continually added to the training data.

• The base model should have the ability to output some measure of (or tight
upper bound on) the expected error of prediction.

2. Upper-bound estimation: For the current contextual profile being shown to the
recommender system, use the learned model to construct an upper bound on the
expected payoff of each arm. The upper bound is computed as a linear sum of the
expected payoff and an appropriate multiple of the standard deviation. In some cases,
a tight upper bound on the maximum deviation is used instead of the standard devi-
ation. The choice of deviation measure often depends on the ease of computing such
measures with the model at hand.

3. Recommendation: Select the arm with the largest upper bound. Recommend the
corresponding item to the user.

These steps are executed continuously over time, as recommendations are made and ad-
ditional examples are added to the training data. In cases, where the payoff is a binary
value (e.g., clicking or not clicking a link), a classification model may be used instead of a
regression model.

The LinUCB algorithm is an upper bounding algorithm, which is based on a similar
approach [348]. This approach uses a linear regression algorithm to learn the expected
payoff. Consider a setting, where the ith arm has been played ni times so far. In particular,
if X is a d-dimensional (row) vector corresponding to the current context, Di is the ni × d
feature matrix of the training data set of the ith arm, and yi is the ni-dimensional payoff
(column) vector of the ith arm, then one can use ridge regression to predict the expected
payoff of X with the ith arm as follows:

Payoffi = X︸︷︷︸
d features

[
(DT

i Di + λI)−1DT
i yi
]

︸ ︷︷ ︸
d coefficients

(13.2)

Here, λ > 0 is the regularization parameter and I is a d×d identity matrix. Furthermore, a
tight upper bound on the expected deviation can be quantified under conditional indepen-
dence assumptions on the payoff (response) variables with respect to the feature variables.
In particular, it can be shown [348] that with probability at least (1 − δ), the following is
true for the binary payoff1 setting:

Deviationi ≤
(
1 +

√
ln(2/δ)/2

)
·
√

X(DT
i Di + λI)−1X

T
(13.3)

1If the payoffs lie in the range [0,Δ], then the deviation also needs to be scaled up by Δ.

13.4. GROUP RECOMMENDER SYSTEMS 423

The deviation will reduce when Di has a larger number of rows (training examples), because
the entries in (DT

i Di+λI)−1 typically become smaller as the entries in DT
i Di become larger.

Furthermore, the deviation increases for smaller values of δ. The arm with the largest value
of Payoffi + Deviationi is selected as the relevant one. By increasing or decreasing δ, one
can select the desired point on the exploration-exploitation trade-off curve. In practice, one
directly uses α = (1+

√
ln(2/δ)/2) as the relevant input parameter rather than δ, although

the former’s relationship to δ can be used to provide some intuitive guidance in selecting it.
It is noteworthy that both DT

i Di and DT
i yi can be maintained incrementally because they

can expressed as linear sums of functions of the attributes/payoffs of individual training
points. Nevertheless, it is still required to invert the d× d matrix (DT

i Di + λI) during each
prediction. In cases where d is large, the inversion can be done periodically.

In practice, one can use virtually any probabilistic algorithm that outputs a robust
measure of the expected payoff and maximum deviation for a given feature vector. It is
noteworthy that LinUCB uses a tight upper bound on the deviation rather than the standard
deviation because it is easier to estimate. In many settings, it may be desirable to present
more than one recommendation at a time in the form of a ranked list. The simplest approach
may be to use the top-k upper bounds as an approximation. A more sophisticated approach
is to use the slate setting, and it is discussed in detail in [290].

13.4 Group Recommender Systems

Group recommender systems are designed to address scenarios in which items are consumed
by groups of users, rather than a single user. Some examples of these scenarios and the
systems developed to deal with them include the following:

1. Movie domain: In many scenarios, a group of users might wish to go out to see a set
of movies. The recommendations must therefore be tailored to the composition of the
group. An example of such a recommender system is PolyLens [168], which provides
recommendations to groups of users. PolyLens can be viewed as an extension of the
MovieLens system.

2. Television domain: Like movies, one might want to recommend programs to watch
for groups of users. An example of such a television program recommender, which is
based on user profile merging, is discussed in [653].

3. Music domain: Although it is less common for groups of users to hear music together,
such scenarios arise when the music is to be played in a group setting, such as a fitness
center or gym. An example of such a system is the MusicFX [412] group recommender
system.

4. Travel domain: The travel domain is perhaps the most common one for group rec-
ommendations. This is because it is common for groups of tourists to make travel
plans together. Some examples of such systems include Intrigue [52], Travel Decision
Forum [272], and Collaborative Advisory Travel System (CATS) [413].

These processes lead to a natural question: why would one not use straightforward averaging
to recommend items to a group in these situations? After all, if the goal is to maximize the
overall utility, then using the average seems to be the most effective option. However, users
can often influence one another based on social phenomena, such as emotional contagion
and conformity [409]. These phenomena can be defined as follows:

424 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

1. Emotional contagion: The satisfaction of various users can have an impact on one
another. For example, if a set of users are watching a movie together, and if some
members of the group are not enjoying the movie, this can have a contagious effect
on other users. In such cases, averaging does not work very well because the users
infect one another with their tastes, and the final experience of the group may be very
different from what the average rating might indicate.

2. Conformity: Conformity is closely related to the notion of emotional contagion, in
that the expressed opinions of users have an impact on one another. However, the
social phenomenon is slightly different, in that users either want to consciously have
similar opinions as their peers (in spite of having a hidden difference of opinion), or
their opinions unconsciously change because of peer influence. As a result, the final
experience of the group may deviate significantly from what an average rating might
indicate.

These two social phenomena, which are related to social choice theory, have significant
effects on the performance of recommender systems. As a result, the averaging strategy
will often not work well. For example, an evaluation of an averaging-based strategy for
television recommendation service was performed in [654], and it was shown that the rec-
ommender performs well when the group had homogeneous tastes, but it does not perform
quite as well when the tastes vary widely. Therefore, it is crucial to be able to use social
phenomena in the modeling process. In addition, group recommenders are generally defined
differently, depending on whether they are designed in the collaborative, content-based,
or knowledge-based settings. Although the general principles of group recommendation in
the collaborative and content-based settings are similar, the principles of knowledge-based
systems are quite different. In the following, we will study these different settings.

13.4.1 Collaborative and Content-Based Systems

The collaborative and content-based systems are generally quite similar in terms of the
approach used for creating the group recommendations. The general approach comprises
the following two steps:

1. Perform the recommendation independently for each user as in any collaborative or
content-based system. For a given group and a given universe of items, determine
rating predictions for each user-item combination.

2. For each item, aggregate the ratings from the various members of the group into a
single group rating by using a aggregation function of the ratings predicted for each
member of the group. This function might use a simple weighted averaging over group
members, an aggregation approach based on principles from social choice theory, or
a combination of the two. All the items are then ranked for the group based on the
predicted group rating of each item.

The main difference between the various methods is the implementation of the second
aggregation step. A variety of different strategies are used to aggregate the diverse ratings
into a single value in the second step. These strategies are as follows:

1. Least misery strategy: In the least misery strategy, the overall rating suggested to the
group is the lowest rating of any member of the group. The basic idea of this approach
is to prevent the negative effects of social contagion and conformity. An example a
system using this approach is PolyLens [168].

13.4. GROUP RECOMMENDER SYSTEMS 425

2. Weighted averaging: This approach uses the average rating of the individual ratings,
and a weight is associated with each individual. The weight is often used to model
specific types of situations that prevent extreme dislike or infeasibility. For example,
a casino resort should not be suggested as a tourist destination to a group containing
a child, and a physically strenuous trip should not be suggested to groups contain-
ing one or more disabled individuals. Providing greater weights to the preferences
of such individuals automatically increases the overall acceptability and feasibility of
the group recommendation. A variation of such a strategy was used in Intrigue travel
recommender [52]. It has also been suggested [168] that ratings from experts might be
assigned greater weight. Finally, it is also possible to combine the least misery strategy
with the averaging strategy by using a weighted summation of the least misery and
averaging prediction over each item.

3. Average without misery: This approach averages the predicted ratings of the group
members after excluding the ratings of individuals with the lowest ratings. Note that
this approach tends to have an opposite focus to the least misery strategy, because
it averages only over members who experience the greatest pleasure over a specific
item. This type of approach was used in the MusicFX system [412]. When considering
this approach, it is worth noting that pleasurable experiences can be emotionally
contagious in the same manner as unhappy experiences.

A variation of the averaging approach is to use the median instead of the mean. The ad-
vantage of using the median is that it is less susceptible to noise and outliers. For example,
a single highly negative rating may affect the mean significantly but it may not affect the
median much. Such an approach is particularly useful when users are aware of the recom-
mendations that other users are giving and respond by attempting to selectively provide
highly positive or negative ratings that would have an outsized influence on the overall
group recommendation. As a result, the average no longer remains representative of the
group rating. Such an approach is used by Travel Decision Forum [272]. A variety of other
aggregation strategies are suggested in [407]. Refer to the bibliographic notes.

13.4.2 Knowledge-Based Systems

The aforementioned systems are all based on ratings specifications. However, knowledge-
based systems are not based on user ratings, but rather on the specification of user re-
quirements. Therefore, the natural approach in such systems is to have each user specify
his or her requirements, which are aggregated into a single set. Then, the item that fulfills
most of these requirements is recommended. Such an approach is used by the Collaborative
Advisory Travel System (CATS) [413]. Such systems also allow interactive feedback that
allows the group to explore its interests in an interactive style. Knowledge-based systems
are particularly well suited to group recommendations, as they allow the group to come to
a consensus in an interactive way before actually consuming the item. This reduces the like-
lihood of dissatisfaction in the final recommendation. Although knowledge-based systems
are designed for complex product domains, they are also useful in the context of complex
user domains. A group recommendation setting can be viewed as a complex user domain.
Knowledge-based recommender systems are discussed in Chapter 5.

426 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

Table 13.1: Effects of multiple criteria in defining similarity

Criterion ⇒ Visual Effects Plot Overall
User ⇓
Sayani 3 9 7
Alice 9 3 7
Bob 8 3 5

13.5 Multi-Criteria Recommender Systems

In many recommendation applications, users may be interested in items on the basis of
different criteria. For example, in a movie recommender system, one user may be interested
in visual effects, whereas another user may be interested in the plot. In such cases, the
overall rating is often a poor reflection of the user’s overall choices. Consider the hypothetical
example illustrated in Table 13.1. In this case, three users have expressed their ratings for
the movie Gladiator based on visual effects, plot, and overall rating. Note that the overall
rating is specified directly by the users, and might not necessarily represent an average of
all the ratings. Each rating value is specified on a scale from 1 to 10. It is clear that Alice
and Sayani have exactly the same overall rating, but their patterns of ratings for the plot
and visual effects are very different. On the other hand, Alice and Bob are slightly different
in their overall ratings, but have similar ratings on the visual effects and plot. Therefore, for
any peer-based prediction method, Alice and Bob should be considered more similar than
Alice and Sayani. By using similarity computations based only on the overall rating, one
can often obtain misleading predictions.

The overall rating in a multi-criteria system may be either explicitly specified by users,
or it may be derived with the use of a global utility function (e.g., simple averaging). In
cases where an overall rating is specified by users, it is possible to learn a user-specific utility
function with the use of linear regression methods such as those discussed in Chapter 5 on
knowledge-based recommender systems. For cases in which the overall rating is not specified
by users, the items can be ranked directly by integrating the predictions from the various
criteria without computing an overall rating. In other cases, one can implicitly average over
various criteria in order to create the overall rating. If needed, the various criteria may be
weighted using domain-specific knowledge (e.g., utility functions).

It should be pointed out that multi-criteria recommender systems are inherent to
knowledge-based systems, which are designed for complex product domains such as cars.
Such products have multiple criteria such as performance, interior design, luxury options,
navigation, and so on. In such domains, users wish to rank items based on whether they
satisfy certain user-specified criteria. As these methods are already discussed in Chapter 5,
this chapter will primarily focus on content-based and collaborative filtering methods.

In the following, we will discuss some of the common methods used in multi-criteria
recommender systems. Refer to the bibliographic notes for an up-to-date discussion of recent
methods. For the purpose of the following discussion, we will assume that there are a total of
c criteria, indexed by {1, 2, . . . , c}. The m× n ratings matrix according to the kth criterion

is denoted by R(k), and the rating of user i for item j in R(k) is denoted by r
(k)
ij . In the

event that the user also specifies overall ratings, then the corresponding rating matrix is
denoted by R(0), and the corresponding value of the overall rating of user i for item j is

denoted by r
(0)
ij .

13.5. MULTI-CRITERIA RECOMMENDER SYSTEMS 427

13.5.1 Neighborhood-Based Methods

Neighborhood-based methods can be easily adapted to work with multi-criteria systems
because of the ease with which multiple criteria can be incorporated within the similarity
function. Most of the existing neighborhood-basedmethods leverage user-based collaborative
filtering methods rather than item-based collaborative filtering methods. However, it is
possible, in principle, to generalize item-based methods to multi-criteria scenarios using
similar techniques. In the following, we will discuss only user-based neighborhood methods
because of its wider acceptance and available experimental results.

Let Simk(i, j) represent the similarity between users i and j over criterion k, where
k ∈ {1 . . . c}. Furthermore, we will assume that the overall ratings matrix R(0) is available,
and the corresponding similarity between users i and j is denoted by Sim0(i, j). Then, the
neighborhood-based method can be implemented as follows:

1. Compute the similarity Simk(i, j) between each pair of users i and j for each k ∈
{0 . . . c}. Any of the methods introduced in Chapter 2, such as the Pearson correlation
coefficient, may be used for computing Simk(i, j).

2. Compute the aggregated similarity Simaggr(i, j) between each pair of users i and j
by aggregating the similarity values over the various criteria using an aggregation
function F (·):

Simaggr(i, j) = F (Sim0(i, j), Sim1(i, j), Sim2(i, j), . . .Simc(i, j)) (13.4)

Determine the k-closest peers of each user with the aggregated similarity.

3. Use the similarity weighted values of the (overall) ratings of each peer of a user t for
an item j in order to predict the rating of user t for item j. Typically, the approach
is combined with row-wise mean-centering to prevent user-specific bias. Thus, this
approach is equivalent to that of using Equation 2.4 of Chapter 2 on the overall
ratings matrix R(0), except that aggregated similarities Simaggr(·, ·) are used for peer
determination and weighting purposes within Equation 2.4.

It is noteworthy that the aggregation function of Equation 13.4 also uses Sim0(i, j) (sim-
ilarity based on overall ratings) in the computation. The main differences among various
methods arise in terms of how the aggregation of Equation 13.4 is computed. The common
methods for aggregation are as follows:

1. Average similarity: This approach [12] is based on the averaging of the predictions of
the (c+1) different ratings (including the overall rating). Therefore, the function F (·)
of Equation 13.4 is defined as follows:

Simaggr(i, j) =

∑c
k=0 Sim

k(i, j)

c+ 1
(13.5)

2. Worst-case similarity: This approach [12] uses the smallest similarity across all the
criteria (including the overall rating). Therefore, we have:

Simaggr(i, j) = minc
k=0Sim

k(i, j) (13.6)

3. Weighted aggregation: This approach [596] is a generalization of the averaging tech-
nique and uses a weighted sum of the similarities across the different criteria.

428 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

Let w0 . . . wc be the weights of the various criteria. Then, the aggregated similarity is
defined as follows:

Simaggr(i, j) =

c∑

k=0

wk · Simk(i, j) (13.7)

The value of wi determines the weight of criterion i, and the weights can be deter-
mined using straightforward parameter-tuning techniques such as cross-validation (cf.
Chapter 7).

In addition to using similarities, it is also possible to use distances both for peer computation,
and for the final step of weighted rating prediction. Note that similar items will have smaller
distances, necessitating conversion of the distances into similarities in a heuristic way in
order to perform the weighting. For any pair of users, the distances are computed based
only on the items that the two users have rated in common. The distances are computed
separately for each of the items by aggregating across various criteria. The distances across
various items are averaged in a second aggregation step.

How is the first step of computing the distance ItemDistaggr(i, j, q) between users i and
j with respect to a particular item q executed? Note that item q must be rated by both users
i and j for this distance to be computed at all. A natural approach is to use the Lp-norm,
which is defined as follows:

ItemDistaggr(i, j, q) =

(
c∑

k=0

|rkiq − rkjq |p
)(1/p)

(13.8)

Commonly used values of p are p = 1 (Manhattan metric), p = 2 (Euclidean metric), and
p = ∞ (L∞-norm).

This approach is repeated over each of the items that the users i and j have rated in
common. Let this set of items be denoted by I(i, j). The overall distance Distaggr(i, j) across
all items is defined by the average distance over all items in I(i, j):

Distaggr(i, j) =

∑
q∈I(i,j) ItemDistaggr(i, j, q)

|I(i, j)| (13.9)

One can convert the distances into similarity values with the use of simple kernel computa-
tions or inversion tricks:

Simaggr(i, j) =
1

1 + Distaggr(i, j)
(13.10)

After the similarity values have been computed, one can leverage the user-based collabora-
tive filtering methods as discussed above.

13.5.2 Ensemble-Based Methods

All the aforementioned methods make changes to a specific algorithm, such as the neigh-
borhood algorithm, in order to perform the recommendations. However, it is possible to
use ensemble-based methods, which can leverage any existing technique, to perform the
recommendations [12]. The basic approach contains two steps:

1. For each value of k ∈ {1 . . . c}, use any off-the-shelf collaborative filtering algorithm
on ratings matrix R(k) to fill in the ratings for criterion k.

13.5. MULTI-CRITERIA RECOMMENDER SYSTEMS 429

2. For each user i and item q, for which the ratings have been predicted, combine the

predictions r̂(1)iq . . . r̂
(c)
iq across the various criteria using an aggregation function f()

as follows:
r̂
(0)
iq = f(r

(1)
iq . . . r

(c)
iq) (13.11)

The computed aggregation provides the overall predicted rating. The recommended
items are then ranked for user i based on the overall predicted ratings.

The construction of the aggregation function f() remains to be explained. There are three
common techniques suggested in [12]:

1. Domain-specific and heuristic methods: In this case, the aggregation function is set
by the domain expert depending on the perceived importance of the various criteria.
The simplest possible approach is to use the average of the predicted ratings over the
various criteria.

2. Statistical methods: These represent linear and non-linear regression methods. For
example, the overall predicted rating can be expressed as a linear weighted sum of the
predicted ratings over various criteria:

r̂
(0)
iq =

c∑

k=1

wk · r(k)iq (13.12)

The values of w1 . . . wc can be learned using linear regression techniques, as discussed
in section 6.3 of Chapter 6. Note that the observed values of the ratings across various
criteria can be used as the training data to learn the weights.

3. Machine-learning methods: This approach is not very different in principle from the
second approach. Instead of using regression, any machine-learning method (such as
a neural network) can be used. Note that simpler versions of neural networks can also
be used to approximate linear regression. However, a neural network provides greater
power in modeling arbitrarily complex functions.

The aforementioned discussion is based on the assumption of a global aggregation. However,
it is also possible to learn user-specific or item-specific aggregation functions, if sufficient
number of observed ratings about users and items are available. The ensemble-based ap-
proach is simple to implement because it provides the ability to use off-the-shelf tools in
various phases of the process. This aspect of ensemble methods also provides it with greater
flexibility in performing model selection, and tuning the system with an appropriate choice
of learners.

13.5.3 Multi-Criteria Systems without Overall Ratings

The aforementioned methods require the availability of overall ratings in order to perform
the recommendations. In cases where overall ratings are not available, the methods dis-
cussed in the previous sections cannot be used in their current form. However, one can still
use the first step of the ensemble-based method discussed in the previous section. The main
difference is that the second step of aggregating the predicted ratings needs to performed
without any available learning data. Therefore, methods such as linear regression, nonlin-
ear regression, neural networks, or other machine-learning methods are no longer possible.
However, it is still possible to use heuristic and domain-specific combination functions in

430 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

the aggregation step. The items can then be ranked on the basis of the aggregated value.
A second approach for presenting the items to the user is to leverage the pareto-optimality
of the predicted ratings across the various criteria. Only the pareto-optimal items are pre-
sented to the user along with an explanation of why they are presented. The bibliographic
notes contain pointers to various multi-criteria systems that do not assume the availability
of overall ratings.

13.6 Active Learning in Recommender Systems

Recommender systems are heavily dependent on historical data provided by the user. How-
ever, ratings matrices are sometimes excessively sparse, causing challenges in providing
meaningful recommendations. This is especially true at start-up time, where cold-start prob-
lems are often encountered. In such cases, it is important to quickly acquire more ratings
to build up the ratings matrix. The process of acquiring ratings is time-consuming and
costly because users are often not willing to voluntarily provide ratings without a perceived
benefit. Indeed, it has been argued [303] that users are willing to share private information
in collaborative filtering applications only when they are fairly compensated. This implies
that there is an inherent cost (often implicit) to acquiring ratings. An active learning system
chooses specific user-item combinations for which to acquire ratings in order to maximize
the accuracy of predicted ratings. For example, consider a scenario of a movie recommender
system in which many action movies have already been rated, but no comedy movies have
been rated. In such cases, it is intuitively fruitful to actively acquire ratings of comedy
movies rather than action movies in order to maximize prediction accuracy. This is because
the incremental improvement in accuracy by acquiring further ratings of other action movies
is likely to be less than that obtained by acquiring ratings of comedy movies. After all, one
can already predict the ratings of action movies reasonably well, whereas one cannot predict
the ratings of comedy movies very well with the available ratings. The problem here is that
one cannot acquire the rating of an arbitrary user-item combination. For example, a user
who has not consumed an item cannot be reasonably expected to provide a rating.

Active learning is commonly used in classification applications [18]; therefore, the ap-
plicability of the approach to content-based methods is obvious. After all, content-based
methods are essentially classification problems on user-specific training data. In the case of
collaborative filtering applications, content or genre information is typically not specified,
and one must make such predictions with the use of the currently available ratings matrix.
In its simplest form, one can formulate the ratings acquisition problem as follows:

Given a ratings matrix R, a cost budget C, and a cost-per-acquisition c, determine the
set of user-item combinations for which the ratings must be acquired in order to maximize
the prediction accuracy.

It is evident that the active learning formulation for classification is similar to that of
collaborative filtering. In the case of classification, labels of training points are queried. In
collaborative filtering, the ratings of user-item combinations are queried. As collaborative
filtering is a generalization of the classification problem (cf. Figure 1.4 of Chapter 1), the
active learning methodologies of classification also generalize to the collaborative filtering
scenario. However, there is one key difference between collaborative filtering and classifi-
cation. In classification, it is assumed that an oracle exists that provides the label of any
queried data point. This assumption cannot be made in collaborative filtering. For example,

13.6. ACTIVE LEARNING IN RECOMMENDER SYSTEMS 431

if a user has not consumed an item, she cannot be expected to provide a rating for it. Nev-
ertheless, the principles of active learning in collaborative filtering applications are similar
to those in classification, at least in terms of determining which user-item combinations
are most valuable to acquire. In many cases, incentives can be provided to a user to rate
a specific item. For example, the merchant might offer a free product in exchange for a
specific number of ratings from a particular user.

The simplest approach to active learning is to query for items that have been rated
sparsely by the users. This can naturally help in the cold-start setting. However, such an
approach is useful only in the initial stages of the recommender system setup. In later stages,
more refined techniques are required in which the entries of the matrix are selected on the
basis of the particular combination of users and items. Such methods are based on ideas
already available in the classification literature.

Active learning is still an emerging area in the topic of collaborative filtering, and there
are relatively few methods proposed in this area. Therefore, this section will briefly dis-
cuss two common methodologies [18, 22] used in classification and their applicability to
collaborative filtering applications. These two methods are heterogeneity-based models and
performance-based models. In the former case, the data points (user-item combinations) are
queried, for which their predicted rating values are the most uncertain before performing
the query. In performance-based models, the data points are queried, so that the prediction
accuracy on the remaining entries provide the best expected performance or certainty after
incorporating the newly queried rating in the matrix.

13.6.1 Heterogeneity-Based Models

In heterogeneity-based models, the goal is to query for the rating of the user-item combi-
nation for which the predicted rating is the most uncertain before performing the query.
The specific method for judging the level of uncertainty depends on the model at hand.
For example, if a numeric rating is predicted with a specific variance, each user should be
queried with the item with the largest predicted variance. In the case of a binary rating
prediction with a Bayesian approach, the item q whose posterior probability pq is closest to
0.5 (i.e., smallest value of |pq−0.5|) is queried. Some specific examples of how this approach
may be used in the context of specific models are as follows:

1. In a user-based neighborhood approach, the variance of the prediction of user-item
combination (i, q) can be computed as the sample variance of the ratings of the peer
users of i for item q. If none of the peer users have rated item q, the sample variance
is ∞.

2. In an item-based neighborhood approach, the variance of the prediction can be com-
puted from the ratings of user i of the most similar items of q. If user i has not rated
any of the most similar items of q, the sample variance is ∞. Therefore, the approach
tends to guide the user towards rating different items and naturally increases the cov-
erage of the recommender system. In this sense, the approach is also able to adjust
well in the cold-start setting.

3. In a Bayesian model, a Bayes classifier (cf. Chapter 3) is used to predict ratings.
Consider the case of binary ratings, in which the prediction of a value of 1 has posterior
probability pq. In this case, the uncertainty is quantified as 1 − |pq − 0.5|. The item
with the largest uncertainty value is selected for querying.

432 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

4. One can use multiple models to predict the ratings. A rating is said to be uncertain
when the different models have different predictions. The variance of the predictions
over the different models can be used to quantify the uncertainty.

The aforementioned methods are simple adaptations of techniques in the classification lit-
erature. One can adapt most collaborative filtering algorithms in a natural way to compute
the uncertainty. In collaborative filtering, some additional factors can be combined with the
uncertainty level in a heuristic way (e.g., multiplicatively):

1. One can include a factor for the probability that a user is likely to rate an item. This
is because users cannot provide ratings for items they have not consumed. Consider
an implicit feedback matrix in which a value of the entry is 1 if a user has rated an
item (irrespective of actual rating value) and 0, otherwise. The predicted “rating”
with the use of any collaborative filtering algorithm provides a probability that a user
will actually rate the item.

2. It is suggested in [513] that very popular items should not be queried because their
ratings are often not representative of the other items.

Note that few experimental results exist on how active learning methods actually perform in
the context of collaborative filtering. Therefore, this area is open to significant opportunities
for further research.

13.6.2 Performance-Based Models

The goal of querying for ratings is to increase prediction accuracy and also reduce the un-
certainty of prediction on the currently available entries. In performance-based models, the
data points are queried so that the prediction accuracy on the remaining entries provides
the best expected performance or certainty after incorporating the newly queried rating in
the matrix. Note that uncertainty-based models focus on the prediction characteristics of
the currently queried instance, whereas performance-based models focus on the differential
impact of the added instance to the predictions of the currently available entries. Deter-
mination of what would happen after querying the rating of a user-item combination is
challenging because the expected performance must be computed before actually querying
the rating. Bayesian methods are used to compute this expected performance. The corre-
sponding techniques are described in [18, 22].

13.7 Privacy in Recommender Systems

Collaborative filtering applications are heavily dependent on the collection of feedback from
multiple users. In collaborative filtering applications, users need to specify ratings for items.
These ratings reveal important information about user interests, their political opinions,
sexual orientation, and so on. This revealing of private information that comes with rating
items poses numerous challenges because it makes users less willing to contribute ratings.

All privacy-preservation methods change the data in some way so as to reduce its accu-
racy of representation. This is done in order to increase the privacy. The trade-off is that
the data becomes less accurately represented. Therefore, mining algorithms are no longer
as effective. Two classes of techniques are used to preserve privacy:

13.7. PRIVACY IN RECOMMENDER SYSTEMS 433

1. Privacy at data collection time: In these techniques, the data collection approach
is modified so that individual ratings are not collected. Rather, distributed proto-
cols [133] or perturbation techniques [35, 38, 484, 485] are used to collect the data only
in a perturbed way or in the aggregate. Typically, specialized (secure) user-interfaces
and data collection plug-ins are required in order to implement the approach. Further-
more, specialized data-mining methods are used on the collected data, because many
of these techniques use aggregate distributions for mining, rather than individual data
records.

The advantage of such an approach is that users are assured that no single entity
has access to their private data, at least in its exact form. Although privacy at data
collection provides the strictest form of privacy, much of the work in this area is
at the research stage only. To the best of our knowledge, there are no large-scale
commercial implementations of such systems. This is, in part, because such systems
typically require more effort from the user in terms of gaining access to specialized
interfaces/infrastructures and more effort from the data miner after the aggregated
data becomes available.

2. Privacy at data publication time: In most practical settings, a trusted entity (e.g, Net-
flix or IMDb) has access to all the ratings data it has collected over time. In such
cases, the trusted entity might wish to publish the data to the broader technical com-
munity to enable further advancements in the field of collaborative filtering. A specific
example of such a publication was the Netflix Prize data set, which was released after
de-identification of the ratings. In such cases, models like k-anonymity [521] are used to
preserve privacy. Typically, such methods use group-based anonymization techniques
in which records belonging to groups of a minimum size become indistinguishable.
This is achieved by carefully perturbing selected attributes of the data records so that
one cannot join such records with publicly available information in order to exactly
identify the subjects of the data records. Such systems are more common, and have
wider applicability than the first scenario.

The two aforementioned models have different trade-offs. The first model provides stronger
privacy guarantees because the individual’s ratings are not stored anywhere, at least in their
exact form. In some cases, the ratings are stored only in an aggregate sense. Therefore, the
approach provides greater privacy guarantees. On the other hand, it is generally harder to
use off-the-shelf collaborative filtering algorithms with such forms of data collection. This is
because the data is either perturbed very highly, or the fundamental representation of the
data has been changed to some aggregate form. In the case of methods using group-based
anonymization, the privacy guarantees are typically weaker. On the other hand, the released
data records are typically in the same format as the original data. Therefore, it is easier
to make use of off-the-shelf collaborative filtering algorithms in these cases. The following
passage provides a brief overview of group-based anonymization models.

Group-based anonymization methods are typically used by trusted entities at data publi-
cation time. The typical goal of publishing entities is to prevent identification of the subjects
of the data records. For example, when Netflix released their ratings data set, the subjects
of the data records were de-identified. In addition, the attributes are typically perturbed in
such a way that groups of data records become indistinguishable. The basic idea in these
methods is to perturb the data records sufficiently that attackers cannot match the records
with other publicly available data sources in order to determine the identity of the subjects
of the records. Some common models for perturbing the data records in group-wise fashion
include k-anonymization [521], condensation [27], �-diversity [386], and t-closeness [352].

434 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

The reader is encouraged to refer to the bibliographic notes for further details related to
common privacy-preservation methods. In the following, we briefly discuss a condensation-
based method that is easy to apply to the collaborative filtering setting. We will also discuss
some challenges that surface when these methods are used for high-dimensional data.

13.7.1 Condensation-Based Privacy

The condensation-based approach was originally designed for multi-dimensional data
records, which are completely specified [27]. However, the approach can easily be used for in-
completely specified data records as well. One of the inputs to the algorithms is an anonymity
level p, which defines the number of rows we wish to be indistinguishable from one another.
Larger values of p result in a greater level of anonymity, but they reduce the accuracy of
the modified data. Consider an m× n ratings matrix R, which is incompletely specified:

1. Partition the rows of R into clusters C1 . . . Ck, such that each cluster contains at least
m records.

2. For each cluster Cr, generate |Cr| > m synthetic data records matching the data
distribution of the records in the cluster.

Both the two steps need to account for the fact that the rows in the matrix R are incom-
pletely specified. Clustering methods can be modified relatively easily to work for incomplete
data. For example, a k-medians algorithm can be modified by using only the specified values
of the entries in the median computation. Similarly, the distances are computed using only
the specified entries and then normalized by the number of observed dimensions. Similarly,
while generating the synthetic data records from Cr, one can use a simple multivariate
Bernoulli distribution over the values of the ratings to model each item. This multivariate
Bernoulli distribution is derived from the rating distribution of the records in the cluster.
One must take care to generate the rating of an item the same number of times that it is
present in that cluster.

This method of synthetic data generation comes with two primary advantages. The first
advantage is that the data are generated in the same format as that of the original ratings
matrix, allowing application of any off-the-shelf collaborative filtering algorithm; the second
is that the anonymity of synthetic data is generally harder to compromise. This approach
can also be generalized to dynamic settings [27].

13.7.2 Challenges for High-Dimensional Data

Ratings data is typically high-dimensional. For example, a typical ratings matrix may con-
tain thousands of dimensions. Furthermore, some users might easily specify more than 10
or 20 ratings. In such cases, it is harder to preserve the privacy of such users with group-
based anonymization methods, even when the data records are perturbed. For example, if
a particular source releases a set of de-identified ratings, an attacker might use a different
source of ratings that are not de-identified and match the two data sets in order to deter-
mine the subjects of the de-identified records. The larger the number of specified ratings
is, the easier it is to de-identify the records. It has been shown in [30] that only about 10
to 20 specified values in a row are necessary in order to generate a powerful attack. The
well-known Netflix Prize data set was attacked using this methodology [451]. The challenges
for high-dimensional data are not trivial, and there are theoretical barriers [30] to the limits
of anonymization. The development of new anonymization methods for high-dimensional
and sparse data sets remains an open area of research.

13.8. SOME INTERESTING APPLICATION DOMAINS 435

13.8 Some Interesting Application Domains

In this section, we will study a number of interesting application domains for recommender
systems. The goal of this section is to study the application of recommender systems to
various application domains, and the specific challenges that arise in the context of each
domain. Some examples are as follows:

1. Query recommendation: An interesting question is howWeb logs can be used to recom-
mend queries to users. It is not quite clear whether query recommendation should be
considered a personalization application because the recommendations are typically
session-specific (i.e., dependent on the history of user behavior in a short session) and
do not use long-term user behavior. This is because queries are often issued in scenar-
ios in which user re-identification mechanisms are not available over multiple sessions.
We will not discuss this topic in detail, although relevant pointers are included in the
bibliographic notes.

2. Portal content and news personalization: Many online portals have strong user iden-
tification mechanisms by which returning users can be identified. In such cases, the
content served to the user can be personalized. This approach is also used by news per-
sonalization engines, such as Google News, in which Gmail accounts are used for user
identification. News personalization is usually based on implicit feedback containing
user behavior (clicks), rather than explicit ratings.

3. Computational advertising: Computational advertising is a form of recommendation,
because it is desirable for companies to be able to identify advertisements for users
based on a relevant context (Web page or search query). Therefore, many ideas from
recommendation systems are directly used in the area of computational advertising.

4. Reciprocal recommender systems: In these cases, both the users and items have pref-
erences (and not just the users). For example, in an online dating application, both
parties (men and women) have preferences, and a successful recommendation can be
created only by satisfying the preferences of both parties. Reciprocal recommender
systems are closely related to the link-prediction methods discussed in Chapter 10.

This chapter will provide an overview of some of these different applications, with a spe-
cific focus on portal content personalization, computational advertising, and reciprocal rec-
ommender systems. The basic idea is to give the reader a sense of how recommendation
technology can be used in diverse settings.

13.8.1 Portal Content Personalization

Many news portals personalize the news for their users by using their history of past accesses.
An example of such a personalization system is the Google news engine. Google has strong
user-identification mechanisms with the use of Gmail accounts. This mechanism is used to
track the past history of user click behavior. This past history is used to recommend news
of interest to users. Similar methods can be used to recommend content to users in many
types of Web portals. The main assumption in all these cases is that a user log of their past
actions is available.

436 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

13.8.1.1 Dynamic Profiler

Dynamic Profiler [636] is a portal content personalization engine that uses a combination
of collaborative and content-based techniques. The system can be used for any form of por-
tal content personalization, including news personalization. The approach contains several
steps, most of which are periodically repeated to refresh summary statistics which need to
be updated over time in order to prevent them from becoming stale. These statistics are
used to make recommendations in real time. The overall approach contains the following
broad steps:

1. (Periodically updated) A sample of documents from the portal is used to create
a group of clusters. The clustering is done using a partially supervised clustering
scheme [29]. The supervision of the clustering is done with the help of samples of
documents belonging to semantically relevant topics. These samples are used as seeds
for creating the clusters with a combination of an agglomerative and a k-means ap-
proach. As a result, the clusters contain the semantically important categories in the
collection.

2. (Periodically updated) The user access log is used in conjunction with the afore-
mentioned clusters to create user profiles. The user profile contains a count of a num-
ber of accesses of the user to documents belonging to each cluster. Therefore, the
user profile is a multidimensional record with as many dimensions as the number of
clusters.

3. (Periodically updated) The user profiles are then clustered into peer groups with
the use of high-dimensional clustering methods. Several high-dimensional clustering
methods are discussed in [19].

4. (Online phase at recommendation time) A neighborhood-based approach is used
in conjunction with these peer groups to perform the recommendations. For any given
target user, the frequent categories in the closest clusters form the relevant recom-
mended categories. It is also possible to recommend individual documents to the target
user using an approach described below.

It remains to be explained how the final step of performing the recommendations is executed.
For a given user, the first step is to determine her closest peer group. This is achieved by
computing the distance between her profile and the centroids of the various peer groups.
The closest peer group is referred to as her community. The frequency of all the documents
accessed by this community is efficiently determined from an indexed version of the logs. The
most frequently accessed documents in this community, which have also not been accessed
by the target user, are then presented as the relevant recommendations.

13.8.1.2 Google News Personalization

The Google news personalization engine [175] is based on a similar problem statement as the
dynamic profiler model. Therefore, an implicit feedback data set of user clicks is available in
this case. The Gmail accounts of users provide a strong identification mechanism in Google
news. When users are signed in and access Web pages, their click behavior is stored. The
goal is to use the stored statistics about user clicks to make recommendations to these users
from a candidate list L of items. For the time being, we will assume that the candidate list
L is given. Later, we will discuss how the candidate list can be generated.

13.8. SOME INTERESTING APPLICATION DOMAINS 437

The Google news system uses very different algorithms from Dynamic Profiler. Whereas
the Dynamic Profiler is designed to work for individual Web sites, the Google news system
is designed to work in a Web-scale environment. The basic idea of the approach is to use
a similarity-based mechanism to make recommendations. As with user-based neighborhood
algorithms, a weighted similarity of users to other users who have accessed a particular item
is used to make the recommendations. Let riq be an indicator variable, which takes on the
value 1, if user i has accessed item q, and 0, otherwise. Note that riq can be viewed as the
implicit feedback version of a ratings matrix. Similarly, let wij be the computed similarity
between users i and j based on the similarity of their access patterns to Web pages. Then,
the predicted propensity piq of user i to access the news item q is defined as follows:

piq =
∑

j �=i

wij · rjq (13.13)

Since the rating rjq is assumed to be binary, the prediction propensity piq can also be
binarized using an appropriate threshold. The similarity can be computed in a variety of
ways. For example, one might compute the Pearson correlation coefficient or the cosine
similarity between the item accesses of the two users.

The aforementioned formula is a straightforward generalization of the user-based collab-
orative filtering mechanism. Note that it is expensive to compute this predicted propensity
in a Web-scale setting because the similarity wij between every pair of users needs to be
pre-computed. The pairwise computation can be rather expensive, and the summation on
the right-hand side will also contain as many terms as the number of users. Therefore,
the work in [175] also proposes a number of more efficient model-based alternatives. These
methods use clustering to speed up computation. Furthermore, clustering methods have
some advantages in noise reduction for more effective collaborative filtering.

In model-based techniques, the users are either probabilistically or deterministically as-
signed to clusters with similar access behavior. In other words, users who have similar access
patterns typically belong to similar clusters with high probability. Two clustering schemes
are used, corresponding to MinHash and PLSI, and either of them can be used to implement
the approach. The former users a hard assignment of users to clusters, and the latter uses a
soft assignment to clusters. More details of these methods are discussed later in this section.

Assume that a total of m clusters are defined, and the fraction of user i assigned to
cluster k is given by fik. In the case of deterministic clustering, the value of fik is either 0
or 1, whereas the value of fik lies in (0, 1) in the case of soft clustering. Then, the propensity
of user i to access item q is defined as follows:

piq =
m∑

k=1

fik
∑

j:fjk>0

rjq (13.14)

It is also possible to further refine this formula by incorporating fjk, although this is not
mentioned in [175]:

piq =

m∑

k=1

fik
∑

j

fjkrjq (13.15)

In the case where the clustering is a hard assignment, such as (MinHash scheme), this
expression reduces to the following:

piq =
∑

j

CommonClusters(i, j) · rjq (13.16)

438 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

Here, CommonClusters(i, j) correspond to the number of common clusters in which users i
and j co-occur. Furthermore, if the clustering is executed only once as a strict partitioning,
the value of CommonClusters(i, j) is either 0 or 1. On the other hand, if the clustering is
repeated several times with a fast randomized approach, the value of CommonClusters(i, j)
is equal to the number of times that users i and j occur in the same cluster. For dynamic
data sets, the value of the implicit feedback “rating” rjq can be multiplied with a time-decay
value.

In addition, a co-visitation score is added to the scores generated from the clustering-
based computation. The co-visitation score is similar in principle to an item-based algorithm.
Two items are co-visited when they are visited by the same user within a pre-defined
span of time. For each item, the number of (time-decayed) co-visits to every other item is
dynamically maintained. For the target user i and target item q, it is determined whether
the frequent co-visits of item q are present in the recent item history of user i. For each
such presence, a normalized value is added to the recommendation score of Equation 13.14.
A specialized data structure is used to implement this operation efficiently.

Clustering Methods

As discussed earlier, MinHash and PLSI are used as the two clustering schemes. The Min-
Hash scheme implicitly clusters users based on intra-similarity defined by the Jaccard coef-
ficient of the sets of items they have visited in common. Although the MinHash scheme is
a randomized clustering method, it creates deterministic clusters in which the probability
of two users belonging to the same cluster is proportional to their Jaccard coefficient. The
PLSI scheme, on the other hand, is a probabilistic clustering method in which each point is
assigned to a cluster with a certain probability. Both the MinHash and PLSI methods are
described in detail in [175]. The work in [175] describes MapReduce methods to implement
these operations efficiently. The MapReduce approach is required to scale the approach to
massive settings.

Candidate List Generation

So far, the generation of the candidate list L for a particular target user i has not been
described in detail. The candidate list can be generated in one of two ways. The News Front-
end can generate a list of candidates based on the news edition, language preferences of the
user i, story freshness, customized sections selected by the user i, and so on. Alternatively,
the candidates can also be generated as the union of (i) all stories that have been clicked by
members of the same cluster as user i, and (ii) the set of stories that have been co-visited
with the set of stories in the click-history of user i.

13.8.2 Computational Advertising versus Recommender Systems

In recent years, online computational advertising has received increasing attention because
of the greater importance of the internet as a medium for content consumption, information
search, and business transactions. These represent typical activities that users are often en-
gaged in, and they also represent an opportunity for online advertisers, because the content
consumed and the transactions completed can provide a context within which advertise-
ments can be served. An activity that a user is engaged in typically reveals a lot about
the user and can be leveraged to target the products specific to the activity at hand. For
example, when a user queries a search engine such as Google or Bing with a keyword like

13.8. SOME INTERESTING APPLICATION DOMAINS 439

“golf,” it is common to see many “sponsored search results,” in addition to the true search
results. These sponsored search results are advertisements, which are placed by the search
engine, and are typically related to the search engine query (i.e., “golf”). This advertise-
ment methodology is referred to as sponsored search. In general, the two most common
computational advertising models are as follows:

1. Sponsored search: In this case, the search engine serves as a match-maker, and it
serves to place advertisements adjacent to the query search results posed by users.
The query search results provide the context for the advertisements, because the goal
of both advertisers and the match-maker is to display advertisements related to the
returned search results. This is because the users are more likely to click on contextu-
ally relevant sponsored search results. This is helpful in increasing business revenue for
the advertiser and also the advertising revenue for the match-maker because match-
makers are often paid on the basis of successful click-throughs from the sponsored
search result or the number of times the search result is shown. A combination of
these payoffs may also be used.

2. Display advertising: In this case, publishers of content (e.g., news portals) physically
place advertisements on the Web page corresponding to their content. Thus, the con-
tent publisher plays the role of the match-maker. The content of Web page serves
as the context. For example, a news portal, which is displaying an article on a golf
tournaments, might display an advertisement related to golf on the same page. The
match-maker can paid by the advertiser with the use of a variety of metrics. For
example, the match-maker might be paid for successful click-throughs on the adver-
tisement, a successful transaction on the basis of the advertisement, or the number
of times the advertisement is shown (i.e., number of impressions). A combination of
these payoffs may also be used. Therefore, the model of display advertising shares
many similarities with that of sponsored search.

In both cases, an advertisement (analogous to an item) is recommended to a user, in a
specific context (defined by either the search results or topic of the page on which the display
advertisement is placed). In both cases, the match-maker is a publisher of the content which
provides the context for the advertisement. Note that a search query result is also a form
of content publication, albeit it is dynamically generated, and it is reactive to a specific
user query. Furthermore, it is in the interest of both the advertiser and the match-maker to
ensure that the recommended advertisements are as relevant as possible. This relationship
between the various entities in the online advertising scenario is illustrated in Figure 13.3.

There are several important similarities and distinctions between computational ad-
vertising methods and recommender systems. The advertisements are like items and the
match-maker plays the role of the recommender to the users. However, before discussing
ways in which recommendation technology can be used for computational advertising, we
need to first understand the distinctions among them. This provides an understanding of
the scenarios in which one can effectively use this approach, and the changes needed to
achieve these goals. The specific distinctions between recommendations and computational
advertising are as follows:

1. In traditional recommender systems, it is in the best interest of a recommender sys-
tem, such as Amazon.com, to provide the most relevant recommendations to users.
Therefore, the user and recommender system interests are perfectly aligned. In com-
putational advertising, the match-maker is paid by the advertiser to recommend items
to users. While this provides a motivation for publishers (match-makers) to increase

440 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

CONTEXT

MATCHMAKER

USERS
ITEMS

(ADVERTISEMENTS)

e.g., SEARCH QUERY RESULTS,
PUBLISHER WEBPAGES

e.g., SEARCH ENGINES,
CONTENT PUBLISHERS

Figure 13.3: Relationships between various parties in the computational advertisement
setting

the click-throughs to the advertisement, the interests of the advertiser, publisher, and
user might not always be perfectly aligned. This is particularly true when publishers
are paid by advertisers on the basis of the number of impressions. The cost models can
be understood only in a game-theoretic sense, where the three entities try to maximize
their own utility. However, in many cases, the interests of the three entities are more
or less aligned.

2. Traditional recommender systems have strong user identification mechanisms. Even
when users are anonymized, the long-term history of a returning user is known. This
is not necessarily true in the case of computational advertising, where it is highly
likely that no information is known about the long-term history of a user submitting
a search on a search engine. In many cases, the data about past user interactions with
advertisements (items) is not even available. This is particularly important because
recommendations are all about personalization, whereas computational advertising is
all about immediate context. Nevertheless, in some sites with strong user-identification
mechanisms, both context and personalization are important. For example, if an online
newspaper has a login mechanism, it can leverage the user identification to provide
more relevant advertisement results. Similarly, Google does provide the ability to
perform personalized search with the use of Gmail-based identification mechanisms.

3. Items have a long lifetime within a recommendation system. However, in a computa-
tional advertisement system, a particular advertisement campaign may have only a
very short lifetime. Therefore, advertisements are inherently transient. However, it is
possible to logically represent advertisements on the same subject as a “pseudo-item”
in order to use recommendation technology.

It is clear from the aforementioned discussion that significant distinctions exist between
the computational advertising and recommendation model. Nevertheless, there are a few
scenarios in which one can adapt recommendation technology to computational advertising.

For cases in which strong user identification mechanisms are available and the advertiser
interests can be properly aligned with publisher interests, the advertising model can be
conceived as a recommendation process. The steps required to perform the modeling are as
follows:

13.8. SOME INTERESTING APPLICATION DOMAINS 441

MARK CLICKED ON
ADVERTISEMENT 4 WHILE
READING BUSINESS NEWS

 1

DAVID

 SAYANI

 JOSE

 MARK

 ANN

 JIM

ADVERTISEMENTS
(ITEMS)

U
SE

RS

2 3 4

 1

 1

DAVID CLICKED ON
ADVERTISEMENT 1 WHILE
READING SPORTS NEWS

SAYANI CLICKED ON
ADVERTISEMENT 2 WHILE
READING POLITICS NEWS

ANN CLICKED ON
ADVERTISEMENT 3 WHILE
READING POLITICS NEWS

Figure 13.4: Representing advertisements as contextual recommendations for newspaper
display advertisements (Note the similarity to Figures 8.1 and 11.6)

1. It is assumed that the set of (identified) users U participating in the system is known
in advance for long-term tracking and analytical purposes.

2. Even though advertising campaigns are short-lived, they are all classified into sets of
items. For example, two different advertisements on the same type of golf club are
treated as a single item. The overall set of items is denoted by I.

3. The user actions, such as the act of clicking on an advertisement, are treated as
implicit feedback. As advertisements have already been consolidated into items, the
user actions can be used to create an implicit feedback between users and items.
This implicit feedback could correspond to the frequency of user actions and can be
effectively treated as “ratings.”

4. All the publication sources (e.g., search phrases, or Web pages) are classified into
a discrete set of categories at an appropriate level of granularity. These categories
are treated as a fixed set of contexts, denoted by C. As discussed in Chapter 8, this
additional set of contexts can be used to define a 3-dimensional ratings mapping
function hR:

hR : U × I × C → implicit feedback rating

This relationship is shown in Figure 13.4. In this case, a hypothetical example of a news-
paper is shown, where all the articles have been categorized into specific topics. When
users click on advertisements relating to a particular topic on that page, this information is

442 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

recorded. The result is a multidimensional contextual representation, as discussed in Chap-
ter 8. The level of similarity of Figure 13.4 to Figures 8.1 of Chapter 8 and Figure 11.6
of Chapter 11 is particularly striking. The use of multidimensional methods for context-
sensitive recommendations [7] is a powerful technique, and it has recurred several times in
this book in different scenarios.

Many of the same techniques of Chapter 8 may be used for recommending advertisements
by treating them as items. However, the use of such techniques may need to be further
enhanced with the cost information, such as the amount by which a publisher is paid
for having a successful click-through on an advertisement. In other words, cost-sensitive
variants of contextual collaborative filtering algorithms may be used, in which items with
higher payoffs are prioritized over others. This can be achieved by ranking the predictions
in terms of the expected payoffs, rather than in terms of the expected probability of a
click. Content-based methods are particularly popular [105, 142, 327], and they use content
similarity to match the context of the Web page with that in the advertisements.

13.8.2.1 Importance of Multi-Armed Bandit Methods

Multi-armed bandit methods are particularly useful for computational advertising. It is
noteworthy that multi-armed bandit methods are particularly useful in settings where (a)
new items enter the system all the time, and (b) the payoffs of selecting a particularly
strategy can be precisely computed. Computational advertising in a domain in which the
items are extremely transient and therefore it is particularly important to use exploration
and exploitation simultaneously. Each arm of a slot machine can be viewed as one of the
advertisements. Therefore, slot machines will constantly be added to and removed from
the system. Also, since various types of context are associated with advertisements, it is
particularly useful to leverage contextual bandit methods, where the context of the adver-
tisement (e.g., search engine query keywords or the Web page on which an advertisement is
displayed) is used in order to make decisions on whether to serve the advertisement. Refer
to section 13.3 for a discussion of multi-armed bandit methods. A discussion of contextual
bandit algorithms is also found in [348].

In many cases, the setting of computational advertising does not neatly fit into the tra-
ditional multi-armed bandit framework. For example, a publisher might present more than
one advertisement at a time on a page, and a user might click on more than one adver-
tisement presented to them. To handle this variation, the slate problem is proposed [290]
for multi-armed bandits. In this variation of multi-armed bandits, the gambler is allowed
to play more than one slot machine in a single try before he or she becomes aware of the
rewards associated with that attempt. The simultaneous plays correspond to the different
advertisements that are placed on a given page. The reward associated with a particular
attempt is equal to the sum of the rewards obtained from the individual slot machines. In
the advertisement setting, it translates to the placement of different advertisements (slot
machine arms) on a Web page. In an ordered variation of this problem, different payoffs
are associated with different placements of the advertisements on the Web page. For exam-
ple, a higher placement in the ranked list will have a higher expected payoff than a lower
placement. Refer to [290] for details of a randomized algorithm for computing the optimal
policy.

13.8. SOME INTERESTING APPLICATION DOMAINS 443

13.8.3 Reciprocal Recommender Systems

The problem of computational advertising is related to the problem of reciprocal recommen-
dations [481]. The basic idea is that the task of recommendation changes when one needs
to consider the utility of the recommendation to multiple stakeholders with asymmetric
interests. An example of such a scenario is that of online dating [480, 482], although the
basic approach can be used in the context of various scenarios such as employer-employee
matching [253] and mentor-mentee [103, 621] matching. Even the link-prediction problem
discussed in Chapter 10 can be viewed as a form of reciprocal recommender system. A partic-
ularly relevant variation of link prediction is that of reciprocal relationship prediction [254],
in which one attempts to predict the likelihood of the occurrence of bidirectional “follower”
links in a directed social-network setting. There are several key differences between tradi-
tional recommender systems and reciprocal recommender systems. These differences [480]
impact the nature of the algorithms that can be used in these settings:

1. In traditional recommender systems, the user receives recommendations about items
and is the sole decider of the use or purchase of the items. On the other hand, in a
reciprocal recommender system such as online dating, the user is aware that the success
of the transaction depends on the agreement of the other party. In fact, the other
party is the “item” in the reciprocal setting. Therefore, in traditional recommender
systems, items are abundant and there is no need for the agreement of any other party
to consume the item. This is not true in reciprocal recommender systems.

2. In traditional recommender systems, users and products constantly recur in the sys-
tem. As a result, it is much easier to collect data about user preferences. In reciprocal
recommender systems (such as online dating) users and items might occur only once
in the system and they might never recur after a successful transaction. Therefore, the
cold-start problem is much more significant in the reciprocal setting. However, this
problem is not universal to all reciprocal domains. For example, in the link prediction
problem for social networks, the nodes are typically persistent.

The term “reciprocal” is motivated by the fact that both users and “items” have preferences
and successful transactions can be initiated only by satisfying both. Furthermore, one can
view the problem in a symmetric sense. In an employer-employee matching, one can view the
(potential) employer as the user and the (potential) employee as the item, or one can view
the employer as the item and the employee as the user. Therefore, there are two different
recommendations occurring in parallel, which need to be harmonized in order to maximize
the likelihood of successful transactions. For example, if an employee is very interested in
a specific employer, but the employer is not interested in the skill-set of that employee, it
makes little sense to introduce them to one another.

Explicit ratings are less common in such systems as compared to implicit feedback
caused by user actions. Therefore, most of these systems are based on implicit feedback
data in which user actions are used in lieu of the ratings. For example, in an online dating
application, the initiation of a contact, exchange of a message, or response to a message may
be given varying levels of weight as an implicit indication of interest. The main challenge
in such systems is the cold-start problem because successful transactions have a tendency
to remove users and items from the system.

In cases where the cold-start problem is significant, content-centric methods may play a
key role either directly or indirectly. In direct methods, content-centric methods can be used
within the recommendation technique in order to compensate for the paucity of ratings.

444 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

JOB POSTINGS CANDIDATES WOMEN MEN

(a) Job matching (b) Online dating

Figure 13.5: Relating link prediction to reciprocal recommendations

Content-centric methods are also facilitated by the fact that both2 users and items are
likely to have descriptive profiles in such systems. A second (indirect) method to handle the
non-persistent nature of users and items is to create persistent representatives. For example,
consider a job-matching application. For each posted job in the system, one might treat other
similar jobs posted in the past as instantiations of this job. This “similarity” is defined on
the basis of content-centric attributes. Similarly, for each candidate in the system, one might
treat other similar candidates in the past as instantiations of this candidate. In an online
dating application, one might treat (expired) users with similar profiles as instantiations
of a current profile. Successful transactions between past representatives can be treated as
pseudo-transactions between their current avatars. The weights of such pseudo-transactions
can be computed as a function of the similarities between the current avatars and past
instantiations of the representative users and “items.” This augmented data set can be used
in conjunction with various collaborative filtering and link-prediction methods to predict
the most likely links between pairs of nodes. It is often possible to recommend a user and
item pair to one another even when a pseudo-transaction already exists between. Note that
some of the pseudo-transactions might be quite noisy and unreliable. However, since the
underlying inference methods use the aggregate structure of the data set, the predictions
are likely to be reasonably robust. In cases where the pseudo-transactions are noisy, the
corresponding user-item pairs are less likely to be recommended by prediction algorithms
such as robust matrix factorization.

In the following, we will give a brief description of two key methods that are common to
reciprocal recommender systems. However, since this is an emerging area, we recognize that
these methods only scratch the surface of what is really possible in this area. Significant
opportunities exist for further research in this domain.

13.8.3.1 Leveraging Hybrid Methods

In these methods, two traditional recommender methods are constructed corresponding to
the preferences of the two reciprocal parties. Then, the predictions from these two parties are
combined. For example, in a job-matching application, a traditional recommender system

2In traditional recommender systems, items are more likely to have descriptive profiles than users.

13.8. SOME INTERESTING APPLICATION DOMAINS 445

R1 may be used to create a ranked list of potential employees for an employer. Then,
a traditional recommender system R2 may be used to create a ranked list of potential
employers for an employee. The results from these two recommendations are combined to
maximize the likelihood of a successful transaction. The combination method may use the
weighted hybrid methods discussed in Chapter 6. As discussed in Chapter 6, the weights can
be learned using linear regression methods, where the observed data is defined by successful
transactions in the past. In cases where sufficient observed data is not available because of
cold-start issues, either simple averages or domain-specific weights may be used. In cases
where the preference if one party is more important than that of the other, a cascade hybrid
can be used. For example, in settings where the number of job-seekers is far greater than the
number of job-postings, the recommender system can choose to prioritize employer interests
over employee interests. In such a setting, the cascade hybrid is ideal because it naturally
prioritizes the first cascade in the hybrid over the second one.

There are many other factors that can play an important role in deciding how to combine
the recommendations. For example, it is possible that one of the two parties might be
naturally proactive (i.e., initiating contact), and the other party might be naturally reactive
(i.e., responding to initial contact). In such cases, the nature of the hybrid can depend on the
system’s relative interests in satisfying the proactive and reactive parties. For example, one
might assume primacy of interests of the proactive party but only ensure that the reactive
party does not reject the recommendations. Repeated rejections from the reactive party can
be costly and can affect the popularity of the system. Therefore, two models can created:
the first model R1 computes the “items” that the proactive party will like, and the second
model R2 computes the users that reactive party (i.e., “items”) will dislike. The idea of
the second model is to prune the recommended items from the first model that the reactive
party will dislike. A variety of combination methods for these models are discussed in [482].

The recommender systems R1 and R2 are often content-centric systems because of the
cold-start problem. However, in some case, the ratings data can be augmented by treating
past users and items as instantiations of similar users in the system and constructing pseudo-
transactions between users and items. In such cases, collaborative filtering methods can also
be used because one can use the additional data resulting from the pseudo-transactions.

13.8.3.2 Leveraging Link Prediction Methods

In cases where the cold-start problem is not a serious issue or the ratings data can be aug-
mented with the data from similar users and items, link prediction methods can be adapted
to this setting. Matrix factorization methods for directed and undirected link prediction
are discussed in section 10.4.5 of Chapter 10. In these cases, one can construct a bipartite
network in which the two reciprocal parties form the two partitions of the network. For
example, one partition might be a set of employers and another partition might be a set of
employees. In the dating application, one partition might correspond to men and the other
partition might correspond to women. The edges in this network correspond to (previous)
successful transactions between the nodes in these partitions (or their similar representa-
tives). These scenarios are illustrated in Figure 13.5(a) and (b), respectively. However, in
other applications, the underlying graph might not be bipartite. For example, in a same-
gender dating application, the underlying preference graph might not be bipartite. In some
cases, when the preferences are specified in an asymmetric way, the underlying graph might
be directed. In all these cases, the asymmetric and symmetric matrix factorization methods
discussed in section 10.4.5 can be very useful. This is not particularly surprising, consid-
ering the fact that the link-prediction problem is a special case of reciprocal recommender

446 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

systems. In cases where the links are constructed in a noisy way using representatives, ro-
bust matrix factorization methods may be used to improve accuracy based on the ideas in
Chapter 12.

13.9 Summary

This chapter reviews several advanced topics in recommender systems, such as group rec-
ommendations, multi-criteria recommendations, active learning, and privacy. In addition,
some interesting applications of recommender systems have been covered.

Group recommendations are designed to provide recommendations to groups of users
with possibly diverse interests. In general, straightforward averaging methods might not
always work in these scenarios because of various social factors in the recommendation pro-
cess. In multi-criteria recommender systems, diverse user interests are used to provide more
robust recommendations. The basic idea is that the user behavior can be more accurately
modeled when details for the user ratings of various criteria are available.

The problem of active learning, studies the issue of ratings acquisition in recommender
systems. Ratings acquisition is sometimes expensive. Therefore, techniques need to be de-
signed to judiciously query specific user-item combinations for ratings. The approach of
active learning in recommender systems is very similar to that in classification.

Privacy remains a significant challenge for recommender systems, as in any other do-
main. Privacy-preserving methods can be applied either at data-collection time, or at data-
publication time. Methods that preserve privacy at data-collection time generally provide
better guarantees, but they are harder to implement from an infrastructure point of view.

Numerous applications have been proposed in recent years for recommender systems.
Some examples include query recommendations, news personalization, computational adver-
tising, and reciprocal recommendations. This chapter introduces some of the basic methods
in these domains.

13.10 Bibliographic Notes

The problem of learning to rank is widely studied in the classification, internet search, and
information retrieval [15, 115, 284, 370]. A tutorial on learning to rank from the perspective
of recommender systems may be found in [323]. Ranking methods can be either pairwise
methods or listwise methods [136]. Pairwise methods include the Bayesian personalized
ranking model (BPR) [499], EigenRank model [367], pLPA [368], and CR [59]. Listwise
methods include CoFiRank [624], CLiMF, xCLiMF and several other variations [545–548].
Some of these methods have also been generalized to the contextual scenario [549].

Multi-arm bandit methods can be viewed as a class of reinforcement learning algo-
rithms [579]. A simple discussion of several bandit algorithms may be found in [628], al-
though the book is written in the context of Website optimization. Bandit algorithms for
recommender systems are discussed in [92, 348]. The work in [349] introduces the problem
of evaluating bandit algorithms in the offline setting. The use of multi-armed bandits for
computational advertising is discussed in [160, 290].

Group recommender systems are discussed in detail in [271, 272, 407, 408]. A review of
social factors for group recommender systems may be found in [489]. Case-based methods for
group recommendations are discussed in [413, 415]. Group recommendations have been used
in a variety of domains, such as movies [168], television [653], music [412], and travel [52, 272,
413]. The limitations of the averaging strategy for group recommender systems are discussed

13.10. BIBLIOGRAPHIC NOTES 447

in [409, 654]. A variety of aggregation strategies for group recommender systems, such as
plurality voting, multiplicative aggregation, Borda count, Copeland rule, approval voting,
and fairness are suggested in [407]. An experimental study comparing the various strategies
is also included in the same work. In some cases, one is interested in recommending complex
items containing sequences of items. An example is the case of a television program for a
set of viewers, where the overall program may contain several components of various types.
In such cases, the ordering of items is also important. Such systems are discussed in [407].

Surveys on multi-criteria recommender systems may be found in [11, 398, 604]. The
multi-criteria recommendation problem was first defined in the seminal work of [12].
Neighborhood-based methods for multi-criteria recommendations are discussed in [12, 399,
596]. The work in [399] proposes three different methods to perform the aggregated similar-
ity computation in neighborhood methods. However, the overall approach is not different in
principle from that discussed in [12]. An ensemble-based method was also proposed in [12].
A number of model-based methods have also been proposed in the context of multi-criteria
recommender systems. These include the flexible mixture model [514] and a multi-linear
singular value decomposition (MSVD) approach [353]. Methods have also been proposed
for cases in which overall ratings are not available. For example, the work in [328] proposes
a method to combine the predicted ratings across various criteria with the use of a UTilities
Additive method (UTA). The work in [276] uses a support vector regression model to deter-
mine the relative importance of different criteria. These are used to combine the user-based
and item-based regression models with a weighted approach. A pareto-optimal approach
with the use of skyline queries on a restaurant rating system is proposed in [340].

A detailed review of active learning methods is provided in [513]. However, this review
is mostly based on the classification problem, since the available work on recommender
systems is limited. Only a limited amount of work [192–194, 257, 295, 330, 578] has been
proposed in recent years on this topic. The area of active learning is still quite open as far
as the recommendation problem is concerned. An interesting class of algorithms, related to
temporal collaborative filtering, is the multi-arm bandit class of algorithms in which the
recommender trades off exploration vs exploitation in the recommendation space [92, 348].

Privacy-preserving techniques may include the use of perturbation techniques [35, 38,
484, 485], group-based anonymization methods [27, 352, 386, 521], or distributed meth-
ods [75, 133, 334, 551, 606]. Both perturbation methods and distributed techniques have a
common aspect that they tend to preserve the privacy at data-collection time. This provides
a greater level of privacy. On the other hand, these systems are generally harder to imple-
ment because of the greater infrastructural and customization issues involved in the final
use of the stored data. These issues surface because the stored data is in a form that cannot
be used by a traditional collaborative filtering algorithm. Group-based anonymization tech-
niques are designed to publish the data, which is collected by a centralized entity. These
techniques are more popular and the output can be used in conjunction with traditional
collaborative filtering algorithms. All these methods are affected by the curse of dimension-
ality [30], which prevents effective privacy preservation for high-dimensional data. Some
methods for anonymization of high-dimensional and sparse data sets are proposed in [657].
Recently, the notion of differential privacy has been proposed [189] that is theoretically very
popular, although its practical and commercial use remains limited. A differentially private
matrix factorization has recently been proposed in [372]. A privacy-preserving approach
that treats the collecting system as a distrusted entity is proposed in [642].

Recommender systems have many specialized applications in the Web domain. Query
recommendation methods attempt to recommend similar queries to those already issued by
the user in a particular session. The work in [57] returns the most similar queries to the

448 CHAPTER 13. ADVANCED TOPICS IN RECOMMENDER SYSTEMS

queries current query, which also have sufficient popularity (support). Support is measured
in terms of the number of times the query was issued by other users, and the corresponding
results were found relevant. The work in [137] uses not just the current query, but the
current session of queries as the context for the query suggestion. An interesting idea in
this area is that of query flow graphs [90], which uses a graphical representation of the
user’s latent querying behavior to make recommendations. The work in [429] performs
query recommendations with the use of random walks on the query-URL graph. The use of
Markov models for query recommendations is discussed in [244].

The dynamic profiler system is discussed in [636]. Methods for Web portal personaliza-
tion are discussed in [34]. The use of semantic contextualization for news recommendation
was discussed in [134]. This work is based on contextual recommendation ideas presented
in Chapter 8. The Google news personalization engine is described in more detail in [175].
Mobile recommender systems are discussed in [504].

One of the earliest systems for computational advertising was discussed in [28]. However,
this system was not based on modern models of computational advertising. More recent
discussions of such systems may be found in [106, 107]. The slate method for computational
advertising is discussed in [290]. In some cases, linear payoffs are associated with the features
of Web pages and advertisements. A variant of the LinUCB algorithm is proposed in [160] to
handle this setting. The problem of computational advertising is related to the problem of
reciprocal recommendations [481]. The basic idea is that the task of recommendation changes
when one needs to consider the utility of the recommendation to multiple stakeholders with
asymmetric interests. Examples of such applications include online dating [480, 482], job
matching [253], and mentor-mentee recommendations [103, 621].

Bibliography

[1] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. Proceedings
of the 33rd Annual Hawaii International Conference on System Sciences, pp. 1769–
1777, 2000.

[2] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cyberguide:
A mobile context-aware tour guide. Wireless Networks, 3(5), pp. 421–433, 1997.

[3] G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles. Towards a better
understanding of context and context-awareness. Handheld and Ubiquitous Comput-
ing, pp. 304–307, 1999.

[4] P. Adamopoulos, A. Bellogin, P. Castells, P. Cremonesi, and H. Steck. REDD 2014 –
International Workshop on Recommender Systems Evaluation: Dimensions and De-
sign. Held in conjunction with ACM Conference on Recommender systems, 2014.

[5] G. Adomavicius, and A. Tuzhilin. Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering, 17(6), pp. 734–749, 2005.

[6] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incorporating contex-
tual information in recommender systems using a multidimensional approach. ACM
Transactions on Information Systems, 23(1), pp. 103–145, 2005.

[7] G. Adomavicius and A. Tuzhilin. Context-aware recommender systems. Recommender
Systems handbook, pp. 217–253, Springer, NY, 2011.

[8] G. Adomavicius and A. Tuzhilin. Incorporating context into recommender systems
using multidimensional rating estimation methods. International Workshop on Web
Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI),
2005.

[9] G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems: a data
warehousing approach. International Workshop on Electronic Commerce. Lecture
Notes in Computer Science, Springer, Vol. 2232, pp. 180–192, 2001.

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3

449

450 BIBLIOGRAPHY

[10] G. Adomavicius, A. Tuzhilin, and R. Zheng. REQUEST: A query language for cus-
tomizing recommendations. Information Systems Research, 22(1), pp. 99–117, 2011.

[11] G. Adomavicius, N. Manouselis, and Y. Kwon. Multi-criteria recommender systems.
Recommender Systems Handbook, Springer, pp. 769–803, 2011.

[12] G. Adomavicius and Y. Kwon. New recommendation techniques for multicriteria rat-
ing systems. IEEE Intelligent Systems, 22(3), pp. 48–55, 2007.

[13] D. Agarwal, and B. Chen. Regression-based latent factor models. ACM KDD Con-
ference, pp. 19–28. 2009.

[14] D. Agarwal, B.-C. Chen, and B. Long. Localized factor models for multi-context
recommendation. ACM KDD Conference, pp. 609–617, 2011.

[15] S. Agarwal. Ranking methods in machine learning. Tutorial at SIAM Conference
on Data Mining, 2010. Slides available at: http://www.siam.org/meetings/sdm10/
tutorial1.pdf

[16] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne. Finding high-quality
content in social media. Web Search and Data Mining Conference, pp. 183–194, 2008.

[17] C. Aggarwal. Social network data analytics. Springer, New York, 2011.

[18] C. Aggarwal. Data classification: algorithms and applications. CRC Press, 2014.

[19] C. Aggarwal. Data clustering: algorithms and applications. CRC Press, 2014.

[20] C. Aggarwal and P. Yu. Privacy-preserving data mining: models and algorithms,
Springer, 2008.

[21] C. Aggarwal and C. Zhai. A survey of text classification algorithms. Mining Text
Data, Springer, 2012.

[22] C. Aggarwal. Data mining: the textbook. Springer, New York, 2015.

[23] C. Aggarwal and J. Han. Frequent pattern mining. Springer, New York, 2014.

[24] C. Aggarwal and S. Parthasarathy. Mining massively incomplete data sets by concep-
tual reconstruction. ACM KDD Conference, pp. 227–232, 2001.

[25] C. Aggarwal, C. Procopiuc, and P. S. Yu. Finding localized associations in market
basket data. IEEE Transactions on Knowledge and Data Engineering, 14(1), pp. 51–
62, 2001.

[26] C. Aggarwal and T. Abdelzaher. Social sensing. Managing and Mining Sensor Data,
Springer, New York, 2013.

[27] C. Aggarwal and P. Yu. On static and dynamic methods for condensation-based
privacy-preserving data mining. ACM Transactions on Database Systems (TODS),
33(1), 2, 2008.

[28] C. Aggarwal, J. Wolf, and P. Yu. A framework for the optimizing of WWW advertis-
ing. Trends in Distributed Systems for Electronic Commerce, pp. 1–10, 1998.

http://www.siam.org/meetings/sdm10/tutorial1.pdf
http://www.siam.org/meetings/sdm10/tutorial1.pdf

BIBLIOGRAPHY 451

[29] C. Aggarwal, S. Gates, and P. Yu. On using partial supervision for text categorization.
IEEE Transactions on Knowledge and Data Engineering, 16(2), pp. 245–255, 2004.

[30] C. Aggarwal. On k-anonymity and the curse of dimensionality, Very Large Databases
Conference, pp. 901–909, 2005.

[31] C. Aggarwal, Z. Sun, and P. Yu. Online generation of profile association rules. ACM
KDD Conference, pp. 129–133, 1998.

[32] C. Aggarwal, Z. Sun, and P. Yu. Online algorithms for finding profile association rules,
CIKM Conference, pp. 86–95, 1998.

[33] C. Aggarwal, J. Wolf, K.-L. Wu, and P. Yu. Horting hatches an egg: a new graph-
theoretic approach to collaborative filtering. ACM KDD Conference, pp. 201–212,
1999.

[34] C. Aggarwal and P. Yu. An automated system for Web portal personalization. Very
Large Data Bases Conference, pp. 1031–1040, 2002.

[35] D. Agrawal and C. Aggarwal. On the design and quantification of privacy-preserving
data mining algorithms. ACM PODS Conference, pp. 247–255, 2001.

[36] C. Aggarwal, Y. Xie, and P. Yu. On dynamic link inference in heterogeneous networks.
SIAM Conference on Data Mining, pp. 415–426, 2012.

[37] R. Agrawal and R. Srikant. Mining sequential patterns. International Conference on
Data Engineering, pp. 3–14, 1995.

[38] R. Agrawal, and R. Srikant. Privacy-preserving data mining. ACM SIGMOD Confer-
ence, pp. 439–450, 2000.

[39] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. ACM SIGMOD
Conference, pp. 383–394, 2006.

[40] H. Ahn, K. Kim, and I. Han. Mobile advertisement recommender system using collab-
orative filtering: MAR-CF. Proceedings of the 2006 Conference of the Korea Society
of Management Information Systems, 2006.

[41] J. Ahn, P. Brusilovsky, J. Grady, D. He, and S. Syn. Open user profiles for adaptive
news systems: help or harm? World Wide Web Conference, pp. 11–20, 2007.

[42] M. Al Hasan, and M. J. Zaki. A survey of link prediction in social networks. Social
network data analytics, Springer, pp. 243–275, 2011.

[43] G. K. Al Mamunur Rashid, G. Karypis, and J. Riedl. Influence in ratings-based rec-
ommender systems: An algorithm-independent approach. SIAM Conference on Data
Mining, 2005.

[44] X. Amatriain, J. Pujol, N. Tintarev, and N. Oliver. Rate it again: increasing recom-
mendation accuracy by user re-rating. ACM Conference on Recommender Systems,
pp. 173–180, 2009.

[45] S. Amer-Yahia, S. Roy, A. Chawlat, G. Das, and C. Yu. (2009). Group recommenda-
tion: semantics and efficiency. Proceedings of the VLDB Endowment, 2(1), pp. 754–
765, 2009.

452 BIBLIOGRAPHY

[46] S. Anand and B. Mobasher. Intelligent techniques for Web personalization. Lectures
Notes in Computer Science, Vol. 3169, pp. 1–36, Springer, 2005.

[47] S. Anand and B. Mobasher. Contextual recommendation, Lecture Notes in Artificial
Intelligence, Springer, 4737, pp. 142–160, 2007.

[48] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman, A. Kalai, V. Mirrokni,
and M. Tennenholtz. Trust-based recommendation systems: An axiomatic approach.
World Wide Web Conference, pp. 199–208, 2008.

[49] C. Anderson. The long tail: why the future of business is selling less of more. Hyperion,
2006.

[50] A. Ansari, S. Essegaier, and R. Kohli. Internet recommendation systems. Journal of
Marketing Research, 37(3), pp. 363–375, 2000.

[51] F. Aiolli. Efficient top-n recommendation for very large scale binary rated datasets.
ACM conference on Recommender Systems, pp. 273–280, 2013.

[52] L. Ardissono, A. Goy, G. Petrone, M. Segnan, and P. Torasso. INTRIGUE: personal-
ized recommendation of tourist attractions for desktop and hand-held devices. Applied
Artificial Intelligence, 17(8), pp. 687–714, 2003.

[53] W. G. Aref and H. Samet. Efficient processing of window queries in the pyramid data
structure. ACM PODS Conference, pp. 265–272, 1990.

[54] D. Ashbrook and T. Starner. Using GPS to learn significant locations and predict
movement across multiple users. Personal and Ubiquitous Computing, 7(5), pp. 275–
286, 2003.

[55] F. Asnicar and C. Tasso. IfWeb: a prototype of user model-based intelligent agent for
document filtering and navigation in the world wide web. International Conference
on User Modeling, pp. 3–12, 1997.

[56] A. Azran. The rendezvous algorithm: Multiclass semi-supervised learning with markov
random walks. International Conference on Machine Learning, pp. 49–56, 2007.

[57] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation using query
logs in search engines. EDBT 2004 Workshops on Current Trends in Database Tech-
nology, pp. 588–596, 2004.

[58] R. Battiti. Accelerated backpropagation learning: Two optimization methods. Com-
plex Systems, 3(4), pp. 331–342, 1989.

[59] S. Balakrishnan and S. Chopra. Collaborative ranking. Web Search and Data Mining
Conference, pp. 143–152, 2012.

[60] M. Balabanovic, and Y. Shoham. Fab: content-based, collaborative recommendation.
Communications of the ACM, 40(3), pp. 66–72, 1997.

[61] L. Baltrunas and X. Amatriain. Towards time-dependant recommendation based on
implicit feedback. RecSys Workshop on Context-Aware Recommender Systems, 2009.

[62] L. Baltrunas and F. Ricci. Context-dependant items generation in collaborative fil-
tering. RecSys Workshop on Context-Aware Recommender Systems, 2009.

BIBLIOGRAPHY 453

[63] L. Baltrunas, B. Ludwig, and F. Ricci. Matrix factorization techniques for context
aware recommendation. ACM Conference on Recommender systems, pp. 301–304,
2011.

[64] J. Bao, Y. Zheng, and M. Mokbel. Location-based and preference-aware recommenda-
tion using sparse geo-social networking data. International Conference on Advances
in Geographic Information Systems, pp. 199–208, 2012.

[65] X. Bao. Applying machine learning for prediction, recommendation, and integra-
tion. Ph.D dissertation, Oregon State University, 2009. http://ir.library.

oregonstate.edu/xmlui/bitstream/handle/1957/12549/Dissertation_

XinlongBao.pdf?sequence=1

[66] X. Bao, L. Bergman, and R. Thompson. Stacking recommendation engines with addi-
tional meta-features. ACM Conference on Recommender Systems, pp. 109–116, 2009.

[67] A. Bar, L. Rokach, G. Shani, B. Shapira, and A. Schclar. Boosting simple collaborative
filtering models using ensemble methods. Arxiv Preprint, arXiv:1211.2891, 2012. Also
appears in Multiple Classifier Systems, Springer, pp. 1–12, 2013. http://arxiv.org/
ftp/arxiv/papers/1211/1211.2891.pdf

[68] J. Basilico, and T. Hofmann. Unifying collaborative and content-based filtering. In-
ternational Conference on Machine Learning, 2004.

[69] C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: using social and
content-based information in recommendation. AAAI, pp. 714–720, 1998.

[70] G. Begelman, P. Keller, and F. Smadja. Automated tag clustering: Improving search
and exploration in the tag space. Collaborative Web Tagging Workshop (colocated
with WWW Conference), pp. 15–23, 2006.

[71] R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to im-
prove accuracy of large recommender systems. ACM KDD Conference, pp. 95–104,
2007.

[72] R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighbor-
hood interpolation weights. IEEE International Conference on Data Mining, pp. 43–
52, 2007.

[73] R. Bell and Y. Koren. Lessons from the Netflix prize challenge. ACM SIGKDD Ex-
plorations Newsletter, 9(2), pp. 75–79, 2007.

[74] R. Bergmann, M. Richter, S. Schmitt, A. Stahl, and I. Vollrath. Utility-oriented
matching: a new research direction for case-based reasoning. German Workshop on
Case-Based Reasoning, pp. 264–274, 2001.

[75] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci. Enhancing privacy and preserving
accuracy of a distributed collaborative filtering. ACM Conference on Recommender
Systems, pp. 9–16, 2007.

[76] D. P. Bertsekas. Nonlinear programming.Athena Scientific Publishers, Belmont, 1999.

[77] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks.
Social Network Data Analytics, Springer, pp. 115–148. 2011.

http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/12549/Dissertation_XinlongBao.pdf?sequence=1
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/12549/Dissertation_XinlongBao.pdf?sequence=1
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/12549/Dissertation_XinlongBao.pdf?sequence=1
http://arxiv.org/ftp/arxiv/papers/1211/1211.2891.pdf
http://arxiv.org/ftp/arxiv/papers/1211/1211.2891.pdf

454 BIBLIOGRAPHY

[78] R. Bhaumik, C. Williams, B. Mobasher, and R. Burke. Securing collaborative filter-
ing against malicious attacks through anomaly detection. Workshop on Intelligent
Techniques for Web Personalization (ITWP), 2006.

[79] R. Bhaumik, R. Burke, snd B. Mobasher. Crawling Attacks Against Web-based Rec-
ommender Systems. International Conference on Data Mining (DMIN), pp. 183–189,
2007.

[80] B. Bi, Y. Tian, Y. Sismanis, A. Balmin, and J. Cho. Scalable topic-specific influence
analysis on microblogs. Web Search and Data Mining Conference, pp. 513–522, 2014.

[81] J. Bian, Y. Liu, D. Zhou, E. Agichtein, and H. Zha. Learning to recognize reliable
users and content in social media with coupled mutual reinforcement. World Wide
Web Conference, pp. 51–60, 2009.

[82] D. Billsus and M. Pazzani. Learning collaborative information filters. ICML Confer-
ence, pp. 46–54, 1998.

[83] D. Billsus and M. Pazzani. Learning probabilistic user models. International Confer-
ence on User Modeling, Workshop on Machine Learning for User Modeling, 1997.

[84] D. Billsus and M. Pazzani. A hybrid user model for news story classification. Inter-
national Conference on User Modeling, 1999.

[85] D. Billsus and M. Pazzani. User modeling for adaptive news access. User Modeling
and User-Adapted Interaction, 10(2–3), pp. 147–180, 2000.

[86] C. M. Bishop. Pattern recognition and machine learning. Springer, 2007.

[87] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

[88] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez. Recommender systems sur-
vey. Knowledge-Based Systems, 46, pp. 109–132, 2013.

[89] F. Bohnert, I. Zukerman, S. Berkovsky, T. Baldwin, and L. Sonenberg. Using interest
and transition models to predict visitor locations in museums. AI Communications,
2(2), pp. 195–202, 2008.

[90] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna. The query-
flow graph: model and applications. ACM Conference on Information and Knowledge
Management, pp. 609–618, 2008.

[91] K. Bollacker, S. Lawrence, and C. L. Giles. CiteSeer: An autonomous web agent
for automatic retrieval and identification of interesting publications. International
Conference on Autonomous Agents, pp. 116–123, 1998.

[92] B. Bouneffouf, A. Bouzeghoub, and A. Gancarski. A contextual-bandit algorithm for
mobile context-aware recommender system. Neural Information Processing, pp. 324–
331, 2012.

[93] G. Box, W. Hunter, and J. Hunter. Statistics for experimenters, Wiley, New York,
1978.

[94] K. Bradley and B. Smyth. Improving recommendation diversity. National Conference
in Artificial Intelligence and Cognitive Science, pp. 75–84, 2001.

BIBLIOGRAPHY 455

[95] K. Bradley, R. Rafter, and B. Smyth. Case-based user profiling for content personal-
ization. International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems, pp. 62–72, 2000.

[96] M. Brand. Fast online SVD revisions for lightweight recommender systems. SIAM
Conference on Data Mining, pp. 37–46, 2003.

[97] L. Branting. Acquiring customer preferences from return-set selections. Case-Based
Reasoning Research and Development, pp. 59–73, 2001.

[98] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. Conference on Uncertainty in Artificial Inetlligence, 1998.

[99] L. Breiman. Bagging predictors. Machine Learning, 24(2), pp. 123–140, 1996.

[100] A. Brenner, B. Pradel, N. Usunier, and P. Gallinari. Predicting most rated items in
weekly recommendation with temporal regression.Workshop on Context-Aware Movie
Recommendation, pp. 24–27, 2010.

[101] D. Bridge. Diverse product recommendations using an expressive language for case
retrieval. European Conference on Case-Based Reasoning, pp. 43–57. 2002.

[102] D. Bridge, M. Goker, L. McGinty, and B. Smyth. Case-based recommender systems.
The Knowledge Engineering Review, 20(3), pp. 315–320, 2005.

[103] A. Brun, S. Castagnos, and A. Boyer. Social recommendations: mentor and leader
detection to alleviate the cold-start problem in collaborative filtering. Social Network
Mining, Analysis, and Research Trends: Techniques and Applications: Techniques and
Applications, 270, 2011.

[104] S. Brin, and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1–7), pp. 107–117, 1998.

[105] A. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic approach to con-
textual advertising. SIGIR Conference, pp. 559–566, 2007.

[106] A. Broder. Computational advertising and recommender systems. ACM Conference
on Recommender Systems, pp. 1–2, 2008.

[107] A. Broder and V. Josifovski. Introduction to Computational Advertising. Course Ma-
terial, Stanford University, 2010. http://www.stanford.edu/class/msande239/

[108] M. Brunato and R. Battiti. PILGRIM: A location broker and mobility-aware recom-
mendation system. International Conference on Pervasive Computing and Commu-
nications, pp. 265–272, 2003.

[109] P. Brusilovsky, A. Kobsa, and W. Nejdl. The adaptive web: methods and strategies of
web personalization, Lecture Notes in Computer Sceince, Vol. 4321, Springer, 2007.

[110] K. Bryan, M. O’Mahony, and P. Cunningham. Unsupervised retrieval of attack profiles
in collaborative recommender systems. ACM Conference on Recommender Systems,
pp. 155–162, 2008.

[111] P. Buhlmann. Bagging, subagging and bragging for improving some prediction algo-
rithms, Recent advances and trends in nonparametric statistics, Elsivier, 2003.

http://www.stanford.edu/class/msande239/

456 BIBLIOGRAPHY

[112] P. Buhlmann and B. Yu. Analyzing bagging. Annals of statistics, 20(4), pp. 927–961,
2002.

[113] L. Breiman. Bagging predictors. Machine learning, 24(2), pp. 123–140, 1996.

[114] C. Burges. A tutorial on support vector machines for pattern recognition. Data mining
and knowledge discovery, 2(2), pp. 121–167, 1998.

[115] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der. Learning to rank using gradient descent. International Conference on Machine
Learning, pp. 89–96, 2005.

[116] R. Burke. Knowledge-based recommender systems. Encyclopedia of library and infor-
mation systems, pp. 175–186, 2000.

[117] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and
User-adapted Interaction, 12(4), pp. 331–370, 2002.

[118] R. Burke. Hybrid Web recommender systems. The adaptive Web, pp. 377–406,
Springer, 2007.

[119] R. Burke, M. O’Mahony, and N. Hurley. Robust collaborative recommendation. Rec-
ommender Systems Handbook, Springer, pp. 805–835, 2011.

[120] R. Burke, K. Hammond, and B. Young. Knowledge-based navigation of complex in-
formation spaces. National Conference on Artificial Intelligence, pp. 462–468, 1996.

[121] R. Burke, K. Hammond, and B. Young. The FindMe approach to assisted browsing.
IEEE Expert, 12(4), pp. 32–40, 1997.

[122] R. Burke, B. Mobasher, R. Zabicki, and R. Bhaumik. Identifying attack models for
secure recommendation.Beyond Personalization: A Workshop on the Next Generation
of Recommender Systems, 2005.

[123] R. Burke, B. Mobasher, and R. Bhaumik. Limited knowledge shilling attacks in col-
laborative filtering systems. IJCAI Workshop in Intelligent Techniques for Personal-
ization, 2005.

[124] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik. Classification features for
attack detection in collaborative recommender systems. ACM KDD Conference,
pp. 542–547, 2006.

[125] R. Burke. The Wasabi personal shopper: a case-based recommender system. National
Conference on Innovative Applications of Artificial Intelligence, pp. 844–849, 1999.

[126] D. Cai, S. Yu, J. Wen, and W. Y. Ma. Extracting content structure for web pages
based on visual representation.Web Technologies and Applications, pp. 406–417, 2003.

[127] J. Cai, E. Candes, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4), 1956–1982, 2010.

[128] Z. Cao, T. Qin, T. Liu, M. F. Tsai, and H. Li. Learning to rank: from pairwise approach
to listwise approach. International Conference on Machine Learning, pp. 129–137,
2007.

BIBLIOGRAPHY 457

[129] L. M. de Campos, J. Fernandez-Luna, J. Huete, and M. Rueda-Morales. Combin-
ing content-based and collaborative recommendations: A hybrid approach based on
Bayesian networks. International Journal of Approximate Reasoning, 51(7), pp. 785–
799, 2010.

[130] P. Campos, F. Diez, and I. Cantador. Time-aware recommender systems: a com-
prehensive survey and analysis of existing evaluation protocols. User Modeling and
User-Adapted Interaction, 24(1–2), pp. 67–119, 2014.

[131] P. Campos, A. Bellogin, F. Diez, and J. Chavarriaga. Simple time-biased KNN-based
recommendations. Workshop on Context-Aware Movie Recommendation, pp. 20–23,
2010.

[132] E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?. Jour-
nal of the ACM (JACM), 58(3), 11, 2011.

[133] J. Canny. Collaborative filtering with privacy via factor analysis. ACM SIGR Con-
ference, pp. 238–245, 2002.

[134] I. Cantador and P. Castells. Semantic contextualisation in a news recommender sys-
tem. Workshop on Context-Aware Recommender Systems, 2009.

[135] I. Cantador, A. Bellogin, and D. Vallet. Content-based recommendation in social
tagging systems. ACM Conference on Recommender Systems, pp. 237–240, 2010.

[136] H. Cao, E. Chen, J. Yang, and H. Xiong. Enhancing recommender systems under
volatile user interest drifts. ACM Conference on Information and Knowledge Man-
agement, pp. 1257–1266, 2009.

[137] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query
suggestion by mining click-through and session data. ACM KDD Conference, pp. 875–
883, 2008.

[138] O. Celma, M. Ramirez, and P. Herrera. Foafing the music: A music recommendation
system based on RSS feeds and user preferences. International Conference on Music
Information Retrieval, pp. 464–467, 2005.

[139] O. Celma, and X. Serra. FOAFing the music: Bridging the semantic gap in music
recommendation. Web Semantics: Science, Services and Agents on the World Wide
Web, 6(4), pp. 250–256, 2008.

[140] O. Celma and P. Herrera. A new approach to evaluating novel recommendations.
ACM Conference on Recommender Systems, pp. 179–186, 2008.

[141] T. Chai and R. Draxler. Root mean square error (RMSE) or mean absolute error
(MAE)?– Arguments against avoiding RMSE in the literature. Geoscientific Model
Development, 7(3), pp. 1247–1250, 2004. ,

[142] D. Chakrabarti, D. Agarwal, and V. Josifovski. Contextual advertising by combining
relevance with click feedback. World Wide Web Conference, 2008.

[143] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hy-
perlinks. ACM SIGMOD Conference, pp. 307–318, 1998.

458 BIBLIOGRAPHY

[144] S. Chakrabarti. Mining the Web: Discovering knowledge from hypertext data. Morgan
Kaufmann, 2003.

[145] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26(1), pp. 65–74, 1997.

[146] S. Chee, J. Han, and K. Wang. Rectree: An efficient collaborative filtering method.
Data Warehousing and Knowledge Discovery, pp. 141–151, 2001.

[147] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Technical
Report TR2000-381, Department of Computer Science, Dartmouth College, 2000.

[148] L. Chen and P. Pu. Survey of preference elicitation methods EPFL-REPORT-
52659, 2004. http://hci.epfl.ch/wp-content/uploads/publications/2004/IC_
TECH_REPORT_200467.pdf

[149] L. Chen and P. Pu. Critiquing-based recommenders: survey and emerging trends. User
Modeling and User-Adapted Interaction, 22(1–2), pp. 125–150, 2012.

[150] L. Chen, and K. Sycara. WebMate: a personal agent for browsing and searching.
International conference on Autonomous agents, pp. 9–13, 1998.

[151] T. Chen, Z. Zheng, Q. Lu, W. Zhang, and Y. Yu. Feature-based matrix factorization.
arXiv preprint arXiv:1109.2271, 2011.

[152] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks.
ACM KDD Conference, pp. 199–208, 2009.

[153] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral
marketing in large-scale social networks. ACM KDD Conference, pp. 1029–1038, 2010.

[154] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social networks
under the linear threshold model. IEEE International Conference on Data Mining,
pp. 88–97, 2010.

[155] Y. Chen, I. Hsu, and C. Lin. Website attributes that increase consumer purchase
intention: a conjoint analysis. Journal of Business Research, 63(9), pp. 1007–1014,
2010.

[156] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Developing a
context-aware electronic tourist guide: some issues and experiences. ACM SIGCHI
Conference on Human Factors in Computing Systems, pp. 17–24, 2000.

[157] K. Y. Chiang, C. J. Hsieh, N. Natarajan, I. S., Dhillon, and A. Tewari. Prediction and
clustering in signed networks: a local to global perspective. The Journal of Machine
Learning Research, 15(1), pp. 1177–1213, 2014.

[158] P. Chirita, W. Nejdl, and C. Zamfir. Preventing shilling attacks in online recommender
systems. ACM International Workshop on Web Information and Data Management,
pp. 67–74, 2005.

[159] E. Christakopoulou and G. Karypis. HOSLIM: Higher-order sparse linear method
for top-n recommender systems. Advances in Knowledge Discovery and Data Mining,
pp. 38–49, 2014.

http://hci.epfl.ch/wp-content/uploads/publications/2004/IC_TECH_REPORT_200467.pdf
http://hci.epfl.ch/wp-content/uploads/publications/2004/IC_TECH_REPORT_200467.pdf

BIBLIOGRAPHY 459

[160] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff
functions. AISTATS Conference, pp. 208–214, 2011.

[161] A. Cichocki and R. Zdunek. Regularized alternating least squares algorithms for non-
negative matrix/tensor factorization. International Symposium on Neural Networks,
pp. 793–802. 2007.

[162] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Com-
bining content-based and collaborative filters in an online newspaper. Proceedings of
the ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation,
1999.

[163] W. Cohen, R. Schapire and Y. Singer. Learning to order things. Advances in Neural
Information Processing Systems, pp. 451–457, 2007.

[164] W. Cohen. Learning rules that classify e-mail. AAAI symposium on machine learning
in information access. pp. 18–25, 1996.

[165] W. Cohen. Fast effective rule induction. ICML Conference, pp. 115–123, 1995.

[166] M. Condliff, D. Lewis, D. Madigan, and C. Posse. Bayesian mixed-effects models for
recommender systems. ACM SIGIR Workshop on Recommender Systems: Algorithms
and Evaluation, pp. 23–30, 1999.

[167] M. O’Connor and J. Herlocker. Clustering items for collaborative filtering. Proceedings
of the ACM SIGIR workshop on recommender systems, Vol 128. 1999.

[168] M. O’Connor, D. Cosley, J. Konstan, and J. Riedl. PolyLens: a recommender system
for groups of users. European Conference on Computer Supported Cooperative Work,
pp. 199–218, 2001.

[169] R. Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining World Wide
Web browsing patterns. Knowledge and Information Systems, 1(1), pp. 5–32, 1999.

[170] L. Coyle and P. Cunningham. Improving recommendation ranking by learning per-
sonal feature weights. European Conference on Case-Based Reasoning, Springer,
pp. 560–572, 2004.

[171] H. Cramer, V. Evers, S. Ramlal, M. Someren, L. Rutledge, N. Stash, L. Aroyo, and
B. Wielinga. The effects of transparency on trust in and acceptance of a content-based
art recommender. User Modeling and User-Adapted Interaction, 18(5), pp. 455–496,
2008.

[172] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri. Feedback effects
between similarity and social influence in online communities. ACM KDD Conference,
pp. 160–168, 2008.

[173] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on
top-n recommendation tasks. RecSys, pp. 39–46, 2010.

[174] A. Csomai and R. Mihalcea. Linking documents to encyclopedic knowledge. IEEE
Intelligent Systems, 23(5), pp. 34–41, 2008.

[175] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable
online collaborative filtering. World Wide Web Conference, pp. 271–280, 2007.

460 BIBLIOGRAPHY

[176] P. Domingos and M. Richardson. Mining the network value of customers. ACM KDD
Conference, pp. 57–66, 2001.

[177] B. De Carolis, I. Mazzotta, N. Novielli, and V. Silvestri. Using common sense in pro-
viding personalized recommendations in the tourism domain. Workshop on Context-
Aware Recommender Systems, 2009.

[178] M. De Gemmis, P. Lops, and G. Semeraro. A content-collaborative recommender that
exploits WordNet-based user profiles for neighborhood formation. User Modeling and
User-Adapted Interaction, 17(3), pp. 217–255, 2007.

[179] M. De Gemmis, P. Lops, G. Semeraro and P. Basile. Integrating tags in a semantic
content-based recommender. Proceedings of the ACM Conference on Recommender
Systems, pp. 163–170, 2008.

[180] D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix
factorizations. International Conference on Machine Learning, pp. 249–256, 2006.

[181] M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1), pp. 143–177, 2004.

[182] M. Deshpande and G. Karypis. Selective Markov models for predicting Web page
accesses. ACM Transactions on Internet Technology (TOIT), 4(2), pp. 163–184, 2004.

[183] C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recom-
mendation methods. Recommender Systems Handbook, pp. 107–144, 2011.

[184] R. Devooght, N. Kourtellis, and A. Mantrach. Dynamic matrix factorization with
priors on unknown values. ACM KDD Conference, 2015.

[185] Y. Ding and X. Li. Time weight collaborative filtering. ACM International Conference
on Information and Knowledge Management, pp. 485–492, 2005.

[186] Y. Ding, X. Li, and M. Orlowska. Recency-based collaborative filtering. Australasian
Database Conference, pp. 99–107, 2009.

[187] J. O’Donovan and B. Smyth. Trust in recommender systems. International Conference
on Intelligent User Interfaces, pp. 167–174, 2005.

[188] P. Dourish, What we talk about when we talk about context. Personal and ubiquitous
computing, 8(1), pp. 19–30, 2004.

[189] C. Dwork. Differential privacy. Encyclopedia of Cryptography and Security, Springer,
pp. 338–340, 2011.

[190] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the
web. World Wide Web Conference, pp. 613–622, 2010.

[191] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green. Automatic generation of social
tags for music recommendation. Advances in Neural Information Processing Systems,
pp. 385–392, 2008.

[192] M. Elahi, V. Repsys, and F. Ricci. Rating elicitation strategies for collaborative
filtering. E-Commerce and Web Technologies, pp. 160–171, 2011.

BIBLIOGRAPHY 461

[193] M. Elahi, F. Ricci, and N. Rubens. Active learning strategies for rating elicitation in
collaborative filtering: a system-wide perspective. ACM Transactions on Intelligent
Systems and Technology (TIST), 5(1), 13, 2013.

[194] M. Elahi, M. Braunhofer, F. Ricci, and M. Tkalcic. Personality-based active learning
for collaborative filtering recommender systems. Advances in Artificial Intelligence,
pp. 360–371, 2013.

[195] T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. Tech-
nical Report HPL-2003-4, Palo Alto, CA, HP Laboratories, 2003.

[196] A. Felfernig and R. Burke. Constraint-based recommender systems: technologies and
research issues. International conference on Electronic Commerce, 2008. (p.

[197] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Developing constraint-based
recommenders. Recommender Systems Handbook, Springer, pp. 187–216, 2011.

[198] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-based diag-
nosis of configuration knowledge bases. Artificial Intelligence, 152(2), 213–234, 2004.

[199] A. Felfernig, G. Friedrich, M. Schubert, M. Mandl, M. Mairitsch, and E. Teppan.
Plausible repairs for inconsistent requirements. IJCAI Conference, pp. 791–796, 2009.

[200] A. Felfernig, E. Teppan, E., and B. Gula. Knowledge-based recommender technologies
for marketing and sales. International Journal of Pattern Recognition and Artificial
Intelligence, 21(02), pp. 333–354, 2007.

[201] A. Felfernig, K. Isak, K. Szabo, and P. Zachar. The VITA financial services sales
support environment. National conference on artificial intelligence, 22(2), pp. 1692–
1699, 2007.

[202] R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Informatica, 4, pp. 1–9, 1974.

[203] D. M. Fleder and K. Hosanagar. Recommender systems and their impact on sales
diversity. ACM Conference on Electronic Commerce, pp. 192–199, 2007.

[204] F. Fouss, A. Pirotte, J. Renders, and M. Saerens. Random-walk computation of sim-
ilarities between nodes of a graph with application to collaborative recommendation.
IEEE Transactions on Knowledge and Data Engineering, 19(3), pp. 355–369, 2007.

[205] F. Fouss, L. Yen, A. Pirotte, and M. Saerens. An experimental investigation of graph
kernels on a collaborative recommendation task. IEEE International Conference on
Data Mining (ICDM), pp. 863–868, 2006.

[206] Y. Freund, and R. Schapire. A decision-theoretic generalization of online learning and
application to boosting. Computational Learning Theory, pp. 23–37, 1995.

[207] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. ICML Con-
ference, pp. 148–156, 1996.

[208] X. Fu, J. Budzik, and K. J. Hammond. Mining navigation history for recommendation.
International Conference on Intelligent User Interfaces, 2000.

462 BIBLIOGRAPHY

[209] S. Funk. Netflix update: Try this at home, 2006. http://sifter.org/~simon/

journal/20061211.html

[210] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipedia-
based explicit semantic analysis. IJCAI Conference, pp. 1606–1611, 2007.

[211] E. Gabrilovich, and S. Markovitch. Overcoming the brittleness bottleneck using
Wikipedia: Enhancing text categorization with encyclopedic knowledge. AAAI Con-
ference, pp. 1301–1306, 2006.

[212] Z. Gantner, S. Rendle, and L. Schmidt-Thieme. Factorization models for context-
/time-aware movie recommendations.Workshop on Context-Aware Movie Recommen-
dation, pp. 14–19, 2010.

[213] A. Garcia-Crespo, J. Chamizo, I. Rivera, M. Mencke, R. Colomo-Palacios, and J. M.
Gomez-Berbis. SPETA: Social pervasive e-Tourism advisor. Telematics and Informat-
ics 26(3), pp. 306–315. 2009.

[214] M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond accuracy: evaluating rec-
ommender systems by coverage and serendipity. ACM Conference on Recommender
Systems, pp. 257–260, 2010.

[215] J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke. Personalization in folksonomies
based on tag clustering. Workshop on Intelligent Techniques for Web Personalization
and Recommender Systems , 2008. http://www.aaai.org/Papers/Workshops/2008/
WS-08-06/WS08-06-005.pdf

[216] J. Gemmell, T. Schimoler, B. Mobasher, and R. Burke. Resource recommendation in
social annotation systems: A linear-weighted hybrid approach. Journal of Computer
and System Sciences, 78(4), pp. 1160–1174, 2012.

[217] R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismanis. Large-scale matrix factorization
with distributed stochastic gradient descent. ACM KDD Conference, pp. 69–77, 2011.

[218] M. Gery and H. Haddad. Evaluation of Web usage mining approaches for user’s
next request prediction. ACM international workshop on Web information and data
management, pp. 74–81, 2003.

[219] L. Getoor and M. Sahami. Using probabilistic relational models for collaborative
filtering. Workshop on Web Usage Analysis and User Profiling, 1999.

[220] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks archi-
tectures. Neural Computation, 2(2), pp. 219–269, 1995.

[221] J. Golbeck. Computing with social trust. Springer, 2008.

[222] J. Golbeck. Computing and applying trust in Web-based social networks, Ph.D.
Thesis, 2005.

[223] J. Golbeck. Generating predictive movie recommendations from trust in social net-
works, Lecture Notes in Computer Science, Vol. 3986, pp. 93–104, 2006.

[224] J. Golbeck. Trust and nuanced profile similarity in online social networks.ACM Trans-
actions on the Web (TWEB), 3(4), 12, 2009.

http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
http://www.aaai.org/Papers/Workshops/2008/WS-08-06/WS08-06-005.pdf
http://www.aaai.org/Papers/Workshops/2008/WS-08-06/WS08-06-005.pdf

BIBLIOGRAPHY 463

[225] J. Golbeck and J. Hendler. Filmtrust: Movie recommendations using trust in Web-
based social networks. IEEE Consumer Communications and Networking Conference,
96, pp. 282–286, 2006.

[226] J. Golbeck and J. Hendler. Inferring binary trust relationships in Web-based social
networks.ACM Transactions on Internet Technology (TOIT), 6(4), pp. 497–529, 2006.

[227] J. Golbeck and A. Mannes. Using Trust and Provenance for Content Filtering on the
Semantic Web. Models of Trust on the Web (WWW’06 Workshop), 2006.

[228] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2), pp. 133–151, 2001.

[229] N. Good, J. Schafer, J. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and J. Riedl.
Combining collaborative filtering with personal agents for better recommendations.
National Conference on Artificial Intelligence (AAAI/IAAI), pp. 439–446, 1999.

[230] S. Gordea and M. Zanker. Time filtering for better recommendations with small and
sparse rating matrices. International Conference on Web Information Systems Engi-
neering, pp. 171–183, 2007.

[231] M. Gorgoglione and U. Panniello. Including context in a transactional recommender
system using a pre- filtering approach: two real e-commerce applications. International
Conference on Advanced Information Networking and Applications Workshops, pp.
667–672, 2009.

[232] M. Gori and A. Pucci. Itemrank: a random-walk based scoring algorithm for recom-
mender engines. IJCAI Conference, pp. 2766–2771, 2007.

[233] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social
influence maximization. VLDB Conference, pp. 73–84, 2011.

[234] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence probabilities in
social networks. ACM WSDM Conference, pp. 241–250, 2011.

[235] Q. Gu, J. Zhou, and C. Ding. Collaborative filtering: Weighted nonnegative matrix
factorization incorporating user and item graphs. SIAM Conference on Data Mining,
pp. 199–210, 2010.

[236] I. Gunes, C. Kaleli, A. Bilge, and H. Polat. Shilling attacks against recommender
systems: a comprehensive survey. Artificial Intelligence Review, 42(4), 767–799, 2014.

[237] M. Gupta, R. Li, Z. Yin, and J. Han. A survey of social tagging techniques, ACM
SIGKDD Explorations, 12(1), pp. 58–72, 2010.

[238] A. Gunawardana and C. Meek. A unified approach to building hybrid recommender
systems. ACM Conference on Recommender Systems, pp. 117–124, 2009.

[239] R. Guttman, A. Moukas, and P. Maes. Agent-mediated electronic commerce: A survey,
Knowledge Engineering Review, 13(2), pp. 147–159, 1998.

[240] R. Guha. Open rating systems. Techical Report, Stanford University, 2003. http://
www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/open_rating_

systems/wot.pdf

http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/open_rating_systems/wot.pdf
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/open_rating_systems/wot.pdf
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/open_rating_systems/wot.pdf

464 BIBLIOGRAPHY

[241] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust.
World Wide Web Conference, pp. 403–412, 2004.

[242] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning.
Springer, 2009.

[243] T. H. Haveliwala. Topic-sensitive pagerank. World Wide Web Conference, pp. 517–
526, 2002.

[244] Q. He, D. Jiang, Z. Liao, S. Hoi, K. Chang, E. Lim, and H. Li. Web query recom-
mendation via sequential query prediction. IEEE International Conference on Data
Engineering, pp. 1443–1454, 2009.

[245] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for
performing collaborative filtering. ACM SIGIR Conference, pp. 230–237, 1999.

[246] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), pp.
5–53, 2004.

[247] J. Herlocker, J. Konstan,, and J. Riedl. An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms. Information Retrieval, 5(4),
pp. 287–310, 2002.

[248] J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recommen-
dations. ACM Conference on Computer Supported Cooperative work, pp. 241–250,
2000.

[249] C. Hermann. Time-based recommendations for lecture materials. World Conference
on Educational Multimedia, Hypermedia and Telecommunications, pp. 1028–1033,
2010.

[250] P. Heymann, D. Ramage, and H. Garcia-Molina. Social tag prediction. ACM SIGIR
Conference, pp. 531–538, 2008.

[251] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. ACNM SIGCHI Conference, pp. 194–201, 1995.

[252] T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions
on Information Systems (TOIS), 22(1), pp. 89–114, 2004.

[253] W. Hong, S. Zheng, H. Wang, and J. Shi. A job recommender system based on user
clustering. Journal of Computers, 8(8), 1960–1967, 2013.

[254] J. Hopcroft, T. Lou, and J. Tang. Who will follow you back?: reciprocal relationship
prediction. ACM International Conference on Information and Knowledge Manage-
ment, pp. 1137–1146, 2011.

[255] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme. Folkrank: A ranking algorithm
for folksonomies. Fachgruppe Informatik Ret. (FGIR), pp. 111–114, 2006.

[256] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme. BibSonomy: A social bookmark
and publication sharing system. Conceptual Structures Tool Interoperability Work-
shop, pp. 87–102, 2006.

BIBLIOGRAPHY 465

[257] N. Houlsby, J. M. Hernandez-Lobato, and Z. Ghahramani. Cold-start active learn-
ing with robust ordinal matrix factorization. International Conference on Machine
Learning (ICML), pp. 766–774, 2014.

[258] A. Howe, and R. Forbes. Re-considering neighborhood-based collaborative filtering
parameters in the context of new data. Proceedings of the 17th ACM Conference on
Information and Knowledge Management, pp. 1481–1482, 2008.

[259] C. Hsieh, N. Natarajan, and I. Dhillon. PU learning for matrix completion. ICML
Conference, 2015.

[260] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. IEEE International Conference on Data Mining, pp. 263–272, 2008.

[261] Z. Huang, X. Li, and H. Chen. Link prediction approach to collaborative filtering.
ACM/IEEE-CS joint conference on Digital libraries, pp. 141–142, 2005.

[262] Z. Huang, H. Chen, and D. Zheng. Applying associative retrieval techniques to allevi-
ate the sparsity problem in collaborative filtering. ACM Transactions on Information
Systems, 22(1), pp. 116–142, 2004.

[263] G. Hurley and D. Wilson. DubLet: An online CBR system for rental property accom-
modation. International Conference on Case-Based Reasoning, pp. 660–674, 2001.

[264] J. Illig, A. Hotho, R. Jaschke, and G. Stumme. A comparison of content-based tag
recommendations in folksonomy systems. Knowledge Processing and Data Analysis,
Springer, pp. 136–149, 2011.

[265] D. Isaacson and R. Madsen. Markov chains, theory and applications, Wiley, 1976.

[266] M. Jahrer, A. Toscher, and R. Legenstein. Combining predictions for accurate recom-
mender systems. ACM KDD Conference, pp. 693–702, 2010.

[267] P. Jain and I. Dhillon. Provable inductive matrix completion. arXiv preprint
arXiv:1306.0626 http://arxiv.org/abs/1306.0626.

[268] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating
minimization. ACM Symposium on Theory of Computing, pp. 665–674, 2013.

[269] M. Jamali and M. Ester. TrustWalker: A random-walk model for combining trust-
based and item-based recommendation. ACM KDD Conference, pp. 397–406, 2009.

[270] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for
recommendation in social networks. ACM Internatonal Conference on Recommender
Systems, pp 135–142, 2010.

[271] A. Jameson and B. Smyth. Recommendation to groups. The Adaptive Web, pp. 596–
627, 2007.

[272] A. Jameson. More than the sum of its members: challenges for group recommender
systems. Proceedings of the working conference on Advanced visual interfaces, pp.
48–54, 2004.

http://arxiv.org/abs/1306.0626

466 BIBLIOGRAPHY

[273] D. Jannach. Finding preferred query relaxations in content-based recommenders. In-
telligent Techniques and Tools for Novel System Architectures, Springer, pp. 81–97,
2006.

[274] D. Jannach. Techniques for fast query relaxation in content-based recommender sys-
tems. Advances in Artificial Intelligence, Springer, pp. 49–63, 2006.

[275] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. An introduction to recom-
mender systems, Cambridge University Press, 2011.

[276] D. Jannach, Z. Karakaya, and F. Gedikli. Accuracy improvements for multi-criteria
recommender systems. ACM Conference on Electronic Commerce, pp. 674–689, 2012.

[277] R. Jaschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag recom-
mendations in folksonomies.Knowledge Discovery in Databases (PKDD), pp. 506–514,
2007.

[278] G. Jeh, and J. Widom. SimRank: a measure of structural-context similarity. ACM
KDD Conference, pp. 538–543, 2003.

[279] Z. Jiang, W. Wang, and I. Benbasat. Multimedia-based interactive advising technology
for online consumer decision support. Communications of the ACM, 48(9), pp. 92–98,
2005.

[280] R. Jin, J. Chai, and L. Si. An automatic weighting scheme for collaborative filtering.
ACM SIGIR Conference, pp. 337–344, 2004.

[281] R. Jin, L. Si, and C. Zhai. Preference-based graphic models for collaborative filtering.
Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pp.
329–336, 2003.

[282] R. Jin, L. Si, C. Zhai, and J. Callan. Collaborative filtering with decoupled models
for preferences and ratings. ACM CIKM Conference, pp. 309–316, 2003.

[283] T. Joachims. Training linear SVMs in linear time. ACM KDD Conference, pp. 217–
226, 2006.

[284] T. Joachims. Optimizing search engines using click-through data. ACM KDD
Conference, pp. 133–142, 2002.

[285] I. Jolliffe. Principal component analysis, 2nd edition, Springer, 2002.

[286] N. Jones and P. Pu. User technology adoption issues in recommender systems. Net-
working and Electronic Conference, pp. 379–394, 2007.

[287] A. Josang, S. Marsh, and S. Pope. Exploring different types of trust propagation. In
Trust management, Lecture Notes in Computer Science, Springer, 3986, pp. 179–192,
2006.

[288] P. Juell and P. Paulson. Using reinforcement learning for similarity assessment in
case-based systems. IEEE Intelligent Systems, 18(4), pp. 60–67, 2003.

[289] U. Junker. QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. AAAI Conference, pp. 167–172, 2004.

BIBLIOGRAPHY 467

[290] S. Kale, L. Reyzin, and R. Schapire. Non-stochastic bandit slate problems. Advances
in Neural Information Processing Systems, pp. 1054–1062, 2010.

[291] M. Kaminskas and F. Ricci. Contextual music information retrieval and recommen-
dation: State of the art and challenges. Computer Science Review, 6(2), pp. 89–119,
2012.

[292] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for rep-
utation management in P2P networks. World Wide Web Conference, pp. 640–651,
2003.

[293] A. Karatzoglou. Collaborative temporal order modeling. ACM Conference on Recom-
mender Systems, pp. 313–316, 2011.

[294] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse recommen-
dation: N-dimensional tensor factorization for context-aware collaborative filtering.
ACM Conference on Recommender Systems, pp. 79–86, 2010.

[295] R. Karimi, C. Freudenthaler, A. Nanopoulos, L. Schmidt-Thieme. Exploiting the char-
acteristics of matrix factorization for active learning in recommender systems. ACM
Conference on Recommender Systems, pp. 317–320, 2012.

[296] J. Kemeny and J. Snell. Finite Markov chains. Springer, New York, 1983.

[297] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through
a social network. ACM KDD Conference, pp. 137–146, 2003.

[298] M. Kendall. A new measure of rank correlation. Biometrika, pp. 81–93, 1938.

[299] M. Kendall and J. Gibbons. Rank correlation methods. Charles Griffin, 5th edition,
1990.

[300] D. Kim, and B. Yum. Collaborative filtering Based on iterative principal component
analysis, Expert Systems with Applications, 28, pp. 623–830, 2005.

[301] H. Kim and H. Park. Nonnegative matrix factorization based on alternating nonneg-
ativity constrained least squares and active set method. SIAM Journal on Matrix
Analysis and Applications, 30(2), pp. 713–730, 2008.

[302] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5), pp. 604–632, 1999.

[303] J. Kleinberg, C. Papadimitriou, and P. Raghavan. On the value of private informa-
tion. Proceedings of the 8th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 249–257, 2001.

[304] N. Koenigstein, G. Dror, and Y. Koren. Yahoo! Music recommendations: model-
ing music ratings with temporal dynamics and item taxonomy. ACM Conference on
Recommender Systems, pp. 165–172, 2011.

[305] R. Kohavi, R. Longbotham, D. Sommerfield, R. Henne. Controlled experiments on
the Web: survey and practical guide. Data Mining and Knowledge Discovery, 18(1),
pp. 140–181, 2009.

468 BIBLIOGRAPHY

[306] X. Kong, X. Shi, and P. S. Yu. Multi-Label collective classification. SIAM Conference
on Data Mining, pp. 618–629, 2011.

[307] J. Konstan. Introduction to recommender systems: algorithms and evaluation. ACM
Transactions on Information Systems, 22(1), pp. 1–4, 2004.

[308] J. Konstan, S. McNee, C. Ziegler, R. Torres, N. Kapoor, and J. Riedl. Lessons on
applying automated recommender systems to information-seeking tasks. AAAI Con-
ference, pp. 1630–1633, 2006.

[309] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. ACM KDD Conference, pp. 426–434, 2008. Extended version of this paper
appears as: “Y. Koren. Factor in the neighbors: Scalable and accurate collaborative
filtering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1), 1,
2010.”

[310] Y. Koren. Collaborative filtering with temporal dynamics. ACM KDD Conference,
pp. 447–455, 2009. Another version also appears in the Communications of the ACM,,
53(4), pp. 89–97, 2010.

[311] Y. Koren. The Bellkor solution to the Netflix grand prize. Netflix prize documentation,
81, 2009. http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.
pdf

[312] Y. Koren and R. Bell. Advances in collaborative filtering. Recommender Systems
Handbook, Springer, pp. 145–186, 2011. (Extended version in 2015 edition of hand-
book).

[313] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8), pp. 30–37, 2009.

[314] Y. Koren and J. Sill. Collaborative filtering on ordinal user feedback. IJCAI Confer-
ence, pp. 3022–3026, 2011.

[315] R. Krestel and P. Fankhauser. Personalized topic-based tag recommendation. Neuro-
computing, 76(1), pp. 61–70, 2012.

[316] R. Krestel, P. Fankhauser, and W. Nejdl. Latent dirichlet allocation for tag recom-
mendation. ACM Conference on Recommender Systems, pp. 61–68, 2009.

[317] V. Krishnan, P. Narayanashetty, M. Nathan, R. Davies, and J. Konstan. Who predicts
better? Results from an online study comparing humans and an online recommender
system. ACM Conference on Recommender Systems, pp. 211–218, 2008.

[318] J. Krosche, J. Baldzer, and S. Boll. MobiDENK -mobile multimedia in monument
conservation. IEEE MultiMedia, 11(2), pp. 72–77, 2004.

[319] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler. Hidden Markov models
in computational biology: Applications to protein modeling. Journal of molecular
biology, 235(5), pp. 1501–1531, 1994.

[320] B. Krulwich. Lifestyle finder: Intelligent user profiling using large-scale demographic
data. AI Magazine, 18(2), pp. 37–45, 1995.

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf

BIBLIOGRAPHY 469

[321] S. Kabbur, X. Ning, and G. Karypis. FISM: factored item similarity models for top-N
recommender systems. ACM KDD Conference, pp. 659–667, 2013.

[322] S. Kabbur and G. Karypis. NLMF: NonLinear Matrix Factorization Methods for Top-
N Recommender Systems. IEEE Data Mining Workshop (ICDMW), pp. 167–174,
2014.

[323] A. Karatzoglou, L. Baltrunas, and Y. Shi. Learning to rank for recom-
mender systems. ACM Conference on Recommender Systems, pp. 493–
494, 2013. Slides available at http://www.slideshare.net/kerveros99/

learning-to-rank-for-recommender-system-tutorial-acm-recsys-2013

[324] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. De Luca, and S. Albayrak.
Spectral analysis of signed graphs for clustering, prediction and visualization. SIAM
Conference on Data Mining, pp. 559–559, 2010.

[325] J. Kunegis, E. De Luca, and S. Albayrak. The link prediction problem in bipartite
networks. Computational Intelligence for Knowledge-based Systems Design, Springer,
pp. 380–389, 2010.

[326] J. Kunegis and A. Lommatzsch. Learning spectral graph transformations for link
prediction. International Conference on Machine Learning, pp. 562–568, 2009.

[327] A. Lacerda, M. Cristo, W. Fan, N. Ziviani, and B. Ribeiro-Neto. Learning to advertise.
ACM SIGIR Conference, pp. 549–556, 2006.

[328] K. Lakiotaki, S. Tsafarakis, and N. Matsatsinis. UTA-Rec: a recommender system
based on multiple criteria analysis. ACM Conference on Recommender Systems,
pp. 219–226, 2008.

[329] S. Lam and J. Riedl. Shilling recommender systems for fun and profit. World Wide
Web Conference, pp. 393–402, 2004.

[330] B. Lamche, U. Trottmann, and W. Worndl. Active learning strategies for exploratory
mobile recommender systems. Proceedings of the 4th Workshop on Context-Awareness
in Retrieval and Recommendation, pp. 10–17, 2014.

[331] A. Langville, C. Meyer, R. Albright, J. Cox, and D. Duling. Initializations for the
nonnegative matrix factorization. ACM KDD Conference, pp. 23–26, 2006.

[332] L. Lathauwer, B. Moor, and J. Vandewalle. A multilinear singular value decomposi-
tion. SIAM Journal on Matrix Analysis and Applications, 21(4), pp. 1253–1278. 2000.

[333] N. Lathia, S. Hailes, and L. Capra. Temporal collaborative filtering with adaptive
neighbourhoods. ACM SIGIR Conference, pp. 796–797, 2009.

[334] N. Lathia, S. Hailes, and L. Capra. Private distributed collaborative filtering using
estimated concordance measures. ACM Conference on Recommender Systems, pp. 1–
8, 2007.

[335] N. Lathia, S. Hailes, L. Capra, and X. Amatriain. Temporal diversity in recommender
systems. ACM SIGIR Conference, pp. 210–217, 2010.

[336] S. Lawrence. Context in Web search. IEEE Data Engineering Bulletin, 23(3):25, 2000.

http://www.slideshare.net/kerveros99/learning-to-rank-for-recommender-system-tutorial-acm-recsys-2013
http://www.slideshare.net/kerveros99/learning-to-rank-for-recommender-system-tutorial-acm-recsys-2013

470 BIBLIOGRAPHY

[337] D. Lee, S. Park, M. Kahng, S. Lee, and S. Lee. Exploiting contextual information from
event logs for personalized recommendation. Chapter in Computer and Information
Science, Springer, 2010.

[338] J.-S. Lee and S. Olafsson. Two-way cooperative prediction for collaborative filtering
recommendations. Expert Systems with Applications, 36(3), pp. 5353–5361, 2009.

[339] B.-H. Lee, H. Kim, J. Jung, and G.-S. Jo. Location-based service with context data for
a restaurant recommendation. Database and Expert Systems Applications, pp. 430–
438, 2006.

[340] H. Lee and W. Teng. Incorporating multi-criteria ratings in recommendation systems.
IEEE International Conference on Information Reuse and Integration (IRI), pp. 273–
278, 2007.

[341] J. Lees-Miller, F. Anderson, B. Hoehn, and R. Greiner. Does Wikipedia information
help Netflix predictions?. Machine Learning and Applications, pp. 337–343, 2008.

[342] D. Lemire and A. Maclachlan. Slope one predictors for online rating-based collabora-
tive filtering. SIAM Conference on Data Mining, 2005.

[343] J. Levandoski, M. Sarwat, A. Eldawy, and M. Mokbel. LARS: A location-aware rec-
ommender system. IEEE ICDE Conference, pp. 450–461, 2012.

[344] R. Levien. Attack-resistant trust metrics. Computing with Social Trust, Springer,
pp. 121–132, 2009.

[345] M. Lesani and S. Bagheri. Applying and inferring fuzzy trust in semantic web so-
cial networks. Canadian Semantic Web, Semantic Web and Beyond, Springer, Vol 2,
pp. 23–43, 2006.

[346] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links
in online social networks. World Wide Web Conference, pp. 641–650, 2010.

[347] M. Levy and K. Jack. Efficient Top-N Recommendation by Linear Regression. Large
Scale Recommender Systems Workshop (LSRS) at RecSys, 2013.

[348] L. Li, W. Chu, J. Langford, and R. Schapire. A contextual-bandit approach to per-
sonalized news article recommendation. World Wide Web Conference, pp. 661–670,
2010.

[349] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. International Conference on
Web Search and Data Mining, pp. 297–306, 2011.

[350] M. Li, B. M. Dias, I. Jarman, W. El-Deredy, and P. J. Lisboa. Grocery shopping
recommendations based on basket-sensitive random walk.KDD Conference, pp. 1215–
1224, 2009.

[351] M. Li, T. Zhang, Y. Chen, and A. Smola. Efficient mini-batch training for stochastic
optimization. ACM KDD Conference, pp. 661–670, 2014.

[352] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and �-diversity. IEEE International Conference on Data Enginering, pp. 106–115,
2007.

BIBLIOGRAPHY 471

[353] Q. Li, C. Wang, and G. Geng. Improving personalized services in mobile commerce by
a novel multicriteria rating approach. World Wide Web Conference, pp. 1235–1236,
2008.

[354] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7), pp.
1019–1031, 2007.

[355] R. Lichtenwalter, J. Lussier, and N. Chawla. New perspectives and methods in link
prediction. ACM KDD Conference, pp. 243–252, 2010.

[356] H. Lieberman. Letizia: An agent that assists Web browsing, IJCAI, pp. 924–929, 1995.

[357] C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural
Computation, 19(10), pp. 2576–2779, 2007.

[358] W. Lin. Association rule mining for collaborative recommender systems.Masters The-
sis, Worcester Polytechnic Institute, 2000.

[359] W. Lin, S. Alvarez, and C. Ruiz. Efficient adaptive-support association rule mining
for recommender systems. Data Mining and Knowledge Discovery, 6(1), pp. 83–105,
2002.

[360] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item col-
laborative filtering. IEEE Internet Computing, 7(1), pp. 76–80, 2003.

[361] C. Ling and C. Li. Data Mining for direct marketing: problems and solutions. ACM
KDD Conference, pp. 73–79, 1998.

[362] R. Little and D. Rubin. Statistical analysis with missing data. Wiley, 2002.

[363] M. Littlestone and M. Warmuth. The weighted majority algorithm. Information and
computation, 108(2), pp. 212–261, 1994.

[364] B. Liu. Web data mining: exploring hyperlinks, contents, and usage data. Springer,
New York, 2007.

[365] B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum supports.
ACM KDD Conference, pp. 337–341, 1999.

[366] N. Liu, M. Zhao, E. Xiang, and Q Yang. Online evolutionary collaborative filtering.
ACM Conference on Recommender Systems, pp. 95–102, 2010.

[367] N. Liu and Q. Yang. Eigenrank: a ranking-oriented approach to collaborative filtering.
ACM SIGIR Conference, pp. 83–90, 2008.

[368] N. Liu, M. Zhao, and Q. Yang. Probabilistic latent preference analysis for collaborative
filtering. ACM Conference on Information and Knowledge Management, pp. 759–766,
2009.

[369] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining topic-level influence in het-
erogeneous networks. ACM CIKM Conference, pp. 199–208, 2010.

[370] T. Y. Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3), pp. 225–331, 2009.

472 BIBLIOGRAPHY

[371] X. Liu, C. Aggarwal, Y.-F. Lee, X. Kong, X. Sun, and S. Sathe. Kernelized matrix
factorization for collaborative filtering. SIAM Conference on Data Mining, 2016.

[372] Z. Liu, Y.-X. Wang, and A. Smola. Fast differentially private matrix factorization.
ACM Conference on Recommender Systems, 2015.

[373] S. Lohr. A $1 million research bargain for Netflix, and maybe a model for others,
The New York Times, September 21, 2009. http://www.nytimes.com/2009/09/22/
technology/internet/22netflix.html?_r=0

[374] S. Lombardi, S. Anand, and M. Gorgoglione. Context and customer behaviour in
recommendation. Workshop on Customer Aware Recommender Systems, 2009.

[375] B. London, and L. Getoor. Collective classification of network data. Data Classifica-
tion: Algorithms and Applications, CRC Press, pp. 399–416, 2014.

[376] P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender systems: state
of the art and trends. Recommender Systems Handbook, Springer, pp. 73–105, 2011.

[377] F. Lorenzi and F. Ricci. Case-based recommender systems: a unifying view. Intelligent
Techniques for Web Personalization, pp. 89–113, Springer, 2005.

[378] L. Lu, M. Medo, C. Yeung, Y. Zhang, Z. Zhang, and T. Zhou. Recommender systems.
Physics Reports, 519(1), pp. 1–49, 2012. http://arxiv.org/pdf/1202.1112.pdf

[379] Q. Lu, and L. Getoor. Link-based classification. ICML Conference, pp. 496–503, 2003.

[380] H. Ma, I. King, and M. Lyu. Effective missing data prediction for collaborative filter-
ing. ACM SIGIR Conference, pp. 39–46, 2007.

[381] H. Ma, H. Yang, M. Lyu, and I. King. SoRec: Social recommendation using proba-
bilistic matrix factorization. ACM Conference on Information and knowledge Man-
agement, pp. 931–940, 2008.

[382] H. Ma, D. Zhou, C. Liu, M. Lyu, and I. King. Recommender systems with social regu-
larization. ACM International Conference on Web search and Data Mining, pp. 287–
296, 2011.

[383] H. Ma, M. Lyu, and I. King. Learning to recommend with trust and distrust re-
lationships. ACM International Conference on Recommender Systems, pp. 189–196,
2009.

[384] H. Ma, M. Lyu, and I. King. Learning to recommend with social trust ensemble. ACM
SIGIR Conference, pp. 203–210, 2009.

[385] Z. Ma, G. Pant, and O. Sheng. Interest-based personalized search. ACM Transactions
on Information Systems, 25(1), 2007.

[386] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. �-diversity:
privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(3), 2007.

[387] S. Macskassy, and F. Provost. A simple relational classifier. Second Workshop on
Multi-Relational Data Mining (MRDM) at ACM KDD Conference, 2003.

http://www.nytimes.com/2009/09/22/technology/internet/22netflix.html?_r=0
http://www.nytimes.com/2009/09/22/technology/internet/22netflix.html?_r=0
http://arxiv.org/pdf/1202.1112.pdf

BIBLIOGRAPHY 473

[388] S. A. Macskassy, and F. Provost. Classification in networked data: A toolkit and a
univariate case study. Joirnal of Machine Learning Research, 8, pp. 935–983, 2007.

[389] T. Mahmood and F. Ricci. Learning and adaptivity in interactive recommender sys-
tems. International Conference on Electronic Commerce, pp. 75–84, 2007.

[390] T. Mahmood and F. Ricci. Improving recommender systems with adaptive conversa-
tional strategies. ACM Conference on Hypertext and Hypermedia, pp. 73–82, 2009.

[391] H. Mak, I. Koprinska, and J. Poon. Intimate: A web-based movie recommender using
text categorization. International Conference on Web Intelligence, pp. 602–605, 2003.

[392] B. Magnini, and C. Strapparava. Improving user modelling with content-based tech-
niques. International Conference on User Modeling, pp. 74–83, 2001.

[393] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre. Collaborative recommen-
dation: A robustness analysis. ACM Transactions on Internet Technology, 4(4), pp.
344–377, 2004.

[394] M. O’Mahony, N. Hurley, and G. Silvestre. Promoting recommendations: An attack
on collaborative filtering. Database and Expert Systems Applications, pp. 494–503,
2002.

[395] M. O’Mahony, N. Hurley, G. Silvestre. An evaluation of the performance of collabora-
tive filtering. International Conference on Artificial Intelligence and Cognitive Science
(AICS), pp. 164–168, 2003.

[396] M. O’Mahony, N. Hurley, G. Silvestre. Recommender systems: Attack types and
strategies. National Conference on Artificial Intelligence (AAAI), pp. 334–339, 2005.

[397] M. O’Mahony, N. Hurley, G. Silvestre. An evaluation of neighbourhood formation
on the performance of collaborative filtering. Artificial Intelligence Review, 21(1),
pp. 215–228, 2004.

[398] N. Manouselis and C. Costopoulou. Analysis and classification of multi-criteria rec-
ommender systems. World Wide Web, 10(4), pp. 415–441, 2007.

[399] N. Manouselis and Costopoulou. Experimental Analysis of Design Choices in a Multi-
Criteria Recommender System. International Journal of Pattern Recognition and AI,
21(2), pp. 311–332, 2007.

[400] C. Manning, P. Raghavan, and H. Schutze. Introduction to information retrieval.
Cambridge University Press, Cambridge, 2008.

[401] L. Marinho, A. Nanopoulos, L. Schmidt-Thieme, R. Jaschke, A. Hotho, G, Stumme,
and P. Symeonidis. Social tagging recommender systems. Recommender Systems
Handbook, Springer, pp. 615–644, 2011.

[402] B. Marlin and R. Zemel. Collaborative prediction and ranking with non-random miss-
ing data. ACM Conference on Recommender Systems, pp. 5–12, 2009.

[403] P. Massa and P. Avesani. Trust-aware collaborative filtering for recommender systems.
On the Move to Meaningful Internet Systems, pp. 492–508, 2004.

474 BIBLIOGRAPHY

[404] P. Massa and P. Avesani. Trust-aware recommender systems. ACM Conference on
Recommender Systems, pp. 17–24, 2007.

[405] P. Massa and B. Bhattacharjee. Using trust in recommender systems: An experimental
analysis. Trust Management, pp. 221–235, Springer, 2004.

[406] P. Massa and P. Avesani. Trust metrics on controversial users: balancing between
tyranny of the majority. International Journal on Semantic Web and Information
Systems, 3(1), pp. 39–64, 2007.

[407] J. Masthoff. Group recommender systems: combining individual models. Recom-
mender Systems Handbook, Springer, pp. 677–702, 2011.

[408] J. Masthoff. Group modeling: Selecting a sequence of television items to suit a group
of viewers. Personalized Digital Television, pp. 93–141, 2004.

[409] J. Masthoff and A. Gatt. In pursuit of satisfaction and the prevention of embarrass-
ment: affective state in group recommender systems. User Modeling and User-Adapted
Interactio, 16(3–4), pp. 281–319, 2006.

[410] J. Masthoff. Modeling the multiple people that are me. International Conference on
User Modeling, Also appears in Lecture Notes in Computer Science, Springer, Vol.
2702, pp. 258–262, 2003.

[411] J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating
dimensions with review text. ACM Conference on Recommender systems, pp. 165–
172, 2013.

[412] J. McCarthy and T. Anagnost. MusicFX: An Arbiter of Group Preferences for Com-
puter Supported Collaborative Workouts. ACM Conference on Computer Supported
Cooperative Work, pp. 363–372, 1998.

[413] K. McCarthy, L. McGinty, B. Smyth, and M. Salamo. The needs of the many: a case-
based group recommender system. Advances in Case-Based Reasoning, pp. 196–210,
2004.

[414] K. McCarthy, J. Reilly, L. McGinty, and B. Smyth. On the dynamic generation of
compound critiques in conversational recommender systems. Adaptive Hypermedia
and Adaptive Web-Based Systems, pp. 176–184, 2004.

[415] K. McCarthy, M. Salamo, L. McGinty, B. Smyth, and P. Nicon. Group recommender
systems: a critiquing based approach. International Conference on Intelligent User
Interfaces, pp. 267–269, 2006.

[416] K. McCarthy, L. McGinty, and B. Smyth. Dynamic critiquing: an analysis of cognitive
load. Irish Conference on Artificial Intelligence and Cognitive Science, pp. 19–28,
2005.

[417] L. McGinty and J. Reilly. On the evolution of critiquing recommenders. Recommender
Systems Handbook, pp. 419–453, 2011.

[418] S. McNee, J. Riedl, and J. Konstan. Being accurate is not enough: how accuracy
metrics have hurt recommender systems. SIGCHI Conference, pp. 1097–1101, 2006.

BIBLIOGRAPHY 475

[419] D. McSherry. Incremental relaxation of unsuccessful queries. Advances in Case-Based
Reasoning, pp. 331–345, 2004.

[420] D. McSherry. Diversity-Conscious Retrieval. European Conference on Case-Based
Reasoning, pp. 219–233, 2002.

[421] D. McSherry. Similarity and Compromise. International Conference on Case-Based
Reasoning, pp. 291–305, 2003.

[422] D. McSherry and D. Aha. The ins and outs of critiquing. IJCAI, pp. 962–967, 2007.

[423] D. McSherry and D. Aha. Avoiding long and fruitless dialogues in critiquing. Research
and Development in Intelligent Systems, pp. 173–186, 2007.

[424] B. Mehta, and T. Hofmann. A survey of attack-resistant collaborative filtering algo-
rithms. IEEE Data Enginerring Bulletin, 31(2), pp. 14–22, 2008.

[425] B. Mehta, T. Hofmann, and P. Fankhauser. Lies and propaganda: detecting spam
users in collaborative filtering. International Conference on Intelligent User Interfaces,
pp. 14–21, 2007.

[426] B. Mehta, T. Hofmann, andW. Nejdl. Robust collaborative filtering. ACM Conference
on Recommender Systems, pp. 49–56, 2007.

[427] B. Mehta and W. Nejdl. Unsupervised strategies for shilling detection and robust
collaborative filtering. User Modeling and User-Adapted Interaction, 19(1–2), pp. 65–
97, 2009.

[428] B. Mehta and W. Nejdl. Attack resistant collaborative filtering. ACM SIGIR Confer-
ence, pp. 75–82, 2008.

[429] Q. Mei, D. Zhou, and K. Church. Query suggestion using hitting time. ACM Confer-
ence on Information and Knowledge Management, pp. 469–478, 2009. .

[430] N. Meinshausen. Sign-constrained least squares estimation for high-dimensional re-
gression. Electronic Journal of Statistics, 7, pp. 607–1631, 2013.

[431] P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for
improved recommendations. AAAI/IAAI, pp. 187–192, 2002.

[432] A. K. Menon, and C. Elkan. Link prediction via matrix factorization. Machine Learn-
ing and Knowledge Discovery in Databases, pp. 437–452, 2011.

[433] S. Middleton, N. Shadbolt, and D. de Roure. Ontological user profiling in recom-
mender systems. ACM Transactions on Information Systems, 22(1), pp. 54–88, 2004.

[434] A. Mild and M. Natter. Collaborative filtering or regression models for Internet recom-
mendation systems?. Journal of Targeting, Measurement and Analysis for Marketing,
10(4), pp. 304–313, 2002.

[435] S. Min and I. Han. Detection of the customer time-variant pattern for improving
recommender systems. Expert Systems and Applications, 28(2), pp. 189–199, 2005.

[436] T. M. Mitchell. Machine learning. McGraw Hill International Edition, 1997.

476 BIBLIOGRAPHY

[437] K. Miyahara, and M. J. Pazzani. Collaborative filtering with the simple Bayesian
classifier. Pacific Rim International Conference on Artificial Intelligence, 2000.

[438] D. Mladenic. Machine learning used by Personal WebWatcher. Proceedings of the
ACAI-99 Workshop on Machine Learning and Intelligent Agents, 1999.

[439] D. Mladenic. Text learning and related intelligent agents: A survey. IEEE Intelligent
Systems, 14(4), pp. 44–54, 1999.

[440] B. Mobasher, R. Cooley, and J. Srivastava. Automatic personalization based on Web
usage mining. Communications of the ACM, 43(8), pp. 142–151, 2000.

[441] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective personalization based on
association rule discovery from Web usage data. ACM Workshop on Web Information
and Data Management, pp. 9–15, 2001.

[442] B. Mobasher, H. Dai, T. Luo, and H. Nakagawa. Using sequential and non-sequential
patterns in predictive web usage mining tasks. International Conference on Data
Mining, pp. 669–672, 2002.

[443] B. Mobasher, H. Dai, M. Nakagawa, and T. Luo. Discovery and evaluation of aggregate
usage profiles for web personalization. Data Mining and Knowledge Discovery, 6: pp.
61–82, 2002.

[444] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Toward trustworthy recom-
mender systems: an analysis of attack models and algorithm robustness. ACM Trans-
actions on Internet Technology (TOIT), 7(4), 23, 2007.

[445] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Effective attack models for
shilling item-based collaborative filtering systems. WebKDD Workshop, 2005.

[446] B. Mobasher, R. Burke, and J. Sandvig. Model-based collaborative filtering as a de-
fense against profile injection attacks. AAAI Conference, Vol. 6, p. 1388, 2006.

[447] M. Mokbel and J. Levandoski. Toward context and preference-aware location-based
services. ACM International Workshop on Data Engineering for Wireless and Mobile
Access, pp. 25–32, 2009.

[448] R. J. Mooney and L. Roy. Content-based book recommending using learning for text
categorization. ACM Conference on Digital libraries, pp. 195–204, 2000.

[449] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of trust and
reputation. IEEE International Conference on System Sciences, pp. 2413–2439, 2002.

[450] T. Murakami, K. Mori, and R. Orihara. Metrics for evaluating the serendipity of
recommendation lists. New Frontiers in Artificial Intelligence, pp. 40–46, 2008.

[451] A. Narayanan and V. Shmatikov. How to break anonymity of the Netflix prize dataset.
arXiv preprint cs/0610105, 2006. http://arxiv.org/abs/cs/0610105

[452] G. Nemhauser, and L. Wolsey. Integer and combinatorial optimization. Wiley,
New York, 1988.

[453] J. Neville, and D. Jensen. Iterative classification in relational data. AAAI Workshop
on Learning Statistical Models from Relational Data, pp. 13–20, 2000.

http://arxiv.org/abs/cs/0610105

BIBLIOGRAPHY 477

[454] Q. Nguyen and F. Ricci. User preferences initialization and integration in critique-
based mobile recommender systems. Artificial Intelligence in Mobile Systems, pp. 71–
78, 2004.

[455] X. Ning and G. Karypis. SLIM: Sparse linear methods for top-N recommender sys-
tems. IEEE International Conference on Data Mining, pp. 497–506, 2011.

[456] X. Ning and G. Karypis. Sparse linear methods with side information for top-n rec-
ommendations. ACM Conference on Recommender Systems, pp. 155–162, 2012.

[457] D. Oard and J. Kim. Implicit feedback for recommender systems. Proceedings of the
AAAI Workshop on Recommender Systems, pp. 81–83, 1998.

[458] K. Oku, S. Nakajima, J. Miyazaki, and S. Uemura. Context-aware SVM for context-
dependent information recommendation. International Conference on Mobile Data
Management, pp. 109–109, 2006.

[459] F. Del Olmo and E. Gaudioso. Evaluation of recommender systems: A new approach.
Expert Systems with Applications, 35(3), pp. 790–804, 2008.

[460] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics, 5(2),
pp. 111–126, 1994.

[461] A. Paolo, P. Massa, and R. Tiella. A trust-enhanced recommender system application:
Moleskiing. ACM Symposium on Applied Computing, pp. 1589–1593, 2005.

[462] D. Park, H. Kim, I. Choi, and J. Kim. A literature review and classification of recom-
mender systems research. Expert Systems with Applications, 29(11), pp. 10059–10072,
2012.

[463] Y. Park and A. Tuzhilin. The long tail of recommender systems and how to leverage
it. Proceedings of the ACM Conference on Recommender Systems, pp. 11–18, 2008.

[464] M. Park, J. Hong, and S. Cho. Location-based recommendation system using Bayesian
user’s preference model in mobile devices. Ubiquitous Intelligence and Computing, pp.
1130–1139, 2007.

[465] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation engine: Bring-
ing order to the web. Technical Report, 1999–0120, Computer Science Department,
Stanford University, 1998.

[466] C. Palmisano, A. Tuzhilin, and M. Gorgoglione. Using context to improve predictive
modeling of customers in personalization applications. IEEE Transactions on Knowl-
edge and Data Engineering, 20(11), pp. 1535–1549, 2008.

[467] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, Q. Yang. One-class collabo-
rative filtering. IEEE International Conference on Data Mining, pp. 502–511, 2008.

[468] R. Pan, and M. Scholz. Mind the gaps: weighting the unknown in large-scale one-class
collaborative filtering. ACM KDD Conference, pp. 667–676, 2009.

[469] W. Pan and L. Chen. CoFiSet: Collaborative filtering via learning pairwise preferences
over item-sets. SIAM Conference on Data Mining, 2013.

478 BIBLIOGRAPHY

[470] U. Panniello, A. Tuzhilin, and M. Gorgoglione. Comparing context-aware recom-
mender systems in terms of accuracy and diversity. User Modeling and User-Adapted
Interaction, 24: pp. 35–65, 2014.

[471] U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, and A. Pedone. Experimen-
tal comparison of pre- vs. post-filtering approaches in context-aware recommender
systems. ACM Conference on Recommender Systems, pp. 265–268, 2009.

[472] S. Parthasarathy and C. Aggarwal. On the use of conceptual reconstruction for mining
massively incomplete data sets. IEEE Transactions on Knowledge and Data Engineer-
ing, 15(6), pp. 1512–1521, 2003.

[473] A. Paterek. Improving regularized singular value decomposition for collaborative fil-
tering. Proceedings of KDD Cup and Workshop, 2007.

[474] V. Pauca, J. Piper, and R. Plemmons. Nonnegative matrix factorization for spectral
data analysis. Linear algebra and its applications, 416(1), pp. 29–47, 2006.

[475] M. Pazzani. A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review, 13, (5–6), 1999.

[476] M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of
interesting Web sites. Machine learning, 27(3), pp. 313–331, 1997.

[477] M. Pazzani and D. Billsus. Content-based recommendation systems. Lecture Notes in
Computer Science, Springer, 4321, pp. 325–341, 2007.

[478] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill and Webert: Identifying interesting
Web sites. AAAI Conference, pp. 54–61, 1996.

[479] J. Pitkow and P. Pirolli. Mining longest repeating subsequences to predict WWW
surfing. USENIX Annual Technical Conference, 1999.

[480] L. Pizzato, T. Rej, T. Chung, I. Koprinska, and J. Kay. RECON: a reciprocal recom-
mender for online dating. ACM Conference on Recommender systems, pp. 207–214,
2010.

[481] L. Pizzato, T. Rej, T. Chung, K. Yacef, I. Koprinska, and J. Kay. Reciprocal recom-
menders. Workshop on Intelligent Techniques for Web Personalization and Recom-
mender Systems, pp. 20–24, 2010.

[482] L. Pizzato, T. Rej, K. Yacef, I. Koprinska, and J. Kay. Finding someone you will like
and who won’t reject you. User Modeling, Adaption and Personalization, Springer,
pp. 269–280, 2011.

[483] B. Polak, A. Herrmann, M. Heitmann, and M. Einhorn. Die Macht des Defaults –
Wirkung von Empfehlungen und Vorgaben auf das individuelle Entscheidungsverhal-
ten. [English Translation: The power of defaults: Effect on individual choice behavior.]
Zeitschrift fur Betriebswirtschaft, 78(10), pp. 1033–1060, 2008.

[484] H. Polat and W. Du. Privacy-preserving collaborative filtering using randomized per-
turbation techniques. IEEE International Conference on Data Mining, pp. 625–628,
2003.

BIBLIOGRAPHY 479

[485] H. Polat and W. Du. SVD-based collaborative filtering with privacy. ACM symposium
on Applied Computing, pp. 791–795, 2005.

[486] P. Pu and L. Chen. Trust building with explanation interfaces. International confer-
ence on Intelligent User Interfaces, pp. 93–100, 2006.

[487] G. Qi, C. Aggarwal, Q. Tian, H. Ji, and T. S. Huang. Exploring context and content
links in social media: A latent space method. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(5), pp. 850–862, 2012.

[488] G. Qi, C. Aggarwal, and T. Huang. Link prediction across networks by biased cross-
network sampling. IEEE ICDE Conference, pp. 793–804, 2013.

[489] L. Quijano-Sanchez, J. Recio-Garcia, B. Diaz-Agudo,and G. Jimenez-Diaz. Social fac-
tors in group recommender systems. ACM Transactions on Intelligent Systems and
Technology (TIST), 4(1), 8, 2013.

[490] C. Quoc and V. Le. Learning to rank with nonsmooth cost functions. Advances in
Neural Information Processing Systems, 19, pp. 193–200, 2007.

[491] J. Reilly, B. Smyth, L. McGinty, and K. McCarthy. Critiquing with confidence. Case-
Based Reasoning Research and Development, pp. 436–450, 2005.

[492] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Explaining compound critiques.
Artificial Intelligence Review, 24(2), pp. 199–220, 2005.

[493] S. Rendle. Factorization machines. IEEE International Conference on Data Mining,
pp. 995–100, 2010.

[494] S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 3(3), 57, 2012.

[495] S. Rendle. Context-aware ranking with factorization models. Studies in Computational
Intelligence, Chapter 9, Springer, 2011.

[496] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware
recommendations with factorization machines. ACM SIGIR Conference, pp. 635–644,
2011.

[497] S. Rendle, L. Balby Marinho, A. Nanopoulos, and A. Schmidt-Thieme. Learning op-
timal ranking with tensor factorization for tag recommendation. ACM KDD Confer-
ence, pp. 727–736, 2009.

[498] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for per-
sonalized tag recommendation. ACM International Conference on Web Search and
Data Mining, pp. 81–90, 2010.

[499] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian per-
sonalized ranking from implicit feedback. Uncertainty in Artificial Intelligence (UAI),
pp. 452–451, 2009.

[500] J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. ICML Conference, pp. 713–718, 2005.

480 BIBLIOGRAPHY

[501] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: an open
architecture for collaborative filtering of netnews. Proceedings of the ACM Conference
on Computer Supported Cooperative Work, pp. 175–186, 1994.

[502] P. Resnick and R. Sami. The influence limiter: provably manipulation-resistant rec-
ommender systems. ACM Conference on Recommender Systems, pp. 25–32, 2007.

[503] P. Resnick and R. Sami. The information cost of manipulation resistance in recom-
mender systems. ACM Conference on Recommender Systems, pp. 147–154, 2008.

[504] F. Ricci. Mobile recommender systems. Information Technology and Tourism, 12(3),
pp. 205–213, 2010.

[505] F. Ricci, L. Rokach, B. Shapira, and P. Kantor. Recommender systems handbook.
Springer, New York, 2011.

[506] F. Ricci and P. Avesani. Learning a local similarity metric for case-based reason-
ing. International Conference on Case-Based Reasoning Research and Development,
pp. 301–312, 1995.

[507] F. Ricci, B. Arslan, N. Mirzadeh, and A. Venturini. LTR: A case-based travel advisory
system. European Conference on Case-Based Reasoning, pp. 613–627, 2002.

[508] E. Rich. User modeling via stereotypes. Cognitive Science, 3(4), pp. 329–354, 1979.

[509] M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic
Web. The Semantic Web, Springer, pp. 351–368, 2003.

[510] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing.
ACM KDD Conference, pp. 61–70, 2002.

[511] J. Rocchio. Relevance feedback information retrieval. The SMART retrieval system –
experiments in automated document processing , pp. 313–323, Prentice-Hall, Engle-
wood Cliffs, NJ, 1971.

[512] P. Rousseeuw and A. Leroy. Robust regression and outlier detection John Wiley and
Sons, 2005.

[513] N. Rubens, D. Kaplan, and M. Sugiyama. Active learning in recommender systems.
Recommender Systems Handbook, Springer, pp. 735–767, 2011.

[514] N. Sahoo, R. Krishnan, G. Duncan, and J. Callan. Collaborative filtering with multi-
component rating for recommender systems. Proceedings of the sixteenth workshop on
information technologies and systems, 2006.

[515] A. Said, S. Berkovsky, and E. de Luca. Putting things in context: challenge on context-
aware movie recommendation. Proceedings of the Workshop on Context-Aware Movie
Recommendation, 2010.

[516] T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank
matrix factorization for deep neural network training with high-dimensional output
targets. Acoustics, Speech and Signal Processing (ICASSP), pp. 6655–6659, 2013.

[517] R. Salakhutdinov, and A. Mnih. Probabilistic matrix factorization.Advances in Neural
and Information Processing Systems, pp. 1257–1264, 2007.

BIBLIOGRAPHY 481

[518] R. Salakhutdinov, and A. Mnih. Bayesian probabilistic matrix factorization using
Markov chain Monte Carlo. International Conference on Machine Learning, pp. 880–
887, 2008.

[519] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for col-
laborative filtering. International conference on Machine Learning, pp. 791–798, 2007.

[520] J. Salter, and N. Antonopoulos. CinemaScreen recommender agent: combining col-
laborative and content-based filtering. Intelligent Systems, 21(1), pp. 35–41, 2006.

[521] P. Samarati. Protecting respondents identities in microdata release. IEEE Transaction
on Knowledge and Data Engineering, 13(6), pp. 1010–1027, 2001.

[522] J. Sandvig, B. Mobasher, and R. Burke. Robustness of collaborative recommenda-
tion based on association rule mining. ACM Conference on Recommender Systems,
pp. 105–12, 2007.

[523] J. Sandvig, B. Mobasher, and R. Burke. A survey of collaborative recommendation
and the robustness of model-based algorithms. IEEE Data Engineering Bulletin, 31(2),
pp. 3–13, 2008.

[524] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. World Wide Web Conference, pp. 285–295, 2001.

[525] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality
reduction in recommender system – a case study. WebKDD Workshop at ACM
SIGKDD Conference, 2000. Also appears at Technical Report TR-00-043, Univer-
sity of Minnesota, Minneapolis, 2000. https://wwws.cs.umn.edu/tech_reports_

upload/tr2000/00-043.pdf

[526] B. Sarwar, J. Konstan, A. Borchers, J. Herlocker, B. Miller, and J. Riedl. Using
filtering agents to improve prediction quality in the grouplens research collaborative
filtering system. ACM Conference on Computer Supported Cooperative Work, pp.
345–354, 1998.

[527] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental singular value decompo-
sition algorithms for highly scalable recommender systems. International Conference
on Computer and Information Science, pp. 27–28, 2002.

[528] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Recommender systems for large-
scale e-commerce: Scalable neighborhood formation using clustering. International
Conference on Computer and Information Technology, 2002.

[529] J. Schafer, D. Frankowski, J. Herlocker,and S. Sen. Collaborative filtering recom-
mender systems. Lecture Notes in Computer Science, Vol. 4321, pp. 291–324, 2006.

[530] J. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-commerce. ACM
Conference on Electronic Commerce, pp. 158–166, 1999.

[531] L. Schaupp and F. Belanger. A conjoint analysis of online consumer satisfaction.
Journal of Electronic Commerce Research, 6(2), pp. 95–111, 2005.

[532] S. Schechter, M. Krishnan, and M. D. Smith. Using path profiles to predict http
requests. World Wide Web Conference, 1998.

https://wwws.cs.umn.edu/tech_reports_upload/tr2000/00-043.pdf
https://wwws.cs.umn.edu/tech_reports_upload/tr2000/00-043.pdf

482 BIBLIOGRAPHY

[533] A. Schein, A. Popescul, L. Ungar, and D. Pennock. Methods and metrics for cold-start
recommendations. ACM SIGIR Conference, 2002.

[534] I. Schwab, A. Kobsa, and I. Koychev. Learning user interests through positive ex-
amples using content analysis and collaborative filtering. Internal Memo, GMD, St.
Augustin, Germany, 2001.

[535] S. Sen, J. Vig, and J. Riedl. Tagommenders: connecting users to items through tags.
World Wide Web Conference, pp. 671–680, 2009.

[536] S. Sen, J. Vig, and J. Riedl. Learning to recognize valuable tags. International Con-
ference on Intelligent User Interfaces, pp. 87–96, 2009.

[537] D. Seung, and L. Lee. Algorithms for non-negative matrix factorization. Advances in
Neural Information Processing Systems, 13, pp. 556–562, 2001.

[538] G. Shani and A. Gunawardana. Evaluating recommendation systems. Recommender
Systems Handbook, pp. 257–297, 2011.

[539] G. Shani, M. Chickering, and C. Meek. Mining recommendations from the Web. ACM
Conference on Recommender Systems, pp. 35–42, 2008.

[540] U. Shardanand and P. Maes. Social information filtering: algorithms for automating
word of mouth. ACM Conference on Human Factors in Computing Systems, 1995.

[541] H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low
rank matrix approximation. Journal of multivariate analysis. 99(6), pp. 1015–1034,
2008.

[542] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized recommendation
in social tagging systems using hierarchical clustering. ACM Conference on Recom-
mender Systems, pp. 259–266. 2008.

[543] B. Sheth and P. Maes. Evolving agents for personalized information filtering. Ninth
Conference on Artificial Intelligence for Applications, pp. 345–352, 1993.

[544] Y. Shi, M. Larson, and A. Hanjalic. Collaborative filtering beyond the user-item ma-
trix: A survey of the state of the art and future challenges. ACM Computing Surveys
(CSUR), 47(1), 3, 2014.

[545] Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with matrix factoriza-
tion for collaborative filtering. ACM Conference on Recommender Systems, 2010.

[546] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic. CLiMF:
Learning to maximize reciprocal rank with collaborative less-is-more collaborative
filtering. ACM Conference on Recommender Systems, pp. 139–146, 2012.

[547] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and A. Hanjalic. GAPfm: Optimal
top-n recommendations for graded relevance domains. ACM Conference on Informa-
tion and Knowledge Management, pp. 2261–2266, 2013.

[548] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and A. Hanjalic. xCLiMF: optimizing
expected reciprocal rank for data with multiple levels of relevance. ACM Conference
on Recommender Systems, pp. 431–434, 2013.

BIBLIOGRAPHY 483

[549] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and N. Oliver. TFMAP:
Optimizing MAP for top-n context-aware recommendation. ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 155–164, 2012.

[550] H. Shimazu, A. Shibata, and K. Nihei. ExpertGuide: A conversational case-based
reasoning tool for developing mentors in knowledge spaces. Applied Intelligence, 14(1),
pp. 33–48, 2002.

[551] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J. Hubaux. Preserving privacy in
collaborative filtering through distributed aggregation of offline profiles. ACM Con-
ference on Recommender Systems, pp. 157–164, 2009.

[552] M.-L. Shyu, C. Haruechaiyasak, S.-C. Chen, and N. Zhao. Collaborative filtering by
mining association rules from user access sequences. Workshop on Challenges in Web
Information Retrieval and Integration, pp. 128–135, 2005.

[553] B. Sigurbjornsson and R. Van Zwol. Flickr tag recommendation based on collective
knowledge. World Wide Web Conference, pp. 327–336, 2008.

[554] J. Sill, G. Takacs, L. Mackey, and D. Lin. Feature-weighted linear stacking. arXiv
preprint, arXiv:0911.0460, 2009. http://arxiv.org/pdf/0911.0460.pdf

[555] Y. Song, L. Zhang and C. L. Giles. Automatic tag recommendation algorithms for
social recommender systems. ACM Transactions on the Web (TWEB), 5(1), 4, 2011.

[556] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W. Lee, and C. L. Giles. Real-time automatic
tag recommendation. ACM SIGIR Conference, pp. 515–522, 2008.

[557] A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization.
ACM KDD Conference, pp. 650–658, 2008.

[558] B. Smyth. Case-based recommendation. The Adaptive Web, pp. 342–376, Springer,
2007.

[559] B. Smyth and P. Cotter. A personalized television listings service. Communications
of the ACM, 43(8), pp. 107–111, 2000.

[560] B. Smyth and P. McClave. Similarity vs. diversity. Case-Based Reasoning Research
and Development, pp. 347–361, 2001.

[561] H. Sorensen and M. McElligott. PSUN: a profiling system for Usenet news. CIKM
Intelligent Information Agents Workshop, 1995.

[562] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining: discovery
and applications of usage patterns from Web data. ACM SIGKDD Explorations, 1(2),
pp. 12–23, 2000.

[563] A. Stahl. Learning feature weights from case order feedback. International Conference
on Case-Based Reasoning, pp. 502–516, 2001.

[564] H. Steck. Item popularity and recommendation accuracy. ACM Conference on Rec-
ommender Systems, pp. 125–132, 2011.

[565] H. Steck. Training and testing of recommender systems on data missing not at random.
ACM KDD Conference, pp. 713–722, 2010.

http://arxiv.org/pdf/0911.0460.pdf

484 BIBLIOGRAPHY

[566] H. Steck. Evaluation of recommendations: rating-prediction and ranking. ACM Con-
ference on Recommender Systems, pp. 213–220, 2013.

[567] H. Stormer. Improving e-commerce recommender systems by the identification of
seasonal products. Conference on Artificial Intelligence, pp. 92–99, 2007.

[568] G. Strang. An introduction to linear algebra. Wellesley Cambridge Press, 2009.

[569] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. Ad-
vances in neural information processing systems, pp. 1329–1336, 2004.

[570] X. Su and T. Khoshgoftaar. A survey of collaborative filtering techniques. Advances
in artificial intelligence, 4, 2009.

[571] X. Su, T. Khoshgoftaar, X. Zhu, and R. Greiner. Imputation-boosted collaborative
filtering using machine learning classifiers. ACM symposium on Applied computing,
pp. 949–950, 2008.

[572] X. Su, H. Zeng, and Z. Chen. Finding group shilling in recommendation system.World
Wide Web Conference, pp. 960–961, 2005.

[573] K. Subbian, C. Aggarwal, and J. Srivasatava. Content-centric flow mining for influence
analysis in social streams. CIKM Conference, pp. 841–846, 2013.

[574] B. O’Sullivan, A. Papadopoulos, B. Faltings, and P. Pu. Representative explanations
for over-constrained problems. AAAI Conference, pp. 323–328, 2007.

[575] J. Sun and J. Tang. A survey of models and algorithms for social influence analysis.
Social Network Data Analytics, Springer, pp. 177–214, 2011.

[576] Y. Sun, J. Han, C. Aggarwal, and N. Chawla. When will it happen?: relationship
prediction in heterogeneous information networks. ACM International Conference on
Web Search and Data Mining, pp. 663–672, 2012.

[577] Y. Sun, R. Barber, M. Gupta, C. Aggarwal, and J. Han. Co-author relationship predic-
tion in heterogeneous bibliographic networks. Advances in Social Networks Analysis
and Mining (ASONAM), pp. 121–128, 2011.

[578] D. Sutherland, B. Poczos, and J. Schneider. Active learning and search on low-rank
matrices. ACM KDD Conference, pp. 212–220, 2013.

[579] R. Sutton and A. Barto. Reinforcement learning: An introduction, MIT Press, Cam-
bridge, 1998.

[580] P. Symeonidis, E. Tiakas, and Y. Manolopoulos. Transitive node similarity for link
prediction in social networks with positive and negative links. ACM Conference on
Recommender Systems, pp. 183–190, 2010.

[581] P. Symeonidis, E. Tiakas, and Y. Manolopoulos. Product recommendation and rating
prediction based on multi-modal social networks. ACM Conference on Recommender
Systems, pp. 61–68, 2011.

[582] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. A unified framework for provid-
ing recommendations in social tagging systems based on ternary semantic analysis.
IEEE Transactions on Knowledge and Data Engineering, 22(2), pp. 179–192, 2010.

BIBLIOGRAPHY 485

[583] P. Symeonidis, A. Nanopoulos, and Y Manolopoulos. Tag recommendations based on
tensor dimensionality reduction. ACM Conference on Recommender Systems, pp. 43–
50, 2008.

[584] M. Szomszor, C. Cattuto, H. Alani, K. O’Hara, A. Baldassarri, V. Loreto, and
V. Servedio. Folksonomies, the semantic web, and movie recommendation. Bridging
the Gap between the Semantic Web and Web 2.0, pp. 71–84, 2007.

[585] N. Taghipour, A. Kardan, and S. Ghidary. Usage-based web recommendations: a re-
inforcement learning approach. ACM Conference on Recommender Systems, pp. 113–
120, 2007.

[586] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Matrix factorization and neighbor
based algorithms for the Netflix prize problem. ACM Conference on Recommender
Systems, pp. 267–274, 2008.

[587] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. Scalable collaborative filtering ap-
proaches for large recommender systems. Journal of Machine Learning Research, 10,
pp. 623–656, 2009.

[588] J. Tang, X. Hu, and H. Liu. Social recommendation: a review. Social Network Analysis
and Mining, 3(4), pp. 1113–1133, 2013.

[589] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale net-
works. ACM KDD Conference, pp. 807–816, 2009.

[590] J. Tang, C. Aggarwal, and H. Liu. Recommendations in signed social networks. World
Wide Web Conference, 2016.

[591] J. Tang, S. Chang, C. Aggarwal, and H. Liu. Negative link prediction in social media.
Web Search and Data Mining Conference, 2015.

[592] J. Tang, X. Hu, Y. Chang, and H. Liu. Predictability of distrust with interaction data.
ACM International Conference on Information and Knowledge Management (CIKM),
pp. 181–190, 2014.

[593] J. Tang, X. Hu and H. Liu. Is distrust the negation of trust? The value of distrust in
social media. ACM Hypertext Conference (HT), pp. 148–157, 2014.

[594] J. Tang, H. Gao, X. Hu, and H. Liu. Exploiting homophily effect for trust prediction.
ACM International Conference on Web Search and Data Mining, pp. 53–62, 2013.

[595] T. Tang, P. Winoto, and K. C. C. Chan. On the temporal analysis for improved hybrid
recommendations. International Conference on Web Intelligence, pp. 214–220, 2003.

[596] T. Tang and G. McCalla. The pedagogical value of papers: a collaborative-filtering
based paper recommender. Journal of Digital Information, 10(2), 2009.

[597] W. Tang, Y. Ma, and Z. Chen. Managing trust in peer-to-peer networks. Journal of
Digital Information Management, 3(2), pp. 58–63, 2005.

[598] N. Tintarev and J. Masthoff. Designing and evaluating explanations for recommender
systems. Recommender Systems Handbook, pp. 479–510, 2011.

486 BIBLIOGRAPHY

[599] E. G. Toms. Serendipitous information retrieval. DELOS Workshop: Information
Seeking, Searching and Querying in Digital Libraries, 2000.

[600] R. Torres, S. M. McNee, M. Abel, J. Konstan, and J. Riedl. Enhancing digital libraries
with TechLens+. ACM/IEEE-CS Joint Conference on Digital libraries, pp. 228–234,
2004.

[601] T. Tran and R. Cohen. Hybrid recommender systems for electronic commerce.
Knowledge-Based Electronic Markets, Papers from the AAAI Workshop, Technical
Report WS-00-04, pp. 73–83, 2000.

[602] M.-H. Tsai, C. Aggarwal, and T. Huang. Ranking in heterogeneous social media. Web
Search and Data Mining Conference, 2014.

[603] K. Tso-Sutter, L. Marinho, L. Schmidt-Thieme. Tag-aware recommender systems by
fusion of collaborative filtering algorithms. ACM Symposium on Applied Computing,
pp. 1995–1999, 2008.

[604] A. Tsoukias, N. Matsatsinis, and K. Lakiotaki. Multi-criteria user modeling in rec-
ommender systems. IEEE Intelligent Systems, 26(2), pp. 64–76, 2011.

[605] L. Tucker. Some mathematical notes on three-model factor analysis. Psychometrika,
31, pp. 279–311, 1966.

[606] A. Tveit. Peer-to-peer based recommendations for mobile commerce. Proceedings of
the International Workshop on Mobile Commerce, pp. 26–29, 2001.

[607] A. Umyarov, and A. Tuzhilin. Using external aggregate ratings for improving individ-
ual recommendations. ACM Transactions on the Web (TWEB), 5(1), 3, 2011.

[608] L. Ungar and D. Foster. Clustering methods for collaborative filtering. AAAI Work-
shop on Recommendation Systems. Vol. 1, 1998.

[609] B. van Roy and X. Yan. Manipulation-resistant collaborative filtering systems. ACM
Conference on Recommender Systems, pp. 165–172, 2009.

[610] M. van Satten. Supporting people in finding information: Hybrid recommender sys-
tems and goal-based structuring. Ph.D. Thesis, Telemetica Instituut, University of
Twente, Netherlands, 2005.

[611] M. van Setten, S. Pokraev, and J. Koolwaaij. Context-aware recommendations in
the mobile tourist application compass. Adaptive Hypermedia, Springer, pp. 235–244,
2004.

[612] K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, I. Bosnic, and E. Du-
val. Context-aware recommender systems for learning: a survey and future challenges.
IEEE Transactions on Learning Technologies, 5(4), pp. 318–335, 2012.

[613] K. Verstrepen and B. Goethals. Unifying nearest neighbors collaborative filtering.
ACM Conference on Recommender Systems, pp. 177–184, 2014.

[614] P. Victor, C. Cornelis, M. De Cock, and P. Da Silva. Gradual trust and distrust in
recommender systems. Fuzzy Sets and Systems, 160(10), pp. 1367–1382, 2009.

BIBLIOGRAPHY 487

[615] P. Victor, C. Cornelis, M. De Cock, and E. Herrera-Viedma. Practical aggregation
operators for gradual trust and distrust. Fuzzy Sets and Systems, 184(1), pp. 126–
147, 2011.

[616] P. Victor, M. De Cock, and C. Cornelis. Trust and Recommendations. Recommender
Systems Handbook, Springer, pp. 645–675, 2011.

[617] P. Victor, C. Cornelis, M. De Cock, and A. Teredesai. Trust-and distrust-based rec-
ommendations for controversial reviews. Proceedings of the WebSci, 2009. http://
journal.webscience.org/161/2/websci09_submission_65.pdf

[618] V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros, M. Gounaris, D. Stricker,
T. Gleue, P. Daehne, and L. Almeida. Archeoguide: an augmented reality guide for
archaeological sites. IEEE Computer Graphics and Applications, 22(5), pp. 52–60,
2002.

[619] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using hard AI
problems for security. Advances in Cryptology – EUROCRYPT, pp. 294–311, 2003.

[620] S. Vucetic and Z. Obradovic. Collaborative filtering using a regression-based approach.
Knowledge and Information Systems, 7(1), pp. 1–22, 2005.

[621] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo. Mining advisor-advisee
relationships from research publication networks. ACM KDD Conference, pp. 203–
212, 2010.

[622] J. Wang, A. de Vries, and M. Reinders. Unifying user-based and item-based similarity
approaches by similarity fusion. ACM SIGIR Conference, pp. 501–508, 2006.

[623] A. M. Ahmad Wasfi. Collecting user access patterns for building user profiles and
collaborative filtering. International Conference on Intelligent User Interfaces, pp. 57–
64, 1998.

[624] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. CoFiRank: Maximum margin
matrix factorization for collaborative ranking. Advances in Neural Information Pro-
cessing Systems, 2007.

[625] M. Weimer, A. Karatzoglou, and A. Smola. Improving maximum margin matrix fac-
torization. Machine Learning, 72(3), pp. 263–276, 2008.

[626] S.-S. Weng, L. Binshan, and W.-T. Chen. Using contextual information and multi-
dimensional approach for recommendation. Expert Systems and Applications, 36, pp.
1268–1279, 2009.

[627] D. Wettschereck and D. Aha. Weighting features. International Conference on Case-
Based Reasoning, pp. 347–358. 1995.

[628] J. White. Bandit algorithms for Website optimization. O’Reilly Media, Inc, 2012.

[629] S. Wild, J. Curry, and A. Dougherty. Improving non-negative matrix factorizations
through structured initialization. Pattern Recognition, 37(11), pp. 2217–2232, 2004.

[630] C. Williams, B. Mobasher, and R. Burke. Defending recommender systems: detec-
tion of profile injection attacks. Service Oriented Computing and Applications, 1(3),
pp. 157–170, 2007.

http://journal.webscience.org/161/2/websci09_submission_65.pdf
http://journal.webscience.org/161/2/websci09_submission_65.pdf

488 BIBLIOGRAPHY

[631] C. Williams, B. Mobasher, R. Burke, J. Sandvig, and R. Bhaumik. Detection of ob-
fuscated attacks in collaborative recommender systems. ECAI Workshop on Recom-
mender Systems, 2006.

[632] C. Willmott and K. Matsuura. Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance. Climate
Research, 30(1), 79, 2005.

[633] W. Woerndl, C. Schueller, and R. Wojtech. A hybrid recommender system for context-
aware recommendations of mobile applications. IEEE International Conference on
Data Engineering Workshop, pp. 871–878, 2007.

[634] D. H. Wolpert. Stacked generalization. Neural Networks, 5(2), pp. 241–259, 1992.

[635] P. Wu, C. Yeung, W. Liu, C. Jin, and Y. Zhang. Time-aware collaborative filtering
with the piecewise decay function. arXiv preprint, arXiv:1010.3988, 2010. http://
arxiv.org/pdf/1010.3988.pdf

[636] K. L. Wu, C. C. Aggarwal, and P. S. Yu. Personalization with dynamic profiler. Inter-
national Workshop on Advanced Issues of E-Commerce and Web-Based Information
Systems, pp. 12–20, 2001. Also available online as IBM Research Report, RC22004,
2001. Search interface at http://domino.research.ibm.com/library/cyberdig.

nsf/index.html

[637] M. Wu. Collaborative filtering via ensembles of matrix factorizations. Proceedings of
the KDD Cup and Workshop, 2007.

[638] Z. Xia, Y. Dong, and G. Xing. Support vector machines for collaborative filtering.
Proceedings of the 44th Annual Southeast Regional Conference, pp. 169–174, 2006.

[639] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal
recommendation on graphs via long-and short-term preference fusion. ACM KDD
Conference, pp. 723–732, 2010.

[640] Z. Xiang and U. Gretzel. Role of social media in online travel information search.
Tourism Management, 31(2), pp. 179–188, 2010.

[641] H. Xie, L. Chen, and F. Wang. Collaborative Compound Critiquing. User Modeling,
Adaptation, and Personalization, Springer, pp. 254–265, 2014.

[642] Y. Xin and T. Jaakkola. Controlling privacy in recommender systems. Advances in
Neural Information Processing Systems, pp. 2618–2626, 2014.

[643] B. Xu, J. Bu, C. Chen, and D. Cai. An exploration of improving collaborative rec-
ommender systems via user-item subgroups. World Wide Web Conference, pp. 21–30,
2012.

[644] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen. Scalable collaborative
filtering using cluster-based smoothing. ACM SIGIR Conference, pp. 114–121, 2005.

[645] W. Yang, H. Cheng, and J. Dia. A location-aware recommender system for mobile
shopping environments. Expert Systems with Applications, 34(1), pp. 437–445, 2008.

[646] X. Yang, Y. Guo, Y. Liu, and H. Steck. A survey of collaborative filtering based social
recommender systems. Computer Communications, 41, pp. 1–10, 2014.

http://arxiv.org/pdf/1010.3988.pdf
http://arxiv.org/pdf/1010.3988.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/index.html
http://domino.research.ibm.com/library/cyberdig.nsf/index.html

BIBLIOGRAPHY 489

[647] H. Yildirim, and M. Krishnamoorthy. A random walk method for alleviating the spar-
sity problem in collaborative filtering. ACM Conference on Recommender Systems,
pp. 131–138, 2008.

[648] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail recommendation.
Proceedings of the VLDB Endowment, 5(9), pp. 896–907, 2012.

[649] H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. LCARS: A location-content-aware rec-
ommender system. ACM KDD Conference, pp. 221–229, 2013.

[650] H. F. Yu, C. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent approaches
to parallel matrix factorization for recommender systems. IEEE International Con-
ference on Data Mining, pp. 765–774, 2012.

[651] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric matrix factorization for
large-scale collaborative filtering. ACM SIGIR Conference, pp. 211–218, 2009.

[652] K. Yu, A. Shcwaighofer, V. Tresp, W.-Y. Ma, and H. Zhang. Collaborative ensemble
learning. combining collaborative and content-based filtering via hierarchical Bayes,
Conference on Uncertainty in Artificial Intelligence, pp. 616–623, 2003.

[653] Z. Yu, X. Zhou, Y. Hao, and J. Gu. TV program recommendation for multiple viewers
based on user profile merging. User Modeling and User-Adapted Interaction, 16(1),
pp. 63–82, 2006.

[654] Z. Yu, X. Zhou, D. Zhang, C. Y. Chin, and X. Wang. Supporting context-aware media
recommendations for smart phones. IEEE Pervasive Computing, 5(3), pp. 68–75, 2006.

[655] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. Thalmann. Time-aware point-of-interest
recommendation. ACM SIGIR Conference, pp. 363–372, 2013.

[656] R. Zafarani, M. A. Abbasi, and H. Liu. Social media mining: an introduction. Cam-
bridge University Press, New York, 2014.

[657] H. Zakerzadeh, C. Aggarwal and K. Barker. Towards breaking the curse of dimension-
ality for high-dimensional privacy. SIAM Conference on Data Mining, pp. 731–739,
2014.

[658] F. Zaman and H. Hirose. Effect of subsampling rate on subbagging and related ensem-
bles of stable classifiers. Lecture Notes in Computer Science, Springer, Volume 5909,
pp. 44–49, 2009.

[659] M. Zanker and M. Jessenitschnig. Case studies on exploiting explicit customer re-
quirements in recommender systems. User Modeling and User-Adapted Interaction,
19(1–2), pp. 133–166, 2009.

[660] M. Zanker, M. Aschinger, and M. Jessenitschnig. Development of a collaborative and
constraint-based web configuration system for personalized bundling of products and
services. Web Information Systems Engineering–WISE, pp. 273–284, 2007.

[661] M. Zanker, M. Aschinger, and M. Jessenitschnig. Constraint-based personalised con-
figuring of product and service bundles. International Journal of Mass Customisation,
3(4), pp. 407–425, 2010.

490 BIBLIOGRAPHY

[662] Y. Zhai, and B. Liu. Web data extraction based on partial tree alignment. World
Wide Web Conference, pp. 76–85, 2005.

[663] J. Zhang, M. Ackerman, and L. Adamic. Expertise networks in online communities:
structure and algorithms. World Wide Web Conference, pp. 221–230, 2007.

[664] J. Zhang and P. Pu. A comparative study of compound critique generation in conversa-
tional recommender systems. Adaptive Hypermedia and Adaptive Web-Based Systems,
pp. 234–243, Springer, 2006.

[665] J. Zhang, N. Jones, and P. Pu. A visual interface for critiquing-based recommender
systems. Proceedings of the ACM conference on Electronic Commerce, pp. 230–239,
2008.

[666] S. Zhang, W. Wang, J. Ford, and F. Makedon. Learning from incomplete ratings
using nonnegative matrix factorization. SIAM Conference on Data Mining, pp. 549–
553, 2006.

[667] S. Zhang, J. Ford, and F. Makedon Deriving Private Information from Randomly
Perturbed Ratings. SIAM Conference on Data Mining, pp. 59–69, 2006. .

[668] S. Zhang, A. Chakrabarti, J. Ford, and F. Makedon. Attack detection in time series
for recommender systems. ACM KDD Conference, pp. 809–814, 2006.

[669] T. Zhang and V. Iyengar. Recommender systems using linear classifiers. Journal of
Machine Learning Research, 2, pp. 313–334, 2002.

[670] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection in adaptive
filtering. ACM SIGIR Conference, pp. 81–88, 2002.

[671] Z. Zhang, T. Zhou, and Y. Zhang. Tag-aware recommender systems: A state-of-the-art
survey. Journal of Computer Science and Technology, 26(5), pp. 767–777, 2011.

[672] Z. Zhang, C. Liu, and Y, Zhang. Solving the cold-start problem in recommender
systems with social tags. EPL (Europhysics Letters), 92(1), 2800, 2010.

[673] Y. Zhen, W. Li, and D. Yeung. TagiCoFi: tag informed collaborative filtering. ACM
Conference on Recommender Systems, pp. 69–76, 2009.

[674] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scholkopf. Learning with local and
global consistency. Advances in Neural Information Processing Systems, 16(16), pp.
321–328, 2004.

[675] D. Zhou, J. Huang, and B. Scholkopf. Learning from labeled and unlabeled data on
a directed graph. ICML Conference, pp. 1036–1043, 2005.

[676] K. Zhou, S. Yang, and H. Zha. Functional matrix factorizations for cold-start recom-
mendation. ACM SIGIR Conference, pp. 315–324, 2011.

[677] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative
filtering for the Netflix prize. Algorithmic Aspects in Information and Management,
pp. 337–348, 2008.

[678] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. ICML Conference, pp. 912–919, 2003.

BIBLIOGRAPHY 491

[679] C. Ziegler. Applying feed-forward neural networks to collaborative filtering, Master’s
Thesis, Universitat Freiburg, 2006.

[680] C. Ziegler, S. McNee, J. Konstan, and G. Lausen. Improving recommendation lists
through topic diversification. World Wide Web Conference, pp. 22–32, 2005.

[681] C. Ziegler and J. Golbeck. Investigating interactions of trust and interest similarity.
Decision Support Systems, 43(2), pp. 460–475, 2007.

[682] C. Ziegler and G. Lausen. Propagationmodels for trust and distrust in social networks.
Information Systems Frontiers, 7(4–5), pp. 337–358, 2005.

[683] C. Ziegler and G. Lausen. Spreading activation models for trust propagation. IEEE In-
ternational Conference on e-Technology, e-Commerce and e-Service, pp. 83–97, 2004.

[684] A. Zimdars, D. Chickering, and C. Meek. Using temporal data for making recommen-
dations. Uncertainty in Artificial Intelligence, pp. 580–588, 2001.

[685] A. Zimmermann, M. Specht, and A. Lorenz. Personalization and context management.
User Modeling and User-Adapted Interaction, 15(3–4), pp. 275–302, 2005.

[686] http://www.foursquare.com

[687] http://grouplens.org

[688] http://grouplens.org/datasets/movielens/

[689] http://eigentaste.berkeley.edu/user/index.php

[690] http://www.netflix.com

[691] http://www.facebook.com

[692] http://www.last.fm

[693] http://www.pandora.com

[694] http://www.youtube.com

[695] http://www.tripadvisor.com

[696] http://www.google.com

[697] http://news.google.com

[698] http://www.amazon.com

[699] http://www.imdb.com

[700] http://www.flickr.com

[701] http://www.bibsonomy.org

[702] http://delicious.com

[703] http://www.pandora.com/about/mgp

[704] http://www.the-ensemble.com/

http://www.foursquare.com
http://grouplens.org
http://grouplens.org/datasets/movielens/
http://eigentaste.berkeley.edu/user/index.php
http://www.netflix.com
http://www.facebook.com
http://www.last.fm
http://www.pandora.com
http://www.youtube.com
http://www.tripadvisor.com
http://www.google.com
http://news.google.com
http://www.amazon.com
http://www.imdb.com
http://www.flickr.com
http://www.bibsonomy.org
http://delicious.com
http://www.pandora.com/about/mgp
http://www.the-ensemble.com/

492 BIBLIOGRAPHY

[705] http://www.epinions.com

[706] http://www.slashdot.org

[707] http://vanderwal.net/folksonomy.html

[708] http://www.bibsonomy.org

[709] http://www.amazon.com/gp/help/customer/display.html?nodeId=16238571

[710] http://opennlp.apache.org/index.html

[711] http://snowball.tartarus.org/

[712] https://code.google.com/p/ir-themis/

[713] http://www.netflixprize.com/community/viewtopic.php?id=828

[714] http://blog.netflix.com/2010/03/

this-is-neil-hunt-chief-product-officer.html

[715] http://www.kddcup2012.org/workshop

http://www.epinions.com
http://www.slashdot.org
http://vanderwal.net/folksonomy.html
http://www.bibsonomy.org
http://www.amazon.com/gp/help/customer/display.html?nodeId=16238571
http://opennlp.apache.org/index.html
http://snowball.tartarus.org/
https://code.google.com/p/ir-themis/
http://www.netflixprize.com/community/viewtopic.php?id=828
http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-officer.html
http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-officer.html
http://www.kddcup2012.org/workshop

Index

χ2 Statistic, 148
ε-Greedy Algorithm, 420

A/B Testing, 225, 228
Accuracy Metrics, 240
Accuracy of Ratings Prediction, 240
Active Learning in Recommender Systems,

25, 412
AdaBoost.RT, 213
Adjusted Cosine Similarity, 40
Advagato Trust Metric, 383
Adversary, 385
Alternating Least Squares, 105
Amazon.com Recommender System, 5
Anomalous Attack Detection, 409
Appleseed, 352, 383
Applications of Recommender Systems, 435
Approval Voting, 447
Archeoguide, 307
ARHR, 247
Aspects in NMF, 122
Association Rules, 78
Association Rules for Attack Detection, 405
Asymmetric Factor Models, 110, 135
Attack Detection, 398
Attack Detection with Hv-Score, 403
Attack Detection with Time-Series

Analysis, 409
Attack Resistance of Social Recommenders,

366
Attack-Resistant Recommender Systems,

385
Attacking Click-streams, 398, 409

Attacking Implicit Feedback, 398, 409
Average Attack, 393
Average Reciprocal Hit Rate, 247
Average without Misery, 425

Bagging, 209
Bandwagon Attack, 394
Baseline Estimators, 129
Bayes Classifier, 153
Bellkor’s Pragmatic Chaos, 201
Bibsonomy, 366
Binary Ratings, 31
Bold Driver Algorithm, 100, 103
BookLens, 5
Boosting, 213
Bootstrapped Sampling, 209
Borda Count, 447
Bounded Random Selection Strategy, 187
Bucket-of-Models, 212

CAPTCHA, 404
CAPTCHAs for Attack Detection, 403
Cascade, 338
Catalog Coverage, 232
CATS, 423
Cinematch Recommender Algorithm, 6
Citeseer, 164
CLiMF, 417
Clustering for Neighborhood-based

Methods, 45
CoFiRank, 416
Cold-Start Problem, 24, 136, 167, 212, 349,

366

© Springer International Publishing Switzerland 2016
C.C. Aggarwal, Recommender Systems: The Textbook,
DOI 10.1007/978-3-319-29659-3

493

494 INDEX

Collaboration via Content, 217
Collaborative Advisory Travel System, 423
Collaborative Filtering, 8
Collaborative Tagging, 367
Collective Classification, 323
COMPASS, 307
Compatibility Conditions, 173
Compound Critiques, 188
Computational Advertising, 438
Condensation-Based Privacy, 434
Conditionally Factored RBMs, 276
Confidence, 77
Confidence in Evaluation, 232
Confidence-pruned Markov Model, 299
Conformity, 424
Conjoint Analysis, 179
Content-based Recommender Systems, 139
Context-based Recommender Systems, 20
Contextual Bandit Algorithms, 421
Contextual Filtering, 262, 289
Contextual Pre-Filtering, 289
Contextual Reduction, 262
Continuous Ratings, 31
Conversion Rate, 228
Coordinate Descent, 106
Copeland Rule, 447
Correlation Graph, 66, 319
Cosine Similarity, 36
Coverage, 231
Critiques in Case-Based Recommenders,

188
Critiquing Recommender Systems, 18, 170
Cross-Validation, 103, 239
Curse of Dimensionality, 434
Customer-Specific ROC Curves, 250
CWAdvisor, 196

Daily Learner System, 212
DCG, 245
DD (Attack Detection), 400
Decay-Based Temporal Methods, 286
Decision Trees, 160
Decision Trees for Collaborative Filtering,

74
Degree of Disagreement for Attack

Detection, 400
Demographic Recommender Systems, 19
Diffusion Models, 338

Dimensionality Reduction for Neighborhood
Methods, 47

Directional Critique, 188
Display Advertising, 439
Diversity, 234
Diversity in Evaluation, 234
Dynamic Critiques, 188
Dynamic Profiler, 436
Dynamic-Profiler, 164

Efficiency of Collaborative Filtering, 45
Efficient Attack, 386
EigenTrust, 383
Elastic-Net Regularizer, 59
Emotional Contagion, 424
Ensemble Recommender System, 199
EntreeC, 213
Error-pruned Markov Model, 299
Evaluating Recommender Systems, 225
Evaluation, 20

Factorization Machines, 270, 272, 280, 384,
416

Favorite Item Attack, 397
Feature Extraction in Content-based

Systems, 142
Feature Weighted Linear Stacking, 219
Feature Weighting, 150
Filmtrust, 350
Filter Conditions, 173
Filtering in Neighborhood-based Methods,

36
FindMe Systems, 196
Fisher’s Discrimination Index, 150
Folksonomy, 367
Forced Choice, 31
Forced Choice Rating System, 11
Frequent Itemsets, 77
Frequent Patterns, 77
Frequent Sequential Pattern, 300
Fusion Ensemble, 208

Gini Index, 74, 147
Global ROC Curves, 250
Google News Personalization, 436
Gradient Descent, 98
Graph-based Collaborative Filtering, 61
Group Attack Profile Detection, 402
Group Recommendation, 24, 423

INDEX 495

Group Shilling Attacks, 409
GroupLens Recommender System, 4
Grundy, 19
GUIDE, 307

Handling Periodic Context, 288
Hidden Markov Models, 300
High-Knowledge Attack, 386
Hinge Loss, 127
Hit-Ratio, 391
Hold-Out, 238
Homophily, 349
Horting, 63
Hybrid Recommender System, 199
Hybrid Recommender Systems, 19

IDCG, 245
Ideal Discounted Cumulative Gain, 245
IfWeb System, 164
Implicit Feedback Data Sets, 11, 119
Implicit Feedback in Latent Factor Models,

109
Implicit Ratings, 5
Impressions in Advertising, 439
Independent Cascade Model, 339
Individual Attack Profile Detection, 399
Inductive Models, 14, 111, 116
Influence Analysis, 337
Influence Limiter, 404
Interval-based Ratings, 31
INTIMATE, 165
INTRIGUE, 307
Intrigue, 423
Item-based Neighborhood Models, 40
Item-Item Graphs, 66
Item-Space Coverage, 232
Iterative Classification Algorithm, 324
ITR System, 165

Job Recommendations, 443
Joint Interpolation, 57

K-Means, 46
Katz Centrality, 329
Katz Measure, 61, 62, 328
Kendall Rank Correlation Coefficient, 243
Kernel Collaborative Filtering, 135
Knowledge-Based Recommender Systems,

167

Knowledge-based Recommender Systems,
15

Kronecker Product, 278

Label Propagation Algorithm, 325
LaboUr, 217
LARS, 303
Latent Dirichlet Allocation, 376
Latent Factor Models, 47, 90, 269
LDA, 376
Learning to Rank, 413
Least Misery Strategy, 424
Leave-One-Out Cross-Validation, 239
Left Eigenvector, 314
Letizia, 164
libFM, 275
Libra, 215, 223
Lift Index, 247
Linear Threshold Model, 339
Link Prediction, 326
Link Recommendation, 22
LinUCB Algorithm, 422
LISTEN, 307
Listwise Rank Learning, 415
LOCALBAL, 364
Location-Aware Recommender Systems,

302
Location-based Recommender Systems, 21
Long-Tail Property, 32
Love/Hate Attack, 395
Low-Knowledge Attack, 386

MAE, 241
MAP, 246
Markov Decision Process, 181
Markovian Models, 295
Matrix Completion Problem, 3, 71
Matrix Factorization for Link Prediction,

330
Maximum Margin Factorization, 127
Mean Absolute Error, 241
Mean Average Precision, 246
Mean Reciprocal Rank, 246
Mean Squared Error, 230, 240
Memory-based Collaborative Filtering, 9, 29
Mentor-Mentee Recommendation, 443
Minimum Support, 77
MINRELAX, 180
Missing Not at Random, 251

496 INDEX

MNAR, 251
MobiDENK, 307
Model-based Collaborative Filtering, 71
Modified Degree of Similarity, 401
Moleskiing, 350, 383
MoleTrust, 356
MovieLens, 5
MRR, 246, 417
MSE, 230, 240
MSVD, 447
Multi-Arm Bandits, 228, 306, 418
Multi-Criteria Recommender Systems, 24,

426
Multi-Linear Singular Value Decomposition,

447
Multiplicative Aggregation, 447
Multiverse Recommendation, 269
Music Genome Project, 144
Music Recommendation, 144
MusicFX Group Recommender, 423
MyMap, 307

Naive Bayes Collaborative Filtering, 82
NDCG, 245
Neighborhood-based Collaborative

Filtering, 9, 29, 33
Netflix Recommendation Challenge, 5
News Personalization, 436
Node Recommendation, 22
Non-negative Matrix Factorization, 119
Normalized Deviation, 149
Normalized Discounted Cumulative Gain,

245
Novelty, 161, 233
Novelty in Evaluation, 233
NPD, 399
Number of Prediction Differences, 399

Observed Ratings, 8
OLAP, 257
One class Collaborative Filtering, 120
Online Analytical Processing, 257
Online Attack Detection, 403
Online Dating Recommendations, 443
Online Evaluation, 227
Online Recruitment Recommendation, 196
Opinion Mining, 146
Ordinal Ratings, 31

OrdRec, 415
Out-of-Sample Recommendations, 14, 111,

116
Overfitting, 73
Overspecialization, 161

PageRank, 311
Pairwise Interaction Tensor Factorization,

270, 373
Pairwise Rank Learning, 415
Parallel Ensemble, 202
Pearson Correlation Coefficient, 35
Performance-Based Models, 432
Persistent Personalization in

Knowledge-based Systems, 194
Personal WebWatcher, 164
Personalized PageRank, 314
Phrase Extraction, 145
Pipelined Ensemble, 202
PITF, 270, 373
PLSA, 127
Plurality Voting, 447
Pointwise Rank Learning, 415
PolyLens Group Recommender, 423
Popular Attack, 395
Popular Items, 32
Popular Page Attack, 398, 409
Portal Content Personalization, 435
Post-filtering, 266, 289
Power-Iteration Method, 314
Pre-filtering, 262, 289
Prediction Shift, 390, 391
Preference Locality, 302
Preprocessing in Content-based Systems,

142
Principal Component Analysis, 48
Privacy in Recommender Systems, 25, 432
Probabilistic Latent Semantic Analysis, 127
Probe Attack, 396
Product Recommendations with Social

Cues, 23
Profile Association Rules, 81
Projected Gradient Descent, 116

Query Recommendation, 435
Query-Flow Graphs, 448
QUICKXPLAIN, 180
Qwikshop, 196

INDEX 497

R-Score, 244
Random Attack, 393
Random Walks, 312
Randomness Injection, 211
Ranking Algorithms, 311
Rating Deviation from Mean Agreement,

400
Raw Cosine, 36
RDMA (Attack Detection), 400
Recency-Based Collaborative Filtering, 286
Reciprocal Recommendations, 443, 448
Reciprocal Relationship Prediction, 443
Recommendation Query Language, 259, 280
Reduction-Based Multidimensional

Approach, 262
Regression Trees for Collaborative

Filtering, 74
Regression-based Models, 158
Regularization, 54, 100
Reinforcement Learning, 181, 228, 418
Relevance Feedback, 152
Repair Proposals, 179
Replacement Critique, 188
REQUEST, 280
Restaurant Recommender, 213
Reverse Bandwagon Attack, 396
Right Eigenvector, 314
RIPPER, 217
RMSE, 230, 240
Robust Matrix Factorization, 405
Robust Recommender Systems, 403
Robust Regression, 207
Robustness, 235
Rocchio Classification, 152
Root Mean Squared Error, 230, 240
RQL, 259, 280
Rule-based Collaborative Filtering, 77

Scalability, 235
Segment Attack, 396
Selective Markov Models, 298
Sentimental Analysis, 146
Sequential Ensemble, 202
Sequential Pattern Mining, 300
Serendipity, 161, 233
Serendipity in Evaluation, 233
Shilling Attacks, 385
Shills, 385
Short Memory Assumption, 297

Significance Weighting, 37
Simple Critiques, 188
SimRank, 321
Single Attack Profile Detection, 399
Singular Value Decomposition, 48, 113
Slashdot, 383
Slate Problem for Multi-Armed Bandits,

442
SLIM, 58, 136, 218
SLIM with Side Information, 218
Slope-One Predictors, 68, 136
Smoothing Support Vector Machines, 86
Social Choice Theory, 424
Social Context, 345
Social Influence Analysis, 337
Social Recommender Systems, 22
Social Streams, 341
Social Tagging, 23, 366
Social Trust for Attack Detection, 404
SocialMF, 365
SocialRank, 317, 373
Sparse Linear Models, 58, 136, 218
Spearman Rank Correlation Coefficient, 243
Specified Ratings, 8
SPETA, 307
Sponsored Search, 439
Stability, 235
Standardization, 38
Stemming, 145
Stochastic Gradient Descent, 99
Stop-Words, 145
STREAM, 224
Subagging, 209
Subsampling, 209
Supervised Attack Detection, 399
Support, 77
Support-pruned Markov Model, 298
SVD++, 113
SVDFeature, 276
Symmetric Matrix Factorization, 333
Syskill & Webert, 164

Tag Informed Collaborative Filtering, 370
TagiCoFi, 380
Tagommenders, 370
Tags, 366
Temporal Recommender Systems, 283
Tensor Factorization, 269
The Ensemble, 201

498 INDEX

TidalTrust, 353
Tie-Corrected Spearman Coefficient, 243
Tikhonov Regularization, 105, 158
Time-Periodic Biased K-NN, 288
Time-Sensitive Recommender Systems, 21,

283
Time-SVD++, 291
Top-k Recommendation Problem, 3
Topic-Sensitive PageRank, 314
Transductive Models, 14, 116
Travel Decision Forum, 423
Travel Locality, 302
Travel Recommendations, 196
Tree-Matching Algorithm, 144
Trust, 349
Trust Aggregation, 351
Trust in Evaluation, 232
Trust Metrics, 351
Trust Network, 350
Trust Propagation, 351
Trust Weighted Mean, 353
Trust-Enhanced Recommender Systems,

351
TrustWalker, 357
Trustworthy Recommender Systems, 23
Tucker Decomposition, 269

Unary Ratings, 32
Unbalanced Rating Scale, 10

Unconstrained Matrix Factorization, 96
UnRAP Algorithm, 402
Unsupervised Attack Detection, 399
Upper Bounding for Bandit Algorithms, 421
User Selection Bias, 251
User Studies, 227
User-based Neighborhood Models, 34
User-Item Graphs, 61
User-Space Coverage, 231
User-User Graphs, 63
Utility Matrix, 11
Utility-Based Recommender Systems, 18

Variable Selection in PCA, 402
Vector-Space Representation, 145
Viral Marketing, 23, 338
VITA Recommender, 196

Wasabi Personal Shopper, 196
WDA (Attack Detection), 401
WDMA (Attack Detection), 401
Web of Trust, 350
Web personalization, 295
WebMate System, 164
Weighted Degree of Agreement, 401
Weighted Deviation from Mean Agreement,

401
Window-Based Temporal Methods, 288

	Contents
	Preface
	Acknowledgments
	Author Biography
	1 An Introduction to Recommender Systems
	1.1 Introduction
	1.2 Goals of Recommender Systems
	1.2.1 The Spectrum of Recommendation Applications

	1.3 Basic Models of Recommender Systems
	1.3.1 Collaborative Filtering Models
	1.3.1.1 Types of Ratings
	1.3.1.2 Relationship with Missing Value Analysis
	1.3.1.3 Collaborative Filtering as a Generalization of Classification and Regression Modeling

	1.3.2 Content-Based Recommender Systems
	1.3.3 Knowledge-Based Recommender Systems
	1.3.3.1 Utility-Based Recommender Systems

	1.3.4 Demographic Recommender Systems
	1.3.5 Hybrid and Ensemble-Based Recommender Systems
	1.3.6 Evaluation of Recommender Systems

	1.4 Domain-Specific Challenges in Recommender Systems
	1.4.1 Context-Based Recommender Systems
	1.4.2 Time-Sensitive Recommender Systems
	1.4.3 Location-Based Recommender Systems
	1.4.4 Social Recommender Systems
	1.4.4.1 Structural Recommendation of Nodes and Links
	1.4.4.2 Product and Content Recommendations with SocialInfluence
	1.4.4.3 Trustworthy Recommender Systems
	1.4.4.4 Leveraging Social Tagging Feedback forRecommendations

	1.5 Advanced Topics and Applications
	1.5.1 The Cold-Start Problem in Recommender Systems
	1.5.2 Attack-Resistant Recommender Systems
	1.5.3 Group Recommender Systems
	1.5.4 Multi-Criteria Recommender Systems
	1.5.5 Active Learning in Recommender Systems
	1.5.6 Privacy in Recommender Systems
	1.5.7 Application Domains

	1.6 Summary
	1.7 Bibliographic Notes
	1.8 Exercises

	2 Neighborhood-Based Collaborative Filtering
	2.1 Introduction
	2.2 Key Properties of Ratings Matrices
	2.3 Predicting Ratings with Neighborhood-Based Methods
	2.3.1 User-Based Neighborhood Models
	2.3.1.1 Similarity Function Variants
	2.3.1.2 Variants of the Prediction Function
	2.3.1.3 Variations in Filtering Peer Groups
	2.3.1.4 Impact of the Long Tail

	2.3.2 Item-Based Neighborhood Models
	2.3.3 Efficient Implementation and Computational Complexity
	2.3.4 Comparing User-Based and Item-Based Methods
	2.3.5 Strengths and Weaknesses of Neighborhood-Based Methods
	2.3.6 A Unified View of User-Based and Item-Based Methods

	2.4 Clustering and Neighborhood-Based Methods
	2.5 Dimensionality Reduction and Neighborhood Methods
	2.5.1 Handling Problems with Bias
	2.5.1.1 Maximum Likelihood Estimation
	2.5.1.2 Direct Matrix Factorization of Incomplete Data

	2.6 A Regression Modeling View of Neighborhood Methods
	2.6.1 User-Based Nearest Neighbor Regression
	2.6.1.1 Sparsity and Bias Issues

	2.6.2 Item-Based Nearest Neighbor Regression
	2.6.3 Combining User-Based and Item-Based Methods
	2.6.4 Joint Interpolation with Similarity Weighting
	2.6.5 Sparse Linear Models (SLIM)

	2.7 Graph Models for Neighborhood-Based Methods
	2.7.1 User-Item Graphs
	2.7.1.1 Defining Neighborhoods with Random Walks
	2.7.1.2 Defining Neighborhoods with the Katz Measure

	2.7.2 User-User Graphs
	2.7.3 Item-Item Graphs

	2.8 Summary
	2.9 Bibliographic Notes
	2.10 Exercises

	3 Model-Based Collaborative Filtering
	3.1 Introduction
	3.2 Decision and Regression Trees
	3.2.1 Extending Decision Trees to Collaborative Filtering

	3.3 Rule-Based Collaborative Filtering
	3.3.1 Leveraging Association Rules for Collaborative Filtering
	3.3.2 Item-Wise Models versus User-Wise Models

	3.4 Naive Bayes Collaborative Filtering
	3.4.1 Handling Overfitting
	3.4.2 Example of the Bayes Method with Binary Ratings

	3.5 Using an Arbitrary Classification Model as a Black-Box
	3.5.1 Example: Using a Neural Network as a Black-Box

	3.6 Latent Factor Models
	3.6.1 Geometric Intuition for Latent Factor Models
	3.6.2 Low-Rank Intuition for Latent Factor Models
	3.6.3 Basic Matrix Factorization Principles
	3.6.4 Unconstrained Matrix Factorization
	3.6.4.1 Stochastic Gradient Descent
	3.6.4.2 Regularization
	3.6.4.3 Incremental Latent Component Training
	3.6.4.4 Alternating Least Squares and Coordinate Descent
	3.6.4.5 Incorporating User and Item Biases
	3.6.4.6 Incorporating Implicit Feedback

	3.6.5 Singular Value Decomposition
	3.6.5.1 A Simple Iterative Approach to SVD
	3.6.5.2 An Optimization-Based Approach
	3.6.5.3 Out-of-Sample Recommendations
	3.6.5.4 Example of Singular Value Decomposition

	3.6.6 Non-negative Matrix Factorization
	3.6.6.1 Interpretability Advantages
	3.6.6.2 Observations about Factorization with Implicit Feedback
	3.6.6.3 Computational and Weighting Issues with ImplicitFeedback
	3.6.6.4 Ratings with Both Likes and Dislikes

	3.6.7 Understanding the Matrix Factorization Family

	3.7 Integrating Factorization and Neighborhood Models
	3.7.1 Baseline Estimator: A Non-Personalized Bias-Centric Model
	3.7.2 Neighborhood Portion of Model
	3.7.3 Latent Factor Portion of Model
	3.7.4 Integrating the Neighborhood and Latent Factor Portions
	3.7.5 Solving the Optimization Model
	3.7.6 Observations about Accuracy
	3.7.7 Integrating Latent Factor Models with Arbitrary Models

	3.8 Summary
	3.9 Bibliographic Notes
	3.10 Exercises

	4 Content-Based Recommender Systems
	4.1 Introduction
	4.2 Basic Components of Content-Based Systems
	4.3 Preprocessing and Feature Extraction
	4.3.1 Feature Extraction
	4.3.1.1 Example of Product Recommendation
	4.3.1.2 Example of Web Page Recommendation
	4.3.1.3 Example of Music Recommendation

	4.3.2 Feature Representation and Cleaning
	4.3.3 Collecting User Likes and Dislikes
	4.3.4 Supervised Feature Selection and Weighting
	4.3.4.1 Gini Index
	4.3.4.2 Entropy
	4.3.4.3 χ2-Statistic
	4.3.4.4 Normalized Deviation
	4.3.4.5 Feature Weighting

	4.4 Learning User Profiles and Filtering
	4.4.1 Nearest Neighbor Classification
	4.4.2 Connections with Case-Based Recommender Systems
	4.4.3 Bayes Classifier
	4.4.3.1 Estimating Intermediate Probabilities
	4.4.3.2 Example of Bayes Model

	4.4.4 Rule-based Classifiers
	4.4.4.1 Example of Rule-based Methods

	4.4.5 Regression-Based Models
	4.4.6 Other Learning Models and Comparative Overview
	4.4.7 Explanations in Content-Based Systems

	4.5 Content-Based Versus Collaborative Recommendations
	4.6 Using Content-Based Models for Collaborative Filtering
	4.6.1 Leveraging User Profiles

	4.7 Summary
	4.8 Bibliographic Notes
	4.9 Exercises

	5 Knowledge-Based Recommender Systems
	5.1 Introduction
	5.2 Constraint-Based Recommender Systems
	5.2.1 Returning Relevant Results
	5.2.2 Interaction Approach
	5.2.3 Ranking the Matched Items
	5.2.4 Handling Unacceptable Results or Empty Sets
	5.2.5 Adding Constraints

	5.3 Case-Based Recommenders
	5.3.1 Similarity Metrics
	5.3.1.1 Incorporating Diversity in Similarity Computation

	5.3.2 Critiquing Methods
	5.3.2.1 Simple Critiques
	5.3.2.2 Compound Critiques
	5.3.2.3 Dynamic Critiques

	5.3.3 Explanation in Critiques

	5.4 Persistent Personalization in Knowledge-Based Systems
	5.5 Summary
	5.6 Bibliographic Notes
	5.7 Exercises

	6 Ensemble-Based and Hybrid Recommender Systems
	6.1 Introduction
	6.2 Ensemble Methods from the Classification Perspective
	6.3 Weighted Hybrids
	6.3.1 Various Types of Model Combinations
	6.3.2 Adapting Bagging from Classification
	6.3.3 Randomness Injection

	6.4 Switching Hybrids
	6.4.1 Switching Mechanisms for Cold-Start Issues
	6.4.2 Bucket-of-Models

	6.5 Cascade Hybrids
	6.5.1 Successive Refinement of Recommendations
	6.5.2 Boosting
	6.5.2.1 Weighted Base Models

	6.6 Feature Augmentation Hybrids
	6.7 Meta-Level Hybrids
	6.8 Feature Combination Hybrids
	6.8.1 Regression and Matrix Factorization
	6.8.2 Meta-level Features

	6.9 Mixed Hybrids
	6.10 Summary
	6.11 Bibliographic Notes
	6.12 Exercises

	7 Evaluating Recommender Systems
	7.1 Introduction
	7.2 Evaluation Paradigms
	7.2.1 User Studies
	7.2.2 Online Evaluation
	7.2.3 Offline Evaluation with Historical Data Sets

	7.3 General Goals of Evaluation Design
	7.3.1 Accuracy
	7.3.2 Coverage
	7.3.3 Confidence and Trust
	7.3.4 Novelty
	7.3.5 Serendipity
	7.3.6 Diversity
	7.3.7 Robustness and Stability
	7.3.8 Scalability

	7.4 Design Issues in Offline Recommender Evaluation
	7.4.1 Case Study of the Netflix Prize Data Set
	7.4.2 Segmenting the Ratings for Training and Testing
	7.4.2.1 Hold-Out
	7.4.2.2 Cross-Validation

	7.4.3 Comparison with Classification Design

	7.5 Accuracy Metrics in Offline Evaluation
	7.5.1 Measuring the Accuracy of Ratings Prediction
	7.5.1.1 RMSE versus MAE
	7.5.1.2 Impact of the Long Tail

	7.5.2 Evaluating Ranking via Correlation
	7.5.3 Evaluating Ranking via Utility
	7.5.4 Evaluating Ranking via Receiver Operating Characteristic
	7.5.5 Which Ranking Measure is Best?

	7.6 Limitations of Evaluation Measures
	7.6.1 Avoiding Evaluation Gaming

	7.7 Summary
	7.8 Bibliographic Notes
	7.9 Exercises

	8 Context-Sensitive Recommender Systems
	8.1 Introduction
	8.2 The Multidimensional Approach
	8.2.1 The Importance of Hierarchies

	8.3 Contextual Pre-filtering: A Reduction-Based Approach
	8.3.1 Ensemble-Based Improvements
	8.3.2 Multi-level Estimation

	8.4 Post-Filtering Methods
	8.5 Contextual Modeling
	8.5.1 Neighborhood-Based Methods
	8.5.2 Latent Factor Models
	8.5.2.1 Factorization Machines
	8.5.2.2 A Generalized View of Second-Order FactorizationMachines
	8.5.2.3 Other Applications of Latent Parametrization

	8.5.3 Content-Based Models

	8.6 Summary
	8.7 Bibliographic Notes
	8.8 Exercises

	9 Time- and Location-Sensitive Recommender Systems
	9.1 Introduction
	9.2 Temporal Collaborative Filtering
	9.2.1 Recency-Based Models
	9.2.1.1 Decay-Based Methods
	9.2.1.2 Window-Based Methods

	9.2.2 Handling Periodic Context
	9.2.2.1 Pre-Filtering and Post-Filtering
	9.2.2.2 Direct Incorporation of Temporal Context

	9.2.3 Modeling Ratings as a Function of Time
	9.2.3.1 The Time-SVD++ Model

	9.3 Discrete Temporal Models
	9.3.1 Markovian Models
	9.3.1.1 Selective Markov Models
	9.3.1.2 Other Markovian Alternatives

	9.3.2 Sequential Pattern Mining

	9.4 Location-Aware Recommender Systems
	9.4.1 Preference Locality
	9.4.2 Travel Locality
	9.4.3 Combined Preference and Travel Locality

	9.5 Summary
	9.6 Bibliographic Notes
	9.7 Exercises

	10 Structural Recommendations in Networks
	10.1 Introduction
	10.2 Ranking Algorithms
	10.2.1 PageRank
	10.2.2 Personalized PageRank
	10.2.3 Applications to Neighborhood-Based Methods
	10.2.3.1 Social Network Recommendations
	10.2.3.2 Personalization in Heterogeneous Social Media
	10.2.3.3 Traditional Collaborative Filtering

	10.2.4 SimRank
	10.2.5 The Relationship Between Search and Recommendation

	10.3 Recommendations by Collective Classification
	10.3.1 Iterative Classification Algorithm
	10.3.2 Label Propagation with Random Walks
	10.3.3 Applicability to Collaborative Filtering in Social Networks

	10.4 Recommending Friends: Link Prediction
	10.4.1 Neighborhood-Based Measures
	10.4.2 Katz Measure
	10.4.3 Random Walk-Based Measures
	10.4.4 Link Prediction as a Classification Problem
	10.4.5 Matrix Factorization for Link Prediction
	10.4.5.1 Symmetric Matrix Factorization

	10.4.6 Connections Between Link Prediction and Collaborative Filtering
	10.4.6.1 Using Link Prediction Algorithms for CollaborativeFiltering
	10.4.6.2 Using Collaborative Filtering Algorithms for LinkPrediction

	10.5 Social Influence Analysis and Viral Marketing
	10.5.1 Linear Threshold Model
	10.5.2 Independent Cascade Model
	10.5.3 Influence Function Evaluation
	10.5.4 Targeted Influence Analysis Models in Social Streams

	10.6 Summary
	10.7 Bibliographic Notes
	10.8 Exercises

	11 Social and Trust-Centric Recommender Systems
	11.1 Introduction
	11.2 Multidimensional Models for Social Context
	11.3 Network-Centric and Trust-Centric Methods
	11.3.1 Collecting Data for Building Trust Networks
	11.3.2 Trust Propagation and Aggregation
	11.3.3 Simple Recommender with No Trust Propagation
	11.3.4 TidalTrust Algorithm
	11.3.5 MoleTrust Algorithm
	11.3.6 TrustWalker Algorithm
	11.3.7 Link Prediction Methods
	11.3.8 Matrix Factorization Methods
	11.3.8.1 Enhancements with Logistic Function
	11.3.8.2 Variations in the Social Trust Component

	11.3.9 Merits of Social Recommender Systems
	11.3.9.1 Recommendations for Controversial Users and Items
	11.3.9.2 Usefulness for Cold-Start
	11.3.9.3 Attack Resistance

	11.4 User Interaction in Social Recommenders
	11.4.1 Representing Folksonomies
	11.4.2 Collaborative Filtering in Social Tagging Systems
	11.4.3 Selecting Valuable Tags
	11.4.4 Social-Tagging Recommenders with No Ratings Matrix
	11.4.4.1 Multidimensional Methods for Context-Sensitive Systems
	11.4.4.2 Ranking-Based Methods
	11.4.4.3 Content-Based Methods

	11.4.5 Social-Tagging Recommenders with Ratings Matrix
	11.4.5.1 Neighborhood-Based Approach
	11.4.5.2 Linear Regression
	11.4.5.3 Matrix Factorization
	11.4.5.4 Content-Based Methods

	11.5 Summary
	11.6 Bibliographic Notes
	11.7 Exercises

	12 Attack-Resistant Recommender Systems
	12.1 Introduction
	12.2 Understanding the Trade-Offs in Attack Models
	12.2.1 Quantifying Attack Impact

	12.3 Types of Attacks
	12.3.1 Random Attack
	12.3.2 Average Attack
	12.3.3 Bandwagon Attack
	12.3.4 Popular Attack
	12.3.5 Love/Hate Attack
	12.3.6 Reverse Bandwagon Attack
	12.3.7 Probe Attack
	12.3.8 Segment Attack
	12.3.9 Effect of Base Recommendation Algorithm

	12.4 Detecting Attacks on Recommender Systems
	12.4.1 Individual Attack Profile Detection
	12.4.2 Group Attack Profile Detection
	12.4.2.1 Preprocessing Methods
	12.4.2.2 Online Methods

	12.5 Strategies for Robust Recommender Design
	12.5.1 Preventing Automated Attacks with CAPTCHAs
	12.5.2 Using Social Trust
	12.5.3 Designing Robust Recommendation Algorithms
	12.5.3.1 Incorporating Clustering in Neighborhood Methods
	12.5.3.2 Fake Profile Detection during Recommendation Time
	12.5.3.3 Association-Based Algorithms
	12.5.3.4 Robust Matrix Factorization

	12.6 Summary
	12.7 Bibliographic Notes
	12.8 Exercises

	13 Advanced Topics in Recommender Systems
	13.1 Introduction
	13.2 Learning to Rank
	13.2.1 Pairwise Rank Learning
	13.2.2 Listwise Rank Learning
	13.2.3 Comparison with Rank-Learning Methods in Other Domains

	13.3 Multi-Armed Bandit Algorithms
	13.3.1 Naive Algorithm
	13.3.2 ε-Greedy Algorithm
	13.3.3 Upper Bounding Methods

	13.4 Group Recommender Systems
	13.4.1 Collaborative and Content-Based Systems
	13.4.2 Knowledge-Based Systems

	13.5 Multi-Criteria Recommender Systems
	13.5.1 Neighborhood-Based Methods
	13.5.2 Ensemble-Based Methods
	13.5.3 Multi-Criteria Systems without Overall Ratings

	13.6 Active Learning in Recommender Systems
	13.6.1 Heterogeneity-Based Models
	13.6.2 Performance-Based Models

	13.7 Privacy in Recommender Systems
	13.7.1 Condensation-Based Privacy
	13.7.2 Challenges for High-Dimensional Data

	13.8 Some Interesting Application Domains
	13.8.1 Portal Content Personalization
	13.8.1.1 Dynamic Profiler
	13.8.1.2 Google News Personalization

	13.8.2 Computational Advertising versus Recommender Systems
	13.8.2.1 Importance of Multi-Armed Bandit Methods

	13.8.3 Reciprocal Recommender Systems
	13.8.3.1 Leveraging Hybrid Methods
	13.8.3.2 Leveraging Link Prediction Methods

	13.9 Summary
	13.10 Bibliographic Notes

	Bibliography
	Index

